Integrated Performance Metrics of Porous Carbon Toward Practical Supercapacitor Devices
Corresponding Author: Qiulong Wei
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 219
Abstract
The scientific communities in both academia and industry are devoted to increasing energy density of supercapacitor devices, including investigating the relationship between carbon structure and capacitance of various activated carbon (AC) materials. However, most reported capacitance values are measured solely at the material level, which are difficult to directly translate into achievable energy densities for practical supercapacitor devices. In this work, we assemble supercapacitor pouch cells to reveal the insight relationships between the capacitance and porosity of AC materials and the optimal amount of electrolyte at the device level. Concurrently, a guidance on the required amount of electrolyte is provided, indicating that both the specific capacitance and porosity of AC materials collectively determine the energy density of a practical device (Edevice). Furthermore, we develop a computational E-tool for directly predicting Edevice at an early stage of material-level electrochemical testing. Finally, we propose a new descriptor (η) that incorporates both the capacitance and porosity parameters of AC materials, which displays a linear relationship with Edevice. This study provides a reliable E-tool and η for accelerating the development of advanced charge storage mechanisms and carbon materials for practical supercapacitor devices.
Highlights:
1 This work establishs a guidance of required amount of electrolyte for activated carbons in supercapacitor devices.
2 A novel E-tool is provided for predicting the energy density of supercapacitor devices via the inputting of intrinsic parameters of activated carbons.
3 A new descriptor η, that integrates capacitance and porosity of activated carbon electrode, is able to quickly evaluate the energy density of supercapacitor devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Xiao, F. Shi, T. Glossmann, C. Burnett, Z. Liu, From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy 8(4), 329–339 (2023). https://doi.org/10.1038/s41560-023-01221-y
- P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19(11), 1151–1163 (2020). https://doi.org/10.1038/s41563-020-0747-z
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297
- J.-H. Kim, N.-Y. Kim, Z. Ju, Y.-K. Hong, K.-D. Kang et al., Upscaling high-areal-capacity battery electrodes. Nat. Energy 10(3), 295–307 (2025). https://doi.org/10.1038/s41560-025-01720-0
- V. Aravindan, Y.-S. Lee, S. Madhavi, Research progress on negative electrodes for practical Li-ion batteries: beyond carbonaceous anodes. Adv. Energy Mater. 5(13), 1402225 (2015). https://doi.org/10.1002/aenm.201402225
- L. Jing, K. Zhuo, L. Sun, N. Zhang, X. Su et al., The mass-balancing between positive and negative electrodes for optimizing energy density of supercapacitors. J. Am. Chem. Soc. 146(21), 14369–14385 (2024). https://doi.org/10.1021/jacs.4c00486
- G. Ji, D. Tang, J. Wang, Z. Liang, H. Ji et al., Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material. Nat. Commun. 15(1), 4086 (2024). https://doi.org/10.1038/s41467-024-48181-9
- X. Fan, X. Ou, W. Zhao, Y. Liu, B. Zhang et al., In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes. Nat. Commun. 12(1), 5320 (2021). https://doi.org/10.1038/s41467-021-25611-6
- J. Saint, M. Morcrette, D. Larcher, L. Laffont, S. Beattie et al., Towards a fundamental understanding of the improved electrochemical performance of silicon–carbon composites. Adv. Funct. Mater. 17(11), 1765–1774 (2007). https://doi.org/10.1002/adfm.200600937
- W. Luo, X. Chen, Y. Xia, M. Chen, L. Wang et al., Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 7(24), 1701083 (2017). https://doi.org/10.1002/aenm.201701083
- J. Wang, X. Sun, Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ. Sci. 8(4), 1110–1138 (2015). https://doi.org/10.1039/c4ee04016c
- J. Wang, K. Jia, J. Ma, Z. Liang, Z. Zhuang et al., Sustainable upcycling of spent LiCoO2 to an ultra-stable battery cathode at high voltage. Nat. Sustain. 6(7), 797–805 (2023). https://doi.org/10.1038/s41893-023-01094-9
- J. Betz, G. Bieker, P. Meister, T. Placke, M. Winter et al., Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 9(22), 1900761 (2019). https://doi.org/10.1002/aenm.201900761
- C. Heubner, K. Voigt, P. Marcinkowski, S. Reuber, K. Nikolowski et al., From active materials to battery cells: a straightforward tool to determine performance metrics and support developments at an application-relevant level. Adv. Energy Mater. 11(46), 2102647 (2021). https://doi.org/10.1002/aenm.202102647
- B.R. Long, S.G. Rinaldo, K.G. Gallagher, D.W. Dees, S.E. Trask et al., Enabling high-energy, high-voltage lithium-ion cells: standardization of coin-cell assembly, electrochemical testing, and evaluation of full cells. J. Electrochem. Soc. 163(14), A2999–A3009 (2016). https://doi.org/10.1149/2.0691614jes
- J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4(3), 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
- G.-X. Li, V. Koverga, A. Nguyen, R. Kou, M. Ncube et al., Enhancing lithium-metal battery longevity through minimized coordinating diluent. Nat. Energy 9(7), 817–827 (2024). https://doi.org/10.1038/s41560-024-01519-5
- Z. Xiao, X. Liu, F. Hai, Y. Li, D. Han et al., Wide temperature 500 wh kg–1lithium metal pouch cells. Angew. Chem. Int. Ed. 64(29), e202503693 (2025). https://doi.org/10.1002/anie.202503693
- H. Ji, J. Xiang, Y. Li, M. Zheng, L. Yuan et al., Liquid–liquid interfacial tension stabilized Li-metal batteries. Nature 643(8074), 1255–1262 (2025). https://doi.org/10.1038/s41586-025-09293-4
- A. Yao, S.M. Benson, W.C. Chueh, Critically assessing sodium-ion technology roadmaps and scenarios for techno-economic competitiveness against lithium-ion batteries. Nat. Energy 10(3), 404–416 (2025). https://doi.org/10.1038/s41560-024-01701-9
- R. Usiskin, Y. Lu, J. Popovic, M. Law, P. Balaya et al., Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 6(11), 1020–1035 (2021). https://doi.org/10.1038/s41578-021-00324-w
- C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3(4), 18013 (2018). https://doi.org/10.1038/natrevmats.2018.13
- S. Tao, Z. Cao, X. Xiao, Z. Song, D. Xiong et al., Tunable platform capacity of metal-organic frameworks via high-entropy strategy for ultra-fast sodium storage. Nano-Micro Lett. 17(1), 201 (2025). https://doi.org/10.1007/s40820-025-01706-3
- A. Burke, R&D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta 53(3), 1083–1091 (2007). https://doi.org/10.1016/j.electacta.2007.01.011
- S. Zhang, N. Pan, Supercapacitors performance evaluation. Adv. Energy Mater. 5(6), 1401401 (2015). https://doi.org/10.1002/aenm.201401401
- C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44(21), 7484–7539 (2015). https://doi.org/10.1039/c5cs00303b
- J. Wu, Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122(12), 10821–10859 (2022). https://doi.org/10.1021/acs.chemrev.2c00097
- A.C. Forse, C. Merlet, J.M. Griffin, C.P. Grey, New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138(18), 5731–5744 (2016). https://doi.org/10.1021/jacs.6b02115
- M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna et al., Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1(6), 16070 (2016). https://doi.org/10.1038/nenergy.2016.70
- J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon et al., Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313(5794), 1760–1763 (2006). https://doi.org/10.1126/science.1132195
- X. Liu, D. Lyu, C. Merlet, M.J.A. Leesmith, X. Hua et al., Structural disorder determines capacitance in nanoporous carbons. Science 384(6693), 321–325 (2024). https://doi.org/10.1126/science.adn6242
- H. Shao, Y.-C. Wu, Z. Lin, P.-L. Taberna, P. Simon, Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 49(10), 3005–3039 (2020). https://doi.org/10.1039/d0cs00059k
- T. Lin, I.-W. Chen, F. Liu, C. Yang, H. Bi et al., Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350(6267), 1508–1513 (2015). https://doi.org/10.1126/science.aab3798
- Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011). https://doi.org/10.1126/science.1200770
- Y. Gogotsi, P. Simon, True performance metrics in electrochemical energy storage. Science 334(6058), 917–918 (2011). https://doi.org/10.1126/science.1213003
- Y. Wang, Application-oriented design of machine learning paradigms for battery science. NPJ Comput. Mater. 11, 89 (2025). https://doi.org/10.1038/s41524-025-01575-9
- K.W. Knehr, J.J. Kubal, A. Deva, M.B. Effat, S. Ahmed, From material properties to device metrics: a data-driven guide to battery design. Energy Adv. 2(9), 1326–1350 (2023). https://doi.org/10.1039/d3ya00137g
- N. Kim, Y. Kim, J. Sung, J. Cho, Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries. Nat. Energy 8(9), 921–933 (2023). https://doi.org/10.1038/s41560-023-01333-5
- J. Xie, Y.-C. Lu, A retrospective on lithium-ion batteries. Nat. Commun. 11, 2499 (2020). https://doi.org/10.1038/s41467-020-16259-9
- M. Sevilla, A.B. Fuertes, Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 8(5), 5069–5078 (2014). https://doi.org/10.1021/nn501124h
- W.B. Hawley, J. Li, Electrode manufacturing for lithium-ion batteries: analysis of current and next generation processing. J. Energy Storage 25, 100862 (2019). https://doi.org/10.1016/j.est.2019.100862
- W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia et al., Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv. Sci. 4(7), 1600539 (2017). https://doi.org/10.1002/advs.201600539
- N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai et al., Asymmetric supercapacitor electrodes and devices. Adv. Mater. 29(21), 1605336 (2017). https://doi.org/10.1002/adma.201605336
- J.P. Zheng, J. Huang, T.R. Jow, The limitations of energy density for electrochemical capacitors. J. Electrochem. Soc. 144(6), 2026–2031 (1997). https://doi.org/10.1149/1.1837738
- Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss et al., Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014). https://doi.org/10.1038/ncomms5554
- D. Li, J. Zhou, Y. Wang, Y. Tian, L. Wei et al., Effects of activation temperature on densities and volumetric CO2 adsorption performance of alkali-activated carbons. Fuel 238, 232–239 (2019). https://doi.org/10.1016/j.fuel.2018.10.122
- Y. Li, Y. Lu, Q. Meng, A.C.S. Jensen, Q. Zhang et al., Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 9(48), 1902852 (2019). https://doi.org/10.1002/aenm.201902852
- X. Wang, W. Zheng, H. Zhao, J. Li, S. Chen et al., Robust and high-wettability cellulose separators with molecule-reassembled nano-cracked structures for high-performance supercapacitors. Nano-Micro Lett. 17(1), 153 (2025). https://doi.org/10.1007/s40820-025-01650-2
- H. Cui, Y. Song, D. Ren, L. Wang, X. He, Electrocapillary boosting electrode wetting for high-energy lithium-ion batteries. Joule 8(1), 29–44 (2024). https://doi.org/10.1016/j.joule.2023.11.012
- J. Wu, X. Zhang, Z. Ju, L. Wang, Z. Hui et al., From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems. Adv. Mater. 33(26), e2101275 (2021). https://doi.org/10.1002/adma.202101275
- Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016). https://doi.org/10.1039/c5cs00580a
- P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier et al., Electrochemical energy storage in ordered porous carbon materials. Carbon 43(6), 1293–1302 (2005). https://doi.org/10.1016/j.carbon.2004.12.028
- J. Bian, M. Zheng, Q. Chen, H. Liu, N-doped graphitized porous carbon derived from N-rich polymer for improved supercapacitor performance. New J. Chem. 46(19), 9372–9382 (2022). https://doi.org/10.1039/D2NJ01685K
- A. Shodiev, E. Primo, O. Arcelus, M. Chouchane, M. Osenberg et al., Insight on electrolyte infiltration of lithium ion battery electrodes by means of a new three-dimensional-resolved lattice Boltzmann model. Energy Storage Mater. 38, 80–92 (2021). https://doi.org/10.1016/j.ensm.2021.02.029
- X. Xue, L. Feng, Q. Ren, C. Tran, S. Eisenberg et al., Interpenetrated structures for enhancing ion diffusion kinetics in electrochemical energy storage devices. Nano-Micro Lett. 16(1), 255 (2024). https://doi.org/10.1007/s40820-024-01472-8
References
J. Xiao, F. Shi, T. Glossmann, C. Burnett, Z. Liu, From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy 8(4), 329–339 (2023). https://doi.org/10.1038/s41560-023-01221-y
P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19(11), 1151–1163 (2020). https://doi.org/10.1038/s41563-020-0747-z
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297
J.-H. Kim, N.-Y. Kim, Z. Ju, Y.-K. Hong, K.-D. Kang et al., Upscaling high-areal-capacity battery electrodes. Nat. Energy 10(3), 295–307 (2025). https://doi.org/10.1038/s41560-025-01720-0
V. Aravindan, Y.-S. Lee, S. Madhavi, Research progress on negative electrodes for practical Li-ion batteries: beyond carbonaceous anodes. Adv. Energy Mater. 5(13), 1402225 (2015). https://doi.org/10.1002/aenm.201402225
L. Jing, K. Zhuo, L. Sun, N. Zhang, X. Su et al., The mass-balancing between positive and negative electrodes for optimizing energy density of supercapacitors. J. Am. Chem. Soc. 146(21), 14369–14385 (2024). https://doi.org/10.1021/jacs.4c00486
G. Ji, D. Tang, J. Wang, Z. Liang, H. Ji et al., Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material. Nat. Commun. 15(1), 4086 (2024). https://doi.org/10.1038/s41467-024-48181-9
X. Fan, X. Ou, W. Zhao, Y. Liu, B. Zhang et al., In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes. Nat. Commun. 12(1), 5320 (2021). https://doi.org/10.1038/s41467-021-25611-6
J. Saint, M. Morcrette, D. Larcher, L. Laffont, S. Beattie et al., Towards a fundamental understanding of the improved electrochemical performance of silicon–carbon composites. Adv. Funct. Mater. 17(11), 1765–1774 (2007). https://doi.org/10.1002/adfm.200600937
W. Luo, X. Chen, Y. Xia, M. Chen, L. Wang et al., Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 7(24), 1701083 (2017). https://doi.org/10.1002/aenm.201701083
J. Wang, X. Sun, Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ. Sci. 8(4), 1110–1138 (2015). https://doi.org/10.1039/c4ee04016c
J. Wang, K. Jia, J. Ma, Z. Liang, Z. Zhuang et al., Sustainable upcycling of spent LiCoO2 to an ultra-stable battery cathode at high voltage. Nat. Sustain. 6(7), 797–805 (2023). https://doi.org/10.1038/s41893-023-01094-9
J. Betz, G. Bieker, P. Meister, T. Placke, M. Winter et al., Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 9(22), 1900761 (2019). https://doi.org/10.1002/aenm.201900761
C. Heubner, K. Voigt, P. Marcinkowski, S. Reuber, K. Nikolowski et al., From active materials to battery cells: a straightforward tool to determine performance metrics and support developments at an application-relevant level. Adv. Energy Mater. 11(46), 2102647 (2021). https://doi.org/10.1002/aenm.202102647
B.R. Long, S.G. Rinaldo, K.G. Gallagher, D.W. Dees, S.E. Trask et al., Enabling high-energy, high-voltage lithium-ion cells: standardization of coin-cell assembly, electrochemical testing, and evaluation of full cells. J. Electrochem. Soc. 163(14), A2999–A3009 (2016). https://doi.org/10.1149/2.0691614jes
J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4(3), 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
G.-X. Li, V. Koverga, A. Nguyen, R. Kou, M. Ncube et al., Enhancing lithium-metal battery longevity through minimized coordinating diluent. Nat. Energy 9(7), 817–827 (2024). https://doi.org/10.1038/s41560-024-01519-5
Z. Xiao, X. Liu, F. Hai, Y. Li, D. Han et al., Wide temperature 500 wh kg–1lithium metal pouch cells. Angew. Chem. Int. Ed. 64(29), e202503693 (2025). https://doi.org/10.1002/anie.202503693
H. Ji, J. Xiang, Y. Li, M. Zheng, L. Yuan et al., Liquid–liquid interfacial tension stabilized Li-metal batteries. Nature 643(8074), 1255–1262 (2025). https://doi.org/10.1038/s41586-025-09293-4
A. Yao, S.M. Benson, W.C. Chueh, Critically assessing sodium-ion technology roadmaps and scenarios for techno-economic competitiveness against lithium-ion batteries. Nat. Energy 10(3), 404–416 (2025). https://doi.org/10.1038/s41560-024-01701-9
R. Usiskin, Y. Lu, J. Popovic, M. Law, P. Balaya et al., Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 6(11), 1020–1035 (2021). https://doi.org/10.1038/s41578-021-00324-w
C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3(4), 18013 (2018). https://doi.org/10.1038/natrevmats.2018.13
S. Tao, Z. Cao, X. Xiao, Z. Song, D. Xiong et al., Tunable platform capacity of metal-organic frameworks via high-entropy strategy for ultra-fast sodium storage. Nano-Micro Lett. 17(1), 201 (2025). https://doi.org/10.1007/s40820-025-01706-3
A. Burke, R&D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta 53(3), 1083–1091 (2007). https://doi.org/10.1016/j.electacta.2007.01.011
S. Zhang, N. Pan, Supercapacitors performance evaluation. Adv. Energy Mater. 5(6), 1401401 (2015). https://doi.org/10.1002/aenm.201401401
C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44(21), 7484–7539 (2015). https://doi.org/10.1039/c5cs00303b
J. Wu, Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122(12), 10821–10859 (2022). https://doi.org/10.1021/acs.chemrev.2c00097
A.C. Forse, C. Merlet, J.M. Griffin, C.P. Grey, New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138(18), 5731–5744 (2016). https://doi.org/10.1021/jacs.6b02115
M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna et al., Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1(6), 16070 (2016). https://doi.org/10.1038/nenergy.2016.70
J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon et al., Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313(5794), 1760–1763 (2006). https://doi.org/10.1126/science.1132195
X. Liu, D. Lyu, C. Merlet, M.J.A. Leesmith, X. Hua et al., Structural disorder determines capacitance in nanoporous carbons. Science 384(6693), 321–325 (2024). https://doi.org/10.1126/science.adn6242
H. Shao, Y.-C. Wu, Z. Lin, P.-L. Taberna, P. Simon, Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 49(10), 3005–3039 (2020). https://doi.org/10.1039/d0cs00059k
T. Lin, I.-W. Chen, F. Liu, C. Yang, H. Bi et al., Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350(6267), 1508–1513 (2015). https://doi.org/10.1126/science.aab3798
Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011). https://doi.org/10.1126/science.1200770
Y. Gogotsi, P. Simon, True performance metrics in electrochemical energy storage. Science 334(6058), 917–918 (2011). https://doi.org/10.1126/science.1213003
Y. Wang, Application-oriented design of machine learning paradigms for battery science. NPJ Comput. Mater. 11, 89 (2025). https://doi.org/10.1038/s41524-025-01575-9
K.W. Knehr, J.J. Kubal, A. Deva, M.B. Effat, S. Ahmed, From material properties to device metrics: a data-driven guide to battery design. Energy Adv. 2(9), 1326–1350 (2023). https://doi.org/10.1039/d3ya00137g
N. Kim, Y. Kim, J. Sung, J. Cho, Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries. Nat. Energy 8(9), 921–933 (2023). https://doi.org/10.1038/s41560-023-01333-5
J. Xie, Y.-C. Lu, A retrospective on lithium-ion batteries. Nat. Commun. 11, 2499 (2020). https://doi.org/10.1038/s41467-020-16259-9
M. Sevilla, A.B. Fuertes, Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 8(5), 5069–5078 (2014). https://doi.org/10.1021/nn501124h
W.B. Hawley, J. Li, Electrode manufacturing for lithium-ion batteries: analysis of current and next generation processing. J. Energy Storage 25, 100862 (2019). https://doi.org/10.1016/j.est.2019.100862
W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia et al., Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv. Sci. 4(7), 1600539 (2017). https://doi.org/10.1002/advs.201600539
N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai et al., Asymmetric supercapacitor electrodes and devices. Adv. Mater. 29(21), 1605336 (2017). https://doi.org/10.1002/adma.201605336
J.P. Zheng, J. Huang, T.R. Jow, The limitations of energy density for electrochemical capacitors. J. Electrochem. Soc. 144(6), 2026–2031 (1997). https://doi.org/10.1149/1.1837738
Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss et al., Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014). https://doi.org/10.1038/ncomms5554
D. Li, J. Zhou, Y. Wang, Y. Tian, L. Wei et al., Effects of activation temperature on densities and volumetric CO2 adsorption performance of alkali-activated carbons. Fuel 238, 232–239 (2019). https://doi.org/10.1016/j.fuel.2018.10.122
Y. Li, Y. Lu, Q. Meng, A.C.S. Jensen, Q. Zhang et al., Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 9(48), 1902852 (2019). https://doi.org/10.1002/aenm.201902852
X. Wang, W. Zheng, H. Zhao, J. Li, S. Chen et al., Robust and high-wettability cellulose separators with molecule-reassembled nano-cracked structures for high-performance supercapacitors. Nano-Micro Lett. 17(1), 153 (2025). https://doi.org/10.1007/s40820-025-01650-2
H. Cui, Y. Song, D. Ren, L. Wang, X. He, Electrocapillary boosting electrode wetting for high-energy lithium-ion batteries. Joule 8(1), 29–44 (2024). https://doi.org/10.1016/j.joule.2023.11.012
J. Wu, X. Zhang, Z. Ju, L. Wang, Z. Hui et al., From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems. Adv. Mater. 33(26), e2101275 (2021). https://doi.org/10.1002/adma.202101275
Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016). https://doi.org/10.1039/c5cs00580a
P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier et al., Electrochemical energy storage in ordered porous carbon materials. Carbon 43(6), 1293–1302 (2005). https://doi.org/10.1016/j.carbon.2004.12.028
J. Bian, M. Zheng, Q. Chen, H. Liu, N-doped graphitized porous carbon derived from N-rich polymer for improved supercapacitor performance. New J. Chem. 46(19), 9372–9382 (2022). https://doi.org/10.1039/D2NJ01685K
A. Shodiev, E. Primo, O. Arcelus, M. Chouchane, M. Osenberg et al., Insight on electrolyte infiltration of lithium ion battery electrodes by means of a new three-dimensional-resolved lattice Boltzmann model. Energy Storage Mater. 38, 80–92 (2021). https://doi.org/10.1016/j.ensm.2021.02.029
X. Xue, L. Feng, Q. Ren, C. Tran, S. Eisenberg et al., Interpenetrated structures for enhancing ion diffusion kinetics in electrochemical energy storage devices. Nano-Micro Lett. 16(1), 255 (2024). https://doi.org/10.1007/s40820-024-01472-8