Flexible, Porous, and Metal–Heteroatom-Doped Carbon Nanofibers as Efficient ORR Electrocatalysts for Zn–Air Battery
Corresponding Author: Guiping Ma
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 8
Abstract
Developing an efficient and durable oxygen reduction electrocatalyst is critical for clean-energy technology, such as fuel cells and metal–air batteries. In this study, we developed a facile strategy for the preparation of flexible, porous, and well-dispersed metal–heteroatom-doped carbon nanofibers by direct carbonization of electrospun Zn/Co-ZIFs/PAN nanofibers (Zn/Co-ZIFs/PAN). The obtained Zn/Co and N co-doped porous carbon nanofibers carbonized at 800 °C (Zn/Co–N@PCNFs-800) presented a good flexibility, a continuous porous structure, and a superior oxygen reduction reaction (ORR) catalytic activity to that of commercial 20 wt% Pt/C, in terms of its onset potential (0.98 V vs. RHE), half-wave potential (0.89 V vs. RHE), and limiting current density (− 5.26 mA cm−2). In addition, we tested the suitability and durability of Zn/Co–N@PCNFs-800 as the oxygen cathode for a rechargeable Zn–air battery. The prepared Zn–air batteries exhibited a higher power density (83.5 mW cm−2), a higher specific capacity (640.3 mAh g−1), an excellent reversibility, and a better cycling life than the commercial 20 wt% Pt/C + RuO2 catalysts. This design strategy of flexible porous non-precious metal-doped ORR electrocatalysts obtained from electrospun ZIFs/polymer nanofibers could be extended to fabricate other novel, stable, and easy-to-use multi-functional electrocatalysts for clean-energy technology.
Highlights:
1 Doping and porosity generation were completed simultaneously.
2 Metal–heteroatom-doped carbon nanofibers are flexible, porous, and well dispersed.
3 Results include excellent oxygen reduction reaction and enhanced Zn–air battery performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
- L. Dai, Y. Xue, L. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015). https://doi.org/10.1021/cr5003563
- Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, A review on non-precious metal electrocatalysts for pem fuel cells. Energy Environ. Sci. 4(9), 3167 (2011). https://doi.org/10.1039/c0ee00558d
- M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016). https://doi.org/10.1021/acs.chemrev.5b00462
- Y.Z. Chen, C. Wang, Z.Y. Wu, Y. Xiong, Q. Xu, S.H. Yu, H.L. Jiang, From bimetallic metal–organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 27(34), 5010–5016 (2015). https://doi.org/10.1002/adma.201502315
- Q.L. Zhu, W. Xia, T. Akita, R. Zou, Q. Xu, Metal–organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction. Adv. Mater. 28(30), 6391–6398 (2016). https://doi.org/10.1002/adma.201600979
- J. Zhu, H. Zhou, C. Zhang, J. Zhang, S. Mu, Dual active nitrogen doped hierarchical porous hollow carbon nanospheres as an oxygen reduction electrocatalyst for zinc-air batteries. Nanoscale 9(35), 13257–13263 (2017). https://doi.org/10.1039/C7NR04349J
- P. Huang, H. Li, X. Huang, D. Chen, Multiheteroatom-doped porous carbon catalyst for oxygen reduction reaction prepared using 3D network of ZIF-8/polymeric nanofiber as a facile-doping template. ACS Appl. Mater. Interfaces 9(25), 21083–21088 (2017). https://doi.org/10.1021/acsami.7b06427
- Q. Liu, Y. Wang, L. Dai, J. Yao, Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 28(15), 3000–3006 (2016). https://doi.org/10.1002/adma.201506112
- G. Ren, X. Lu, Y. Li, Y. Zhu, L. Dai, L. Jiang, Porous core-shell Fe3C embedded N-doped carbon nanofibers as an effective electrocatalysts for oxygen reduction reaction. ACS Appl. Mater. Interfaces 8(6), 4118–4125 (2016). https://doi.org/10.1021/acsami.5b11786
- Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, M. Wei, D.G. Evans, X. Duan, Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction. Adv. Mater. 28(12), 2337–2344 (2016). https://doi.org/10.1002/adma.201505086
- J. Wei, Y. Hu, Z. Wu, Y. Liang, S. Leong et al., A graphene-directed assembly route to hierarchically porous Co–Nx/C catalysts for high-performance oxygen reduction. J. Mater. Chem. A 3, 16867–16873 (2015). https://doi.org/10.1039/C5TA04330A
- Q. Niu, J. Guo, Y. Tang, X. Guo, J. Nie, G. Ma, Sandwich-type bimetal–organic frameworks/graphene oxide derived porous nanosheets doped Fe/Co-n active sites for oxygen reduction reaction. Electrochim. Acta 255, 72–82 (2017). https://doi.org/10.1016/j.electacta.2017.09.125
- S. Hu, T. Han, C. Lin, W. Xiang, Y. Zhao, P. Gao, F. Du, X. Li, Y. Sun, Enhanced electrocatalysis via 3D graphene aerogel engineered with a silver nanowire network for ultrahigh-rate zinc-air batteries. Adv. Funct. Mater. 27(18), 1700041 (2017). https://doi.org/10.1002/adfm.201700041
- S.S. Shinde, C.H. Lee, J.Y. Yu, D.H. Kim, S.U. Lee, J.H. Lee, Hierarchically designed 3d holey C2N aerogels as bifunctional oxygen electrodes for flexible and rechargeable zn-air batteries. ACS Nano 12(1), 596–608 (2018). https://doi.org/10.1021/acsnano.7b07473
- S. Dang, Q.L. Zhu, Q. Xu, Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 3(1), 17075 (2017). https://doi.org/10.1038/natrevmats.2017.75
- K. Shen, X. Chen, J. Chen, Y. Li, Development of mof-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 6(9), 5887–5903 (2016). https://doi.org/10.1021/acscatal.6b01222
- B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390–5391 (2008). https://doi.org/10.1021/ja7106146
- B. Chen, Z. Yang, Y. Zhu, Y. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem. A 2(40), 16811–16831 (2014). https://doi.org/10.1039/C4TA02984D
- B. Chen, G. Ma, Y. Zhu, Y. Xia, Metal-organic-frameworks derived cobalt embedded in various carbon structures as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Sci. Rep. 7(1), 5266 (2017). https://doi.org/10.1038/s41598-017-05636-y
- W. Zhang, Z.Y. Wu, H.L. Jiang, S.H. Yu, Nanowire-directed templating synthesis of metal–organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 136(41), 14385–14388 (2014). https://doi.org/10.1021/ja5084128
- S.H. Ahn, M.J. Klein, A. Manthiram, 1D Co- and N-doped hierarchically porous carbon nanotubes derived from bimetallic metal organic framework for efficient oxygen and tri-iodide reduction reactions. Adv. Energy Mater. 7(7), 1601979 (2017). https://doi.org/10.1002/aenm.201601979
- S.H. Ahn, X. Yu, A. Manthiram, “Wiring” Fe-Nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media. Adv. Mater. 29(26), 1606534 (2017). https://doi.org/10.1002/adma.201606534
- C. Zhang, Y.C. Wang, B. An, R. Huang, C. Wang, Z. Zhou, W. Lin, Networking pyrolyzed zeolitic imidazolate frameworks by carbon nanotubes improves conductivity and enhances oxygen-reduction performance in polymer-electrolyte-membrane fuel cells. Adv. Mater. 29(4), 1604556 (2017). https://doi.org/10.1002/adma.201604556
- P.C. Shi, J.D. Yi, T.T. Liu, L. Li, L.J. Zhang et al., Hierarchically porous nitrogen-doped carbon nanotubes derived from core-shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. J. Mater. Chem. A 5, 12322–12329 (2017). https://doi.org/10.1039/C7TA02999C
- C. Lin, S.S. Shinde, Z. Jiang, X. Song, Y. Sun, L. Guo, H. Zhang, J.Y. Jung, X. Li, J.H. Lee, In situ directional formation of Co@CoOx-embedded 1D carbon nanotubes as an efficient oxygen electrocatalyst for ultra-high rate zn-air batteries. J. Mater. Chem. A 5, 13994–14002 (2017). https://doi.org/10.1039/C7TA02215H
- F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 138(32), 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
- S.S. Shinde, J.Y. Yu, J.W. Song, Y.H. Nam, D.H. Kim, J.H. Lee, Highly active and durable carbon nitride fibers as metal-free bifunctional oxygen electrodes for flexible Zn-air batteries. Nanoscale Horiz. 2(6), 333–341 (2017). https://doi.org/10.1039/C7NH00058H
- X. Wang, J. Yu, G. Sun, B. Ding, Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. Mater. Today 19(7), 403–414 (2016). https://doi.org/10.1016/j.mattod.2015.11.010
- G. Yang, X. Li, Y. He, J. Ma, G. Ni, S. Zhou, From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications. Prog. Polym. Sci. 81, 80–113 (2018). https://doi.org/10.1016/j.progpolymsci.2017.12.003
- L. Li, S. Peng, J. Lee, D. Ji, M. Srinivasan, S. Ramakrishna, Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39, 111–139 (2017). https://doi.org/10.1016/j.nanoen.2017.06.050
- X. Lu, C. Wang, F. Favier, N. Pinna, Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance. Adv. Energy Mater. 7(2), 1601301 (2017). https://doi.org/10.1002/aenm.201601301
- Y. Zhao, J. Zhang, X. Guo, H. Fan, W. Wu, H. Liu, G. Wang, Fe3C@nitrogen doped cnt arrays aligned on nitrogen functionalized carbon nanofibers as highly efficient catalysts for the oxygen evolution reaction. J. Mater. Chem. A 5(37), 19672–19679 (2017). https://doi.org/10.1039/C7TA05936A
- Q. Niu, J. Guo, B. Chen, J. Nie, X. Guo, G. Ma, Bimetal–organic frameworks/polymer core-shell nanofibers derived heteroatom-doped carbon materials as electrocatalysts for oxygen reduction reaction. Carbon 114, 250–260 (2017). https://doi.org/10.1016/j.carbon.2016.12.016
- C. Liu, J. Wang, J. Li, J. Liu, C. Wang, X. Sun, J. Shen, W. Han, L. Wang, Electrospun ZIF-based hierarchical carbon fiber as an efficient electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 5(3), 1211–1220 (2017). https://doi.org/10.1039/C6TA09193H
- R. Wu, K. Zhou, J. Wei, J. Lou, M. Pulickel, Porous spinel ZnxCo3−xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8(6), 6297–6303 (2014). https://doi.org/10.1021/nn501783n
- C. Wang, H. Wang, R. Luo, C. Liu, J. Li, X. Sun, J. Shen, W. Han, L. Wang, Metal–organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate. Chem. Eng. J. 330, 262–271 (2017). https://doi.org/10.1016/j.cej.2017.07.156
- Q. Guo, D. Zhao, S. Liu, S. Chen, M. Hanif, H. Hou, Free-standing nitrogen-doped carbon nanotubes at electrospun carbon nanofibers composite as an efficient electrocatalyst for oxygen reduction. Electrochim. Acta 138, 318–324 (2014). https://doi.org/10.1016/j.electacta.2014.06.120
- Q. Wang, Y. Li, K. Wang, J. Zhou, L. Zhu, L. Gu, J. Hu, X. Cao, Mass production of porous biocarbon self-doped by phosphorus and nitrogen for cost-effective zinc-air batteries. Electrochim. Acta 257, 250–258 (2017). https://doi.org/10.1016/j.electacta.2017.10.055
- L. Zhang, A. Aboagye, A. Kelkar, C. Lai, H. Fong, A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 49(2), 463–480 (2013). https://doi.org/10.1007/s10853-013-7705-y
- X. Yan, L. Gan, Y.C. Lin, L. Bai, T. Wang, X. Wang, J. Luo, J. Zhu, Controllable synthesis and enhanced electrocatalysis of iron-based catalysts derived from electrospun nanofibers. Small 10(20), 4072–4079 (2014). https://doi.org/10.1002/smll.201470122
- B. Sun, Y.Z. Long, Z.J. Chen, S.L. Liu, H.D. Zhang, J.C. Zhang, W.P. Hana, Recent advances in flexible and stretchable electronic devices via electrospinning. J. Mater. Chem. C 2, 1209–1219 (2014). https://doi.org/10.1039/C3TC31680G
- D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 29(48), 1606459 (2017). https://doi.org/10.1002/adma.201606459
- D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361–365 (2016). https://doi.org/10.1126/science.aad0832
- H. Wang, F.X. Yin, B.H. Chen, X.B. He, P.L. Lv, C.Y. Ye, D.J. Liu, ZIF-67 incorporated with carbon derived from pomelo peels: a highly efficient bifunctional catalyst for oxygen reduction/evolution reactions. Appl. Catal. B: Environ. 205, 55–67 (2017). https://doi.org/10.1016/j.apcatb.2016.12.016
- F. Yang, P. Zhao, X. Hua, W. Luo, G. Cheng, W. Xing, S. Chen, A cobalt-based hybrid electrocatalyst derived from a carbon nanotube inserted metal-organic framework for efficient water-splitting. J. Mater. Chem. A 4(41), 16057–16063 (2016). https://doi.org/10.1039/C6TA05829A
- J. Yang, X. Wang, B. Li, L. Ma, L. Shi, Y. Xiong, H. Xu, Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting. Adv. Funct. Mater. 27(17), 1606497 (2017). https://doi.org/10.1002/adfm.201606497
- H. Liu, X. Wang, H. Xu, W. Yu, X. Dong, Y. Yang, H. Zhang, J. Wang, Nanostructured coo/nio/coni anodes with tunable morphology for high performance lithium-ion batteries. Dalton Trans. 46(33), 11031–11036 (2017). https://doi.org/10.1039/C7DT01904A
- C. Zhang, B. Lu, F. Cao, Z. Wu, W. Zhang, H. Cong, S. Yu, Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction. Nano Energy 55, 226–233 (2019). https://doi.org/10.1016/j.nanoen.2018.10.029
- C. Li, M. Wu, R. Liu, High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co–N–C nanofibers with embedding FeCo alloy nanoparticles. Appl. Catal. B: Environ. 244, 150–158 (2019). https://doi.org/10.1016/j.apcatb.2018.11.039
- H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9, 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
- R. Xing, T. Zhou, Y. Zhou, R. Ma, Q. Liu, J. Luo, J. Wang, Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett. 10, 3 (2018). https://doi.org/10.1007/s40820-017-0157-1
References
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
L. Dai, Y. Xue, L. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015). https://doi.org/10.1021/cr5003563
Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, A review on non-precious metal electrocatalysts for pem fuel cells. Energy Environ. Sci. 4(9), 3167 (2011). https://doi.org/10.1039/c0ee00558d
M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016). https://doi.org/10.1021/acs.chemrev.5b00462
Y.Z. Chen, C. Wang, Z.Y. Wu, Y. Xiong, Q. Xu, S.H. Yu, H.L. Jiang, From bimetallic metal–organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 27(34), 5010–5016 (2015). https://doi.org/10.1002/adma.201502315
Q.L. Zhu, W. Xia, T. Akita, R. Zou, Q. Xu, Metal–organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction. Adv. Mater. 28(30), 6391–6398 (2016). https://doi.org/10.1002/adma.201600979
J. Zhu, H. Zhou, C. Zhang, J. Zhang, S. Mu, Dual active nitrogen doped hierarchical porous hollow carbon nanospheres as an oxygen reduction electrocatalyst for zinc-air batteries. Nanoscale 9(35), 13257–13263 (2017). https://doi.org/10.1039/C7NR04349J
P. Huang, H. Li, X. Huang, D. Chen, Multiheteroatom-doped porous carbon catalyst for oxygen reduction reaction prepared using 3D network of ZIF-8/polymeric nanofiber as a facile-doping template. ACS Appl. Mater. Interfaces 9(25), 21083–21088 (2017). https://doi.org/10.1021/acsami.7b06427
Q. Liu, Y. Wang, L. Dai, J. Yao, Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 28(15), 3000–3006 (2016). https://doi.org/10.1002/adma.201506112
G. Ren, X. Lu, Y. Li, Y. Zhu, L. Dai, L. Jiang, Porous core-shell Fe3C embedded N-doped carbon nanofibers as an effective electrocatalysts for oxygen reduction reaction. ACS Appl. Mater. Interfaces 8(6), 4118–4125 (2016). https://doi.org/10.1021/acsami.5b11786
Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, M. Wei, D.G. Evans, X. Duan, Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction. Adv. Mater. 28(12), 2337–2344 (2016). https://doi.org/10.1002/adma.201505086
J. Wei, Y. Hu, Z. Wu, Y. Liang, S. Leong et al., A graphene-directed assembly route to hierarchically porous Co–Nx/C catalysts for high-performance oxygen reduction. J. Mater. Chem. A 3, 16867–16873 (2015). https://doi.org/10.1039/C5TA04330A
Q. Niu, J. Guo, Y. Tang, X. Guo, J. Nie, G. Ma, Sandwich-type bimetal–organic frameworks/graphene oxide derived porous nanosheets doped Fe/Co-n active sites for oxygen reduction reaction. Electrochim. Acta 255, 72–82 (2017). https://doi.org/10.1016/j.electacta.2017.09.125
S. Hu, T. Han, C. Lin, W. Xiang, Y. Zhao, P. Gao, F. Du, X. Li, Y. Sun, Enhanced electrocatalysis via 3D graphene aerogel engineered with a silver nanowire network for ultrahigh-rate zinc-air batteries. Adv. Funct. Mater. 27(18), 1700041 (2017). https://doi.org/10.1002/adfm.201700041
S.S. Shinde, C.H. Lee, J.Y. Yu, D.H. Kim, S.U. Lee, J.H. Lee, Hierarchically designed 3d holey C2N aerogels as bifunctional oxygen electrodes for flexible and rechargeable zn-air batteries. ACS Nano 12(1), 596–608 (2018). https://doi.org/10.1021/acsnano.7b07473
S. Dang, Q.L. Zhu, Q. Xu, Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 3(1), 17075 (2017). https://doi.org/10.1038/natrevmats.2017.75
K. Shen, X. Chen, J. Chen, Y. Li, Development of mof-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 6(9), 5887–5903 (2016). https://doi.org/10.1021/acscatal.6b01222
B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390–5391 (2008). https://doi.org/10.1021/ja7106146
B. Chen, Z. Yang, Y. Zhu, Y. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem. A 2(40), 16811–16831 (2014). https://doi.org/10.1039/C4TA02984D
B. Chen, G. Ma, Y. Zhu, Y. Xia, Metal-organic-frameworks derived cobalt embedded in various carbon structures as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Sci. Rep. 7(1), 5266 (2017). https://doi.org/10.1038/s41598-017-05636-y
W. Zhang, Z.Y. Wu, H.L. Jiang, S.H. Yu, Nanowire-directed templating synthesis of metal–organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 136(41), 14385–14388 (2014). https://doi.org/10.1021/ja5084128
S.H. Ahn, M.J. Klein, A. Manthiram, 1D Co- and N-doped hierarchically porous carbon nanotubes derived from bimetallic metal organic framework for efficient oxygen and tri-iodide reduction reactions. Adv. Energy Mater. 7(7), 1601979 (2017). https://doi.org/10.1002/aenm.201601979
S.H. Ahn, X. Yu, A. Manthiram, “Wiring” Fe-Nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media. Adv. Mater. 29(26), 1606534 (2017). https://doi.org/10.1002/adma.201606534
C. Zhang, Y.C. Wang, B. An, R. Huang, C. Wang, Z. Zhou, W. Lin, Networking pyrolyzed zeolitic imidazolate frameworks by carbon nanotubes improves conductivity and enhances oxygen-reduction performance in polymer-electrolyte-membrane fuel cells. Adv. Mater. 29(4), 1604556 (2017). https://doi.org/10.1002/adma.201604556
P.C. Shi, J.D. Yi, T.T. Liu, L. Li, L.J. Zhang et al., Hierarchically porous nitrogen-doped carbon nanotubes derived from core-shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. J. Mater. Chem. A 5, 12322–12329 (2017). https://doi.org/10.1039/C7TA02999C
C. Lin, S.S. Shinde, Z. Jiang, X. Song, Y. Sun, L. Guo, H. Zhang, J.Y. Jung, X. Li, J.H. Lee, In situ directional formation of Co@CoOx-embedded 1D carbon nanotubes as an efficient oxygen electrocatalyst for ultra-high rate zn-air batteries. J. Mater. Chem. A 5, 13994–14002 (2017). https://doi.org/10.1039/C7TA02215H
F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 138(32), 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
S.S. Shinde, J.Y. Yu, J.W. Song, Y.H. Nam, D.H. Kim, J.H. Lee, Highly active and durable carbon nitride fibers as metal-free bifunctional oxygen electrodes for flexible Zn-air batteries. Nanoscale Horiz. 2(6), 333–341 (2017). https://doi.org/10.1039/C7NH00058H
X. Wang, J. Yu, G. Sun, B. Ding, Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. Mater. Today 19(7), 403–414 (2016). https://doi.org/10.1016/j.mattod.2015.11.010
G. Yang, X. Li, Y. He, J. Ma, G. Ni, S. Zhou, From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications. Prog. Polym. Sci. 81, 80–113 (2018). https://doi.org/10.1016/j.progpolymsci.2017.12.003
L. Li, S. Peng, J. Lee, D. Ji, M. Srinivasan, S. Ramakrishna, Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39, 111–139 (2017). https://doi.org/10.1016/j.nanoen.2017.06.050
X. Lu, C. Wang, F. Favier, N. Pinna, Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance. Adv. Energy Mater. 7(2), 1601301 (2017). https://doi.org/10.1002/aenm.201601301
Y. Zhao, J. Zhang, X. Guo, H. Fan, W. Wu, H. Liu, G. Wang, Fe3C@nitrogen doped cnt arrays aligned on nitrogen functionalized carbon nanofibers as highly efficient catalysts for the oxygen evolution reaction. J. Mater. Chem. A 5(37), 19672–19679 (2017). https://doi.org/10.1039/C7TA05936A
Q. Niu, J. Guo, B. Chen, J. Nie, X. Guo, G. Ma, Bimetal–organic frameworks/polymer core-shell nanofibers derived heteroatom-doped carbon materials as electrocatalysts for oxygen reduction reaction. Carbon 114, 250–260 (2017). https://doi.org/10.1016/j.carbon.2016.12.016
C. Liu, J. Wang, J. Li, J. Liu, C. Wang, X. Sun, J. Shen, W. Han, L. Wang, Electrospun ZIF-based hierarchical carbon fiber as an efficient electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 5(3), 1211–1220 (2017). https://doi.org/10.1039/C6TA09193H
R. Wu, K. Zhou, J. Wei, J. Lou, M. Pulickel, Porous spinel ZnxCo3−xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8(6), 6297–6303 (2014). https://doi.org/10.1021/nn501783n
C. Wang, H. Wang, R. Luo, C. Liu, J. Li, X. Sun, J. Shen, W. Han, L. Wang, Metal–organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate. Chem. Eng. J. 330, 262–271 (2017). https://doi.org/10.1016/j.cej.2017.07.156
Q. Guo, D. Zhao, S. Liu, S. Chen, M. Hanif, H. Hou, Free-standing nitrogen-doped carbon nanotubes at electrospun carbon nanofibers composite as an efficient electrocatalyst for oxygen reduction. Electrochim. Acta 138, 318–324 (2014). https://doi.org/10.1016/j.electacta.2014.06.120
Q. Wang, Y. Li, K. Wang, J. Zhou, L. Zhu, L. Gu, J. Hu, X. Cao, Mass production of porous biocarbon self-doped by phosphorus and nitrogen for cost-effective zinc-air batteries. Electrochim. Acta 257, 250–258 (2017). https://doi.org/10.1016/j.electacta.2017.10.055
L. Zhang, A. Aboagye, A. Kelkar, C. Lai, H. Fong, A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 49(2), 463–480 (2013). https://doi.org/10.1007/s10853-013-7705-y
X. Yan, L. Gan, Y.C. Lin, L. Bai, T. Wang, X. Wang, J. Luo, J. Zhu, Controllable synthesis and enhanced electrocatalysis of iron-based catalysts derived from electrospun nanofibers. Small 10(20), 4072–4079 (2014). https://doi.org/10.1002/smll.201470122
B. Sun, Y.Z. Long, Z.J. Chen, S.L. Liu, H.D. Zhang, J.C. Zhang, W.P. Hana, Recent advances in flexible and stretchable electronic devices via electrospinning. J. Mater. Chem. C 2, 1209–1219 (2014). https://doi.org/10.1039/C3TC31680G
D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 29(48), 1606459 (2017). https://doi.org/10.1002/adma.201606459
D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361–365 (2016). https://doi.org/10.1126/science.aad0832
H. Wang, F.X. Yin, B.H. Chen, X.B. He, P.L. Lv, C.Y. Ye, D.J. Liu, ZIF-67 incorporated with carbon derived from pomelo peels: a highly efficient bifunctional catalyst for oxygen reduction/evolution reactions. Appl. Catal. B: Environ. 205, 55–67 (2017). https://doi.org/10.1016/j.apcatb.2016.12.016
F. Yang, P. Zhao, X. Hua, W. Luo, G. Cheng, W. Xing, S. Chen, A cobalt-based hybrid electrocatalyst derived from a carbon nanotube inserted metal-organic framework for efficient water-splitting. J. Mater. Chem. A 4(41), 16057–16063 (2016). https://doi.org/10.1039/C6TA05829A
J. Yang, X. Wang, B. Li, L. Ma, L. Shi, Y. Xiong, H. Xu, Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting. Adv. Funct. Mater. 27(17), 1606497 (2017). https://doi.org/10.1002/adfm.201606497
H. Liu, X. Wang, H. Xu, W. Yu, X. Dong, Y. Yang, H. Zhang, J. Wang, Nanostructured coo/nio/coni anodes with tunable morphology for high performance lithium-ion batteries. Dalton Trans. 46(33), 11031–11036 (2017). https://doi.org/10.1039/C7DT01904A
C. Zhang, B. Lu, F. Cao, Z. Wu, W. Zhang, H. Cong, S. Yu, Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction. Nano Energy 55, 226–233 (2019). https://doi.org/10.1016/j.nanoen.2018.10.029
C. Li, M. Wu, R. Liu, High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co–N–C nanofibers with embedding FeCo alloy nanoparticles. Appl. Catal. B: Environ. 244, 150–158 (2019). https://doi.org/10.1016/j.apcatb.2018.11.039
H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9, 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
R. Xing, T. Zhou, Y. Zhou, R. Ma, Q. Liu, J. Luo, J. Wang, Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett. 10, 3 (2018). https://doi.org/10.1007/s40820-017-0157-1