3D Interconnected Honeycomb-Like Multifunctional Catalyst for Zn–Air Batteries
Corresponding Author: Guiping Ma
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 26
Abstract
Developing high-performance and low-cost electrocatalysts is key to achieve the clean-energy target. Herein, a dual regulation method is proposed to prepare a 3D honeycomb-like carbon-based catalyst with stable Fe/Co co-dopants. Fe atoms are highly dispersed and fixed to the polymer microsphere, followed by a high-temperature decomposition, for the generation of carbon-based catalyst with a honeycomb-like structure. The as-prepared catalyst contains a large number of Fe/Co nanoparticles (Fe/Co NPs), providing the excellent catalytic activity and durability in oxygen reduction reaction, oxygen evolution reaction and hydrogen evolution reaction. The Zn-air battery assembled by the as-prepared catalyst as air cathode shows a good charge and discharge capacity, and it exhibits an ultra-long service life by maintaining a stable charge and discharge platform for a 311-h cycle. Further X-ray absorption fine structure characterization and density functional theory calculation confirms that the Fe doping optimizes the intermediate adsorption process and electron transfer of Co.
Highlights:
1 The unique initiator doping strategy is adopted to achieve high dispersion of Fe atoms in the catalyst.
2 The 3D interconnected structure manufactured by morphology control exhibited excellent electrocatalytic performance in speeding up the electrolytes streaming and electron transfer.
3 The Zn-air battery assembled with catalyst Fe8Co0.2-NC-800 could maintain a stable charge discharge platform in 1701 cycles of 311 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Arafat, M.R. Azhar, Y. Zhong, X. Xu, M.O. Tadé et al., A porous nano-micro-composite as a high-performance bi-functional air electrode with remarkable stability for rechargeable zinc-air batteries. Nano-Micro. Lett. 12, 130 (2020). https://doi.org/10.1007/s40820-020-00468-4
- Y. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang et al., Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries. Nano-Micro. Lett. 13, 137 (2021). https://doi.org/10.1007/s40820-021-00669-5
- F. Cheng, J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172 (2012). https://doi.org/10.1039/C1CS15228A
- D. Liu, Y. Tong, X. Yan, J. Liang, S.X. Dou, Recent advances in carbon-based bifunctional oxygen catalysts for zinc-air batteries. Batter. Supercaps 2, 743 (2019). https://doi.org/10.1002/batt.201900052
- S. Jiang, J. Li, J. Fang, X. Wang, Fibrous-structured freestanding electrodes for oxygen electrocatalysis. Small 17(9), 1903760 (2021). https://doi.org/10.1002/smll.201903760
- J. Wang, Y. Gao, H. Kong, J. Kim, S. Choi et al., Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 49, 9154 (2020). https://doi.org/10.1039/D0CS00575D
- L. Yang, J. Shui, L. Du, Y. Shao, J. Liu et al., Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv. Mater. 31(13), 1804799 (2019). https://doi.org/10.1002/adma.201804799
- D. Yan, Y. Li, J. Huo, R. Chen, L. Dai et al., Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 29(48), 1606459 (2017). https://doi.org/10.1002/adma.201606459
- Y. Zhou, Y. Yu, D. Ma, A.C. Foucher, L. Xiong et al., Atomic Fe dispersed hierarchical mesoporous Fe–N–C nanostructures for an efficient oxygen reduction reaction. ACS Catal. 11(1), 74–81 (2021). https://doi.org/10.1021/acscatal.0c03496
- G. Chen, P. Liu, Z. Liao, F. Sun, Y. He et al., Fe-Nx active sites for efficient oxygen reduction. Adv. Mater. 32(8), 1907399 (2020). https://doi.org/10.1002/adma.201907399
- Y. Niu, X. Teng, S. Gong, M. Xu, S.G. Sun et al., Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn-air batteries. Nano-Micro. Lett. 13, 126 (2021). https://doi.org/10.1007/s40820-021-00650-2
- B. Lu, Q. Liu, S. Chen, Electrocatalysis of single-atom sites: impacts of atomic coordination. ACS Catal. 10(14), 7584–7618 (2020). https://doi.org/10.1021/acscatal.0c01950
- C. Zhang, H. Dong, B. Chen, T. Jin, J. Nie et al., 3D MXene anchored carbon nanotube as bifunctional and durable oxygen catalysts for Zn–air batteries. Carbon 185, 17–26 (2021). https://doi.org/10.1016/j.carbon.2021.09.004
- B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634 (2011). https://doi.org/10.1038/nchem.1095
- N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638
- H. Fei, J. Dong, M.J. Arellano-Jiménez, G. Ye, N.D. Kim et al., Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015). https://doi.org/10.1038/ncomms9668
- P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55(36), 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
- Y. Niu, S. Gong, X. Liu, X. Chen, X. Mingze, S. Sun, Z. Chen, Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn–air batteries. eScience 2(5), 546–556 (2022). https://doi.org/10.1016/j.esci.2022.05.001
- W. Xie, J. Li, Y. Song, S. Li, J. Li et al., Hierarchical carbon microtube@nanotube core-shell structure for high-performance oxygen electrocatalysis and Zn-air battery. Nano-Micro Lett. 12, 97 (2020). https://doi.org/10.1007/s40820-020-00435-z
- Y. Sun, Q. Ma, Q. Ge, J. Sun, Tunable synthesis of ethanol or methyl acetate via dimethyl oxalate hydrogenation on confined iron catalysts. ACS Catal. 11(8), 4908–4919 (2021). https://doi.org/10.1021/acscatal.1c00339
- X. Wan, H.B. Wu, B.Y. Guan, D. Luan, X.W. Lou, Confining Sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Adv. Mater. 32(7), 1901349 (2020). https://doi.org/10.1002/adma.201901349
- X. Zhu, D. Zhang, C.J. Chen, Q. Zhang, R.S. Liu et al., Harnessing the interplay of Fe–Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 71, 104597 (2020). https://doi.org/10.1016/j.nanoen.2020.104597
- J. Jiang, G. Nie, P. Nie, Z. Li, Z. Pan et al., Nanohollow carbon for rechargeable batteries: ongoing progresses and challenges. Nano-Micro. Lett. 12, 183 (2020). https://doi.org/10.1007/s40820-020-00521-2
- M. Chuai, J. Yang, M. Wang, Y. Yuan, Z. Liu, X. Yan, Y. Yin, J. Sun, X. Zheng, N. Chen, W. Chen, High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2. eScience 1(2), 178–185 (2021). https://doi.org/10.1016/j.esci.2021.11.002
- L. Li, B. Chen, Z. Zhuang, J. Nie, G. Ma, Core-double shell templated Fe/Co anchored carbon nanospheres for oxygen reduction. Chem. Eng. J. 399, 125647 (2020). https://doi.org/10.1016/j.cej.2020.125647
- A.I. Douka, Y. Xu, H. Yang, S. Zaman, Y. Yan et al., A zeolitic-imidazole frameworks-derived interconnected macroporous carbon matrix for efficient oxygen electrocatalysis in rechargeable zinc-air batteries. Adv. Mater. 32(28), 2002170 (2020). https://doi.org/10.1002/adma.202002170
- G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028), 443–447 (2011). https://doi.org/10.1007/978-981-10-7626-8
- H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao et al., Metal-organic-framework-derived Co2P nanop/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 32(36), e2003649 (2020). https://doi.org/10.1002/adma.202003649
- Q. Zhou, T. Fan, Y. Li, D. Chen, S. Liu et al., Hollow–structure NiCo hydroxide/carbon nanotube composite for high–performance supercapacitors. J. Power. Sour 426, 111–115 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.035
- L. Li, W. Xie, J. Chen, J. Yang, Zif-67 derived P/Ni/Co/NC nanops as highly efficient electrocatalyst for oxygen reduction reaction (ORR). J. Solid State Chem. 264, 1–5 (2018). https://doi.org/10.1016/j.jssc.2018.04.035
- B. Chen, X. He, F. Yin, H. Wang, D.J. Liu et al., MO-Co@N-doped carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-air battery. Adv. Funct. Mater. 27(37), 1700795 (2017). https://doi.org/10.1002/adfm.201700795
- Z. Xu, X. Zhang, X. Wang, J. Fang, Y. Zhang et al., Synthesis of Ag-Ni-Fe-P multielemental nanops as bifunctional oxygen reduction/evolution reaction electrocatalysts. ACS Nano 15(4), 7131–7138 (2021). https://doi.org/10.1021/acsnano.1c00305
- L. Zong, J. Xu, S. Jiang, K. Zhao, Z. Wang et al., Composite yttrium-carbonaceous spheres templated multi-shell YVO4 hollow spheres with superior upconversion photoluminescence. Adv. Mater. 29(9), 1604377 (2017). https://doi.org/10.1002/adma.201604377
- L. Zhang, Y. Zhu, Z. Nie, Z. Li, Y. Ye et al., Co/MoC nanops embedded in carbon nanoboxes as robust trifunctional electrocatalysts for a Zn-air battery and water electrocatalysis. ACS Nano 15(8), 13399–13414 (2021). https://doi.org/10.1021/acsnano.1c03766
- P. Thangasamy, S. Oh, S. Nam, H. Randriamahazaka, I. Oh, Ferrocene-incorporated cobalt sulfide nanoarchitecture for superior oxygen evolution reaction. Small 16(31), 2001665 (2020). https://doi.org/10.1002/smll.202001665
- J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang et al., Dual single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32(30), 2003134 (2020). https://doi.org/10.1002/adma.202003134
- H. Zhou, H. Dong, J. Wang, Y. Chen, Cobalt anchored on porous N, P, S-doping core-shell with generating/activating dual reaction sites in heterogeneous electro-fenton process. Chem. Eng. J. 406, 125990 (2021). https://doi.org/10.1016/j.cej.2020.125990
- Y. Xu, B. Chen, J. Nie, G. Ma, Reactive template-induced core-shell FeCo@C microspheres as multifunctional electrocatalysts for rechargeable zinc-air batteries. Nanoscale 10, 17021 (2018). https://doi.org/10.1039/C8NR02492H
- Y. Chen, Z. Li, Y. Zhu, D. Sun, X. Liu et al., Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater. 31(8), 1806312 (2019). https://doi.org/10.1002/adma.201806312
- Q. Niu, J. Guo, Y. Tang, X. Guo, J. Nie et al., Sandwich-type bimetal-organic frameworks/graphene oxide derived porous nanosheets doped Fe/Co-N active sites for oxygen reduction reaction. Electrochim. Acta 255, 72–82 (2017). https://doi.org/10.1016/j.electacta.2017.09.125
- M. Xiao, Z. Xing, Z. Jin, C. Liu, J. Ge et al., Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. Adv. Mater. 32(49), 2004900 (2020). https://doi.org/10.1002/adma.202004900
- K. Yuan, D. Lützenkirchen-Hecht, L. Li, L. Shuai, Y. Li et al., Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 142, 2404 (2020). https://doi.org/10.1021/jacs.9b11852
- L. Gong, H. Zhang, Y. Wang, E. Luo, K. Li et al., Bridge bonded oxygen ligands between approximated FeN4 sites confer catalysts with high ORR performance. Angew. Chem. Int. Ed. 59(33), 13923 (2020). https://doi.org/10.1002/anie.202004534
- T. Zhou, N. Zhang, C. Wu, Y. Xie, Surface/interface nanoengineering for rechargeable Zn–air batteries. Energ. Environ. Sci. 13, 1132 (2020). https://doi.org/10.1039/C9EE03634B
- P. Zhang, K. Wang, P. Pei, Y. Zuo, M. Wei et al., Selection of hydrogel electrolytes for flexible zinc–air batteries. Mater. Today Chem. 21, 100538 (2021). https://doi.org/10.1016/j.mtchem.2021.100538
- K. Kordek, L. Jiang, K. Fan, Z. Zhu, L. Xu et al., Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc–air batteries. Adv. Energy. Mater. 9(4), 1802936 (2019). https://doi.org/10.1002/aenm.201802936
- Y. Hu, G. Luo, L. Wang, X. Liu, Y. Qu et al., Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy. Mater. 11(1), 2002816 (2021). https://doi.org/10.1002/aenm.202002816
- Y. Li, Z. Wu, P. Lu, X. Wang, W. Liu et al., High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction. Adv. Sci. 7(5), 1903089 (2020). https://doi.org/10.1002/advs.201903089
- W. Ni, Z. Liu, Y. Zhang, C. Ma, H. Deng et al., Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe-N4 site. Adv. Mater. 33(1), 2003238 (2021). https://doi.org/10.1002/adma.202003238
- Y. Shi, Z. Lyu, M. Zhao, R. Chen, Q.N. Nguyen et al., Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 121, 649 (2021). https://doi.org/10.1021/acs.chemrev.0c00454
- J. Zhu, L. Xu, Z. Lyu, M. Xie, R. Chen et al., Janus nanocages of platinum-group metals and their use as effective dual-electrocatalysts. Angew. Chem. Int. Ed. 60(18), 10384 (2021). https://doi.org/10.1002/anie.202102275
References
Y. Arafat, M.R. Azhar, Y. Zhong, X. Xu, M.O. Tadé et al., A porous nano-micro-composite as a high-performance bi-functional air electrode with remarkable stability for rechargeable zinc-air batteries. Nano-Micro. Lett. 12, 130 (2020). https://doi.org/10.1007/s40820-020-00468-4
Y. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang et al., Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries. Nano-Micro. Lett. 13, 137 (2021). https://doi.org/10.1007/s40820-021-00669-5
F. Cheng, J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172 (2012). https://doi.org/10.1039/C1CS15228A
D. Liu, Y. Tong, X. Yan, J. Liang, S.X. Dou, Recent advances in carbon-based bifunctional oxygen catalysts for zinc-air batteries. Batter. Supercaps 2, 743 (2019). https://doi.org/10.1002/batt.201900052
S. Jiang, J. Li, J. Fang, X. Wang, Fibrous-structured freestanding electrodes for oxygen electrocatalysis. Small 17(9), 1903760 (2021). https://doi.org/10.1002/smll.201903760
J. Wang, Y. Gao, H. Kong, J. Kim, S. Choi et al., Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 49, 9154 (2020). https://doi.org/10.1039/D0CS00575D
L. Yang, J. Shui, L. Du, Y. Shao, J. Liu et al., Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv. Mater. 31(13), 1804799 (2019). https://doi.org/10.1002/adma.201804799
D. Yan, Y. Li, J. Huo, R. Chen, L. Dai et al., Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 29(48), 1606459 (2017). https://doi.org/10.1002/adma.201606459
Y. Zhou, Y. Yu, D. Ma, A.C. Foucher, L. Xiong et al., Atomic Fe dispersed hierarchical mesoporous Fe–N–C nanostructures for an efficient oxygen reduction reaction. ACS Catal. 11(1), 74–81 (2021). https://doi.org/10.1021/acscatal.0c03496
G. Chen, P. Liu, Z. Liao, F. Sun, Y. He et al., Fe-Nx active sites for efficient oxygen reduction. Adv. Mater. 32(8), 1907399 (2020). https://doi.org/10.1002/adma.201907399
Y. Niu, X. Teng, S. Gong, M. Xu, S.G. Sun et al., Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn-air batteries. Nano-Micro. Lett. 13, 126 (2021). https://doi.org/10.1007/s40820-021-00650-2
B. Lu, Q. Liu, S. Chen, Electrocatalysis of single-atom sites: impacts of atomic coordination. ACS Catal. 10(14), 7584–7618 (2020). https://doi.org/10.1021/acscatal.0c01950
C. Zhang, H. Dong, B. Chen, T. Jin, J. Nie et al., 3D MXene anchored carbon nanotube as bifunctional and durable oxygen catalysts for Zn–air batteries. Carbon 185, 17–26 (2021). https://doi.org/10.1016/j.carbon.2021.09.004
B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634 (2011). https://doi.org/10.1038/nchem.1095
N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638
H. Fei, J. Dong, M.J. Arellano-Jiménez, G. Ye, N.D. Kim et al., Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015). https://doi.org/10.1038/ncomms9668
P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55(36), 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
Y. Niu, S. Gong, X. Liu, X. Chen, X. Mingze, S. Sun, Z. Chen, Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn–air batteries. eScience 2(5), 546–556 (2022). https://doi.org/10.1016/j.esci.2022.05.001
W. Xie, J. Li, Y. Song, S. Li, J. Li et al., Hierarchical carbon microtube@nanotube core-shell structure for high-performance oxygen electrocatalysis and Zn-air battery. Nano-Micro Lett. 12, 97 (2020). https://doi.org/10.1007/s40820-020-00435-z
Y. Sun, Q. Ma, Q. Ge, J. Sun, Tunable synthesis of ethanol or methyl acetate via dimethyl oxalate hydrogenation on confined iron catalysts. ACS Catal. 11(8), 4908–4919 (2021). https://doi.org/10.1021/acscatal.1c00339
X. Wan, H.B. Wu, B.Y. Guan, D. Luan, X.W. Lou, Confining Sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Adv. Mater. 32(7), 1901349 (2020). https://doi.org/10.1002/adma.201901349
X. Zhu, D. Zhang, C.J. Chen, Q. Zhang, R.S. Liu et al., Harnessing the interplay of Fe–Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 71, 104597 (2020). https://doi.org/10.1016/j.nanoen.2020.104597
J. Jiang, G. Nie, P. Nie, Z. Li, Z. Pan et al., Nanohollow carbon for rechargeable batteries: ongoing progresses and challenges. Nano-Micro. Lett. 12, 183 (2020). https://doi.org/10.1007/s40820-020-00521-2
M. Chuai, J. Yang, M. Wang, Y. Yuan, Z. Liu, X. Yan, Y. Yin, J. Sun, X. Zheng, N. Chen, W. Chen, High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2. eScience 1(2), 178–185 (2021). https://doi.org/10.1016/j.esci.2021.11.002
L. Li, B. Chen, Z. Zhuang, J. Nie, G. Ma, Core-double shell templated Fe/Co anchored carbon nanospheres for oxygen reduction. Chem. Eng. J. 399, 125647 (2020). https://doi.org/10.1016/j.cej.2020.125647
A.I. Douka, Y. Xu, H. Yang, S. Zaman, Y. Yan et al., A zeolitic-imidazole frameworks-derived interconnected macroporous carbon matrix for efficient oxygen electrocatalysis in rechargeable zinc-air batteries. Adv. Mater. 32(28), 2002170 (2020). https://doi.org/10.1002/adma.202002170
G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028), 443–447 (2011). https://doi.org/10.1007/978-981-10-7626-8
H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao et al., Metal-organic-framework-derived Co2P nanop/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 32(36), e2003649 (2020). https://doi.org/10.1002/adma.202003649
Q. Zhou, T. Fan, Y. Li, D. Chen, S. Liu et al., Hollow–structure NiCo hydroxide/carbon nanotube composite for high–performance supercapacitors. J. Power. Sour 426, 111–115 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.035
L. Li, W. Xie, J. Chen, J. Yang, Zif-67 derived P/Ni/Co/NC nanops as highly efficient electrocatalyst for oxygen reduction reaction (ORR). J. Solid State Chem. 264, 1–5 (2018). https://doi.org/10.1016/j.jssc.2018.04.035
B. Chen, X. He, F. Yin, H. Wang, D.J. Liu et al., MO-Co@N-doped carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-air battery. Adv. Funct. Mater. 27(37), 1700795 (2017). https://doi.org/10.1002/adfm.201700795
Z. Xu, X. Zhang, X. Wang, J. Fang, Y. Zhang et al., Synthesis of Ag-Ni-Fe-P multielemental nanops as bifunctional oxygen reduction/evolution reaction electrocatalysts. ACS Nano 15(4), 7131–7138 (2021). https://doi.org/10.1021/acsnano.1c00305
L. Zong, J. Xu, S. Jiang, K. Zhao, Z. Wang et al., Composite yttrium-carbonaceous spheres templated multi-shell YVO4 hollow spheres with superior upconversion photoluminescence. Adv. Mater. 29(9), 1604377 (2017). https://doi.org/10.1002/adma.201604377
L. Zhang, Y. Zhu, Z. Nie, Z. Li, Y. Ye et al., Co/MoC nanops embedded in carbon nanoboxes as robust trifunctional electrocatalysts for a Zn-air battery and water electrocatalysis. ACS Nano 15(8), 13399–13414 (2021). https://doi.org/10.1021/acsnano.1c03766
P. Thangasamy, S. Oh, S. Nam, H. Randriamahazaka, I. Oh, Ferrocene-incorporated cobalt sulfide nanoarchitecture for superior oxygen evolution reaction. Small 16(31), 2001665 (2020). https://doi.org/10.1002/smll.202001665
J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang et al., Dual single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32(30), 2003134 (2020). https://doi.org/10.1002/adma.202003134
H. Zhou, H. Dong, J. Wang, Y. Chen, Cobalt anchored on porous N, P, S-doping core-shell with generating/activating dual reaction sites in heterogeneous electro-fenton process. Chem. Eng. J. 406, 125990 (2021). https://doi.org/10.1016/j.cej.2020.125990
Y. Xu, B. Chen, J. Nie, G. Ma, Reactive template-induced core-shell FeCo@C microspheres as multifunctional electrocatalysts for rechargeable zinc-air batteries. Nanoscale 10, 17021 (2018). https://doi.org/10.1039/C8NR02492H
Y. Chen, Z. Li, Y. Zhu, D. Sun, X. Liu et al., Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater. 31(8), 1806312 (2019). https://doi.org/10.1002/adma.201806312
Q. Niu, J. Guo, Y. Tang, X. Guo, J. Nie et al., Sandwich-type bimetal-organic frameworks/graphene oxide derived porous nanosheets doped Fe/Co-N active sites for oxygen reduction reaction. Electrochim. Acta 255, 72–82 (2017). https://doi.org/10.1016/j.electacta.2017.09.125
M. Xiao, Z. Xing, Z. Jin, C. Liu, J. Ge et al., Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. Adv. Mater. 32(49), 2004900 (2020). https://doi.org/10.1002/adma.202004900
K. Yuan, D. Lützenkirchen-Hecht, L. Li, L. Shuai, Y. Li et al., Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 142, 2404 (2020). https://doi.org/10.1021/jacs.9b11852
L. Gong, H. Zhang, Y. Wang, E. Luo, K. Li et al., Bridge bonded oxygen ligands between approximated FeN4 sites confer catalysts with high ORR performance. Angew. Chem. Int. Ed. 59(33), 13923 (2020). https://doi.org/10.1002/anie.202004534
T. Zhou, N. Zhang, C. Wu, Y. Xie, Surface/interface nanoengineering for rechargeable Zn–air batteries. Energ. Environ. Sci. 13, 1132 (2020). https://doi.org/10.1039/C9EE03634B
P. Zhang, K. Wang, P. Pei, Y. Zuo, M. Wei et al., Selection of hydrogel electrolytes for flexible zinc–air batteries. Mater. Today Chem. 21, 100538 (2021). https://doi.org/10.1016/j.mtchem.2021.100538
K. Kordek, L. Jiang, K. Fan, Z. Zhu, L. Xu et al., Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc–air batteries. Adv. Energy. Mater. 9(4), 1802936 (2019). https://doi.org/10.1002/aenm.201802936
Y. Hu, G. Luo, L. Wang, X. Liu, Y. Qu et al., Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy. Mater. 11(1), 2002816 (2021). https://doi.org/10.1002/aenm.202002816
Y. Li, Z. Wu, P. Lu, X. Wang, W. Liu et al., High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction. Adv. Sci. 7(5), 1903089 (2020). https://doi.org/10.1002/advs.201903089
W. Ni, Z. Liu, Y. Zhang, C. Ma, H. Deng et al., Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe-N4 site. Adv. Mater. 33(1), 2003238 (2021). https://doi.org/10.1002/adma.202003238
Y. Shi, Z. Lyu, M. Zhao, R. Chen, Q.N. Nguyen et al., Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 121, 649 (2021). https://doi.org/10.1021/acs.chemrev.0c00454
J. Zhu, L. Xu, Z. Lyu, M. Xie, R. Chen et al., Janus nanocages of platinum-group metals and their use as effective dual-electrocatalysts. Angew. Chem. Int. Ed. 60(18), 10384 (2021). https://doi.org/10.1002/anie.202102275