Multiscale Design of Dual-Gradient Metamaterials Using Gel-Mediated 3D-Printed Graphene Aerogels for Broadband Electromagnetic Absorption
Corresponding Author: Faxiang Qin
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 162
Abstract
Three-dimensional (3D)-printed graphene aerogels hold promise for electromagnetic wave absorption (EWA) engineering due to its ultralow density, outstanding electromagnetic dissipation with the flexibility and precision of manufacturing strategies. However, their high conductivity causes severe impedance mismatch, limiting EWA performance. 3D printing requirements also constrain the dielectric properties of printable graphene inks, hindering the integration of high-performance absorbers with advanced manufacturing. This study proposes a polyacrylic acid (PAA) gel-mediated 3D porous graphene oxide (GO) aerogel multiscale regulation strategy. Precise gel content control enables dual-gradient tuning of the rheology (Benefiting direct ink writing (DIW)) and dielectric loss (Enhancing EWA) of GO/PAA composites and reduces aerogel density (6.9 mg cm−3 from 28.2 mg cm−3). Thermal reduction decomposes PAA into amorphous carbon nanoparticles anchored on reduced graphene oxide (rGO), enhancing impedance matching and absorption via synergistic 0D/2D interfacial polarization and conductive loss. The optimized rGO/PAA aerogel achieves a minimum reflection loss (RL) of −39.86 dB at 2.5 mm and an effective absorption bandwidth (EAB) of 8.36 GHz (9.64–18 GHz) at 3.2 mm. Combining DIW and this aerogel, we design a metamaterial absorber (MA) with dual material (dielectric loss) and structural gradients. This MA exhibits an ultrawide EAB of 14 GHz (4–18 GHz) with a total thickness of 7.8 mm. This work establishes a coupled design paradigm of “composition-structure-performance,” providing an engineerable solution for developing lightweight, broadband EWA materials.
Highlights:
1 The rGO/PAA aerogel achieves synergistic optimization for direct ink writing printing and construction of 0D/2D heterostructures in rGO sheets.
2 Optimal reflection loss of −39.86 dB and effective absorption bandwidth (EAB) of 8.36 GHz are obtained with low density of 4.8 mg cm−3.
3 Realization of an ultra-broadband metamaterial absorber of 14 GHz EAB at 7.8 mm thickness, across the C, X, and Ku bands.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.-T. Cao, F.-F. Chen, Y.-J. Zhu, Y.-G. Zhang, Y.-Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. Nano Lett. 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12(1), 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
- C. Gao, D. Gou, G. Huang, Z. Zhang, J. Wei, F. Gao, Yi. Zhang, M. Terrones, X. Chen, Y. Wang, Spiderweb-structured aerogels with high-efficiency microwave absorption and multifunctionality. Nano Energy 138, 110863 (2025). https://doi.org/10.1016/j.nanoen.2025.110863
- N. Qu, H. Sun, Y. Sun, M. He, R. Xing et al., 2D/2D coupled MOF/Fe composite metamaterials enable robust ultra-broadband microwave absorption. Nat. Commun. 15(1), 5642 (2024). https://doi.org/10.1038/s41467-024-49762-4
- G. Wang, C. Li, D. Estevez, P. Xu, M. Peng et al., Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 15(1), 152 (2023). https://doi.org/10.1007/s40820-023-01123-4
- T. Wang, G. Chen, J. Zhu, H. Gong, L. Zhang et al., Deep understanding of impedance matching and quarter wavelength theory in electromagnetic wave absorption. J. Colloid Interface Sci. 595, 1–5 (2021). https://doi.org/10.1016/j.jcis.2021.03.132
- M. Guo, X. Wang, Y. Liu, H. Liu, K. Zhou et al., Enhancing low-frequency performance of thin-layer magnetic microwave absorbing materials via phase gradient metasurface. Mater. Des. 254, 114062 (2025). https://doi.org/10.1016/j.matdes.2025.114062
- M. Guo, X. Wang, H. Zhuang, Y. Dai, W. Li et al., Establishing a unified paradigm of microwave absorption inspired by the merging of traditional microwave absorbing materials and metamaterials. Mater. Horiz. 10(11), 5202–5213 (2023). https://doi.org/10.1039/d3mh01368e
- M.B. Lim, M. Hu, S. Manandhar, A. Sakshaug, A. Strong et al., Ultrafast sol–gel synthesis of graphene aerogel materials. Carbon 95, 616–624 (2015). https://doi.org/10.1016/j.carbon.2015.08.037
- J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai et al., Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11(4), 772–799 (2018). https://doi.org/10.1039/c7ee03031b
- Q. Chen, J. Shen, D. Estevez, Y. Chen, Z. Zhu, J. Yin, F. Qin, Ultraprecise 3D printed graphene aerogel microlattices on tape for micro sensors and E-skin. Adv. Funct. Mater. 33(33), 2302545 (2023). https://doi.org/10.1002/adfm.202302545
- C. Zhu, T.Y. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz et al., Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015). https://doi.org/10.1038/ncomms7962
- D. Xu, S. Yang, P. Chen, Q. Yu, X. Xiong et al., Synthesis of magnetic graphene aerogels for microwave absorption by in situ pyrolysis. Carbon 146, 301–312 (2019). https://doi.org/10.1016/j.carbon.2019.02.005
- X. Huang, G. Yu, Y. Zhang, M. Zhang, G. Shao, Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 426, 131894 (2021). https://doi.org/10.1016/j.cej.2021.131894
- C. Li, L. Liang, B. Zhang, Y. Yang, G. Ji, Synergistic customization of interfacial engineering MXene-integrated aerogels enable multifunctional radar-infrared stealth. Chem. Eng. J. 520, 166211 (2025). https://doi.org/10.1016/j.cej.2025.166211
- J. Xu, M. Liu, X. Zhang, B. Li, X. Zhang et al., Atomically dispersed cobalt anchored on N-doped graphene aerogels for efficient electromagnetic wave absorption with an ultralow filler ratio. Appl. Phys. Rev. 9, 011402 (2022). https://doi.org/10.1063/5.0067791
- W. Wang, Y. Wang, Z. Lu, R. Cheng, H. Zheng, Hollow ZnO/ZnFe2O4 microspheres anchored graphene aerogels as a high-efficiency microwave absorber with thermal insulation and hydrophobic performances. Carbon 203, 397–409 (2023). https://doi.org/10.1016/j.carbon.2022.11.103
- X. Liu, B. Zheng, Y. Hua, S. Lu, Z. Nong, J. Wang, Y. Song, Ultralight MXene/rGO aerogel frames with component and structure controlled electromagnetic wave absorption by direct ink writing. Carbon 230, 119650 (2024). https://doi.org/10.1016/j.carbon.2024.119650
- Z. Cheng, R. Wang, Y. Wang, Y. Cao, Y. Shen et al., Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials. Carbon 205, 112–137 (2023). https://doi.org/10.1016/j.carbon.2023.01.032
- G. Shao, R. Xu, Y. Chen, G. Yu, X. Wu, B. Quan, X. Shen, X. Huang, Miniaturized hard carbon nanofiber aerogels: from multiscale electromagnetic response manipulation to integrated multifunctional absorbers. Adv. Funct. Mater. 34(48), 2408252 (2024). https://doi.org/10.1002/adfm.202408252
- X. Huang, L. Zhang, G. Yu, J. Wei, G. Shao, Polarization genes dominated heteroatom-doped graphene aerogels toward super-efficiency microwave absorption. J. Mater. Chem. C 11(29), 9804–9814 (2023). https://doi.org/10.1039/d3tc01965a
- Y. Cheng, X. Sun, Y. Yuan, S. Yang, Y. Ning, D. Wang, W. Yin, Y. Li, Flexible SiO2/rGO aerogel for wide-angle broadband microwave absorption. Carbon 217, 118580 (2024). https://doi.org/10.1016/j.carbon.2023.118580
- H. Fang, H. Guo, Y. Hu, Y. Ren, P.-C. Hsu, S.-L. Bai, In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity. Compos. Sci. Technol. 188, 107975 (2020). https://doi.org/10.1016/j.compscitech.2019.107975
- W. Ma, H. Chen, S. Hou, Z. Huang, Y. Huang et al., Compressible highly stable 3D porous MXene/GO foam with a tunable high-performance stealth property in the terahertz band. ACS Appl. Mater. Interfaces 11(28), 25369–25377 (2019). https://doi.org/10.1021/acsami.9b03406
- L. Du, Y. Li, Q. Zhou, L. Zhang, T. Shi et al., Facilitative preparation of graphene/cellulose aerogels with tunable microwave absorption properties for ultra-lightweight applications. J. Colloid Interface Sci. 679(Pt A), 987–994 (2025). https://doi.org/10.1016/j.jcis.2024.10.057
- T.-B. Geng, G.-Y. Yu, G.-F. Shao, X.-G. Huang, Enhanced electromagnetic wave absorption properties of ZIF-67 modified polymer-derived SiCN ceramics by in situ construction of multiple heterointerfaces. Rare Met. 42(5), 1635–1644 (2023). https://doi.org/10.1007/s12598-023-02270-8
- Y. Guo, Y. Duan, S. Gu, X. Liu, Z. Fan et al., Carbon nanocoils-assisted formation of tunable pore graphene aerogels for lightweight broadband microwave absorption, thermal insulation, and antifreeze devices. Small 21(10), 2412270 (2025). https://doi.org/10.1002/smll.202412270
- K. Cao, X. Yang, Y. Zhang, J. Wen, J. Chen et al., Preparation of magnetic three-dimensional porous Co-rGO aerogel for enhanced microwave absorption. Carbon 208, 111–122 (2023). https://doi.org/10.1016/j.carbon.2023.03.037
- Y. An, Y. Chen, J. Liu, R. Zhou, W. Wang et al., A carbon nanotube/graphene nanoplatelet pressure sensor prepared by combining 3D printing and freeze-drying method. J. Polym. Res. 31(5), 129 (2024). https://doi.org/10.1007/s10965-024-03972-y
- Y. Jiang, Z. Xu, T. Huang, Y. Liu, F. Guo, J. Xi, W. Gao, C. Gao, Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 28(16), 1707024 (2018). https://doi.org/10.1002/adfm.201707024
- X. Zeng, X. Cheng, R. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168, 606–623 (2020). https://doi.org/10.1016/j.carbon.2020.07.028
- M. Zhu, W. Li, S. Yang, P. Zou, Y. Zhang et al., Ambient pressure dried polyimide/silica aerogels for efficient radar stealth at high temperature. Compos. Commun. 56, 102338 (2025). https://doi.org/10.1016/j.coco.2025.102338
- Q. Li, X. Zhao, L. Xu, X. Xun, F. Gao, B. Zhao, Q. Liao, Y. Zhang, Engineering strategies in low-dimensional microwave absorbers: fundamentals, progress, and outlook. Mater. Sci. Eng. R. Rep. 159, 100795 (2024). https://doi.org/10.1016/j.mser.2024.100795
- J. Li, D. Zhou, P.-J. Wang, C. Du, W.-F. Liu, J.-Z. Su, L.-X. Pang, M.-S. Cao, L.-B. Kong, Recent progress in two-dimensional materials for microwave absorption applications. Chem. Eng. J. 425, 131558 (2021). https://doi.org/10.1016/j.cej.2021.131558
- Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang, R. Yu, J. Shui, Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624 (2019). https://doi.org/10.1002/adfm.201807624
- R. Panwar, J.R. Lee, Recent advances in thin and broadband layered microwave absorbing and shielding structures for commercial and defense applications. Funct. Compos. Struct. 1(3), 032001 (2019). https://doi.org/10.1088/2631-6331/ab2863
- J. Zhang, D. Li, M. Wang, Multi-material fused deposition modelling of structural–functional integrated absorber with multi-scale structure possessing tunable broadband microwave absorption. Mater. Des. 246, 113315 (2024). https://doi.org/10.1016/j.matdes.2024.113315
- N. Qu, G. Xu, Y. Liu, M. He, R. Xing, J. Gu, J. Kong, Multi-scale design of metal–organic framework metamaterials for broad-band microwave absorption. Adv. Funct. Mater. 35(18), 2402923 (2025). https://doi.org/10.1002/adfm.202402923
- S. Jorwal, A. Dubey, R. Gupta, S. Agarwal, A review: advancement in metamaterial based RF and microwave absorbers. Sens. Actuat. A Phys. 354, 114283 (2023). https://doi.org/10.1016/j.sna.2023.114283
- L. Yao, S. Zhou, L. Pan, H. Mei, Y. Li, K.G. Dassios, P. Colombo, L. Cheng, L. Zhang, Multifunctional metamaterial microwave blackbody with high-frequency compatibility, temperature insensitivity, and structural scalability. Adv. Funct. Mater. 33(5), 2209340 (2023). https://doi.org/10.1002/adfm.202209340
- W. Li, M. Xu, J. Gao, X. Zhang, H. Huang, R. Zhao, X. Zhu, Y. Yang, L. Luo, M. Chen, H. Ji, Lu. Zheng, X. Wang, W. Huang, Large-scale ultra-robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics. Adv. Mater. 35(8), 2207447 (2023). https://doi.org/10.1002/adma.202207447
- G. Yu, G. Shao, Y. Chen, Z. Xu, B. Quan, X. Zhu, X. Huang, Intelligent hygroscopic aerogels: moisture-activated dual-mode switchable electromagnetic response. Adv. Funct. Mater. 35(42), 2506857 (2025). https://doi.org/10.1002/adfm.202506857
- W. Li, Y. Li, M. Xu, Y. Zhou, R. Miao et al., Highly customizable, ultrawide-temperature free-form flexible sensing electronic systems based on medium-entropy alloy paintings. Nat. Commun. 16(1), 7351 (2025). https://doi.org/10.1038/s41467-025-62100-6
- W. Li, L. Kong, M. Xu, J. Gao, L. Luo et al.., Microsecond-scale transient thermal sensing enabled by flexible Mo1-xWxS2 alloys. Research 7, 0452 (2024). https://doi.org/10.34133/research.0452
- E. MacDonald, R. Wicker, Multiprocess 3D printing for increasing component functionality. Science 353(6307), aaf2093 (2016). https://doi.org/10.1126/science.aaf2093
- G. Zhang, H. Wang, W. Xie, S. Zhou, Z. Nie et al., Advancements in 3D-printed architectures for electromagnetic interference shields. J. Mater. Chem. A 12(10), 5581–5605 (2024). https://doi.org/10.1039/d3ta07181b
- A. Shahzad, I. Lazoglu, Direct ink writing (DIW) of structural and functional ceramics: recent achievements and future challenges. Compos. Part B Eng. 225, 109249 (2021). https://doi.org/10.1016/j.compositesb.2021.109249
- M.A.S.R. Saadi, A. Maguire, N.T. Pottackal, M.S.H. Thakur, M.M. Ikram, A.J. Hart, P.M. Ajayan, M.M. Rahman, Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34(28), 2108855 (2022). https://doi.org/10.1002/adma.202108855
- J.W. Kopatz, J. Unangst, A.W. Cook, L.N. Appelhans, Compositional effects on cure kinetics, mechanical properties and printability of dual-cure epoxy/acrylate resins for DIW additive manufacturing. Additive Manuf. 46, 102159 (2021). https://doi.org/10.1016/j.addma.2021.102159
- D.A. Rau, C.B. Williams, M.J. Bortner, Rheology and printability: a survey of critical relationships for direct ink write materials design. Prog. Mater. Sci. 140, 101188 (2023). https://doi.org/10.1016/j.pmatsci.2023.101188
- H. Baniasadi, R. Abidnejad, M. Fazeli, J. Lipponen, J. Niskanen, E. Kontturi, J. Seppälä, O.J. Rojas, Innovations in hydrogel-based manufacturing: a comprehensive review of direct ink writing technique for biomedical applications. Adv. Colloid Interface Sci. 324, 103095 (2024). https://doi.org/10.1016/j.cis.2024.103095
- H. Yuk, X. Zhao, A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks. Adv. Mater. 30(6), 1704028 (2018). https://doi.org/10.1002/adma.201704028
- K.P. Zhang, Y.F. Liao, B. Qiu, Y.K. Zheng, L.K. Yu et al., 3D printed embedded metamaterials. Small 17(50), 2103262 (2021). https://doi.org/10.1002/smll.202103262
- H. Ye, Q. Liu, J. Cheng, H. Li, B. Jian et al., Multimaterial 3D printed self-locking thick-panel origami metamaterials. Nat. Commun. 14(1), 1607 (2023). https://doi.org/10.1038/s41467-023-37343-w
- D. Wang, L. Dong, G. Gu, 3D printed fractal metamaterials with tunable mechanical properties and shape reconfiguration. Adv. Funct. Mater. 33(1), 2208849 (2023). https://doi.org/10.1002/adfm.202208849
- N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik et al., Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11(3), 771–778 (1999). https://doi.org/10.1021/cm981085u
- W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). https://doi.org/10.1021/ja01539a017
- F.I. Safitri, D. Nawangsari, D. Febrina, Overview: application of carbopol 940 in gel. Proceedings of the International Conference on Health and Medical Sciences (AHMS 2020). June 30-July 1, 2020. Yogyakarta, Indonesia. Atlantis Press, (2021). https://doi.org/10.2991/ahsr.k.210127.018
- G. Bonacucina, S. Martelli, G.F. Palmieri, Rheological, mucoadhesive and release properties of Carbopol gels in hydrophilic cosolvents. Int. J. Pharm. 282(1–2), 115–130 (2004). https://doi.org/10.1016/j.ijpharm.2004.06.012
- P.R. Varges, C.M. Costa, B.S. Fonseca, M.F. Naccache, P.R. De Souza Mendes, Rheological characterization of carbopol® dispersions in water and in water/glycerol solutions. Fluids 4(1), 3 (2019). https://doi.org/10.3390/fluids4010003
- S. Zhang, F. Wu, F. Hu, P. Hu, M. Li et al., Cross-dimensional assembly of MXene/SiO2/KNF composite aerogels for radar and infrared stealth. Mater. Horiz. 12(17), 6862–6874 (2025). https://doi.org/10.1039/d5mh00667h
- M. Peng, F. Qin, L. Zhou, H. Wei, Z. Zhu et al., Material-structure integrated design for ultra-broadband all-dielectric metamaterial absorber. J. Phys. Condens. Matter 34(11), ac431e (2021). https://doi.org/10.1088/1361-648X/ac431e
- F. He, K. Si, D. Zha, R. Li, Y. Zhang et al., Broadband microwave absorption properties of a frequency-selective surface embedded in a patterned honeycomb absorber. IEEE Trans. Electromagn. Compat. 63(4), 1290–1294 (2021). https://doi.org/10.1109/TEMC.2021.3050184
- S. Ghosh, S. Lim, Perforated lightweight broadband metamaterial absorber based on 3-D printed honeycomb. IEEE Antennas Wireless Propag. Lett. 17(12), 2379–2383 (2018). https://doi.org/10.1109/LAWP.2018.2876023
- Q. Li, Z. Wang, X. Wang, Y. Wang, J. Yang, The 3D printing of novel honeycomb-hollow pyramid sandwich structures for microwave and mechanical energy absorption. Polymers 15(24), 4719 (2023). https://doi.org/10.3390/polym15244719
- C. Li, G. Wang, M. Peng, C. Liu, T. Feng et al., Reconfigurable origami/kirigami metamaterial absorbers developed by fast inverse design and low-concentration MXene inks. ACS Appl. Mater. Interfaces 16(32), 42448–42460 (2024). https://doi.org/10.1021/acsami.4c07084
- M. Muniyalakshmi, K. Sethuraman, D. Silambarasan, Synthesis and characterization of graphene oxide nanosheets. Mater. Today Proc. 21, 408–410 (2020). https://doi.org/10.1016/j.matpr.2019.06.375
- Z. Xiang, J. Xiong, B. Deng, E. Cui, L. Yu et al., Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C 8(6), 2123–2134 (2020). https://doi.org/10.1039/c9tc06526a
- N. Kharbanda, M. Sachdeva, N. Ghorai, A. Kaur, V. Kumar et al., Plasmon-induced ultrafast hot hole transfer in nonstoichiometric CuxInyS/CdS heteronanocrystals. J. Phys. Chem. Lett. 15(19), 5056–5062 (2024). https://doi.org/10.1021/acs.jpclett.4c00712
- F. Li, L. Wang, L. Gao, D. Zu, D. Zhang et al., Reducing dielectric loss of high-dielectric-constant elastomer via rigid short-chain crosslinking. Adv. Mater. 36(47), e2411082 (2024). https://doi.org/10.1002/adma.202411082
- S. Huang, X. Dong, L. Pei, X. Zhang, Enhancing interface polarization by interface engineering of MoSe2/FeSe to achieve efficient microwave absorption. Mater. Today Phys. 57, 101819 (2025). https://doi.org/10.1016/j.mtphys.2025.101819
- Y. Ao, L. Jin, S. Wang, B. Lan, G. Tian et al., Dual structure reinforces interfacial polarized MXene/PVDF-TrFE piezoelectric nanocomposite for pressure monitoring. Nano-Micro Lett. 17(1), 320 (2025). https://doi.org/10.1007/s40820-025-01839-5
- J. Xiao, J. Li, S. Yang, M. Liu, S. Xue et al., Synergistic microstructure-driven polarization and conductive loss in 3D Chrysanthemum-like MoC@NiCo LDH composite for ultra-high microwave absorption performance. Inorg. Chem. 64(9), 4698–4711 (2025). https://doi.org/10.1021/acs.inorgchem.5c00416
- Y. Tian, D. Estevez, H. Wei, M. Peng, L. Zhou, P. Xu, C. Wu, Mi. Yan, H. Wang, H.-X. Peng, F. Qin, Chitosan-derived carbon aerogels with multiscale features for efficient microwave absorption. Chem. Eng. J. 421, 129781 (2021). https://doi.org/10.1016/j.cej.2021.129781
- T. Zhang, Y. Duan, J. Liu, H. Pang, L. Huang et al., Polarization insensitive hierarchical metamaterial for broadband microwave absorption with multi-scale optimization and integrated design. Compos. Sci. Technol. 228, 109643 (2022). https://doi.org/10.1016/j.compscitech.2022.109643
- U.C. Hasar, G. Buldu, M. Bute, A. Muratoglu, Calibration-free extraction of constitutive parameters of magnetically coupled anisotropic metamaterials using waveguide measurements. Rev. Sci. Instrum. 88(10), 104702 (2017). https://doi.org/10.1063/1.4997096
- Y. Zhang, L. Xu, J. Chen, X. Bai, X. Zhou, High sensitivity detection of ethanol solution based on waveguide resonant cavity combined with metamaterials. Measurement 225, 114030 (2024). https://doi.org/10.1016/j.measurement.2023.114030
- Y. Zheng, J. Gao, Y. Zhou, X. Cao, H. Yang et al., Wideband gain enhancement and RCS reduction of fabry–perot resonator antenna with chessboard arranged metamaterial superstrate. IEEE Trans. Anntenas. Propag. 66(2), 590–599 (2018). https://doi.org/10.1109/TAP.2017.2780896
References
W.-T. Cao, F.-F. Chen, Y.-J. Zhu, Y.-G. Zhang, Y.-Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. Nano Lett. 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12(1), 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
C. Gao, D. Gou, G. Huang, Z. Zhang, J. Wei, F. Gao, Yi. Zhang, M. Terrones, X. Chen, Y. Wang, Spiderweb-structured aerogels with high-efficiency microwave absorption and multifunctionality. Nano Energy 138, 110863 (2025). https://doi.org/10.1016/j.nanoen.2025.110863
N. Qu, H. Sun, Y. Sun, M. He, R. Xing et al., 2D/2D coupled MOF/Fe composite metamaterials enable robust ultra-broadband microwave absorption. Nat. Commun. 15(1), 5642 (2024). https://doi.org/10.1038/s41467-024-49762-4
G. Wang, C. Li, D. Estevez, P. Xu, M. Peng et al., Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 15(1), 152 (2023). https://doi.org/10.1007/s40820-023-01123-4
T. Wang, G. Chen, J. Zhu, H. Gong, L. Zhang et al., Deep understanding of impedance matching and quarter wavelength theory in electromagnetic wave absorption. J. Colloid Interface Sci. 595, 1–5 (2021). https://doi.org/10.1016/j.jcis.2021.03.132
M. Guo, X. Wang, Y. Liu, H. Liu, K. Zhou et al., Enhancing low-frequency performance of thin-layer magnetic microwave absorbing materials via phase gradient metasurface. Mater. Des. 254, 114062 (2025). https://doi.org/10.1016/j.matdes.2025.114062
M. Guo, X. Wang, H. Zhuang, Y. Dai, W. Li et al., Establishing a unified paradigm of microwave absorption inspired by the merging of traditional microwave absorbing materials and metamaterials. Mater. Horiz. 10(11), 5202–5213 (2023). https://doi.org/10.1039/d3mh01368e
M.B. Lim, M. Hu, S. Manandhar, A. Sakshaug, A. Strong et al., Ultrafast sol–gel synthesis of graphene aerogel materials. Carbon 95, 616–624 (2015). https://doi.org/10.1016/j.carbon.2015.08.037
J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai et al., Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11(4), 772–799 (2018). https://doi.org/10.1039/c7ee03031b
Q. Chen, J. Shen, D. Estevez, Y. Chen, Z. Zhu, J. Yin, F. Qin, Ultraprecise 3D printed graphene aerogel microlattices on tape for micro sensors and E-skin. Adv. Funct. Mater. 33(33), 2302545 (2023). https://doi.org/10.1002/adfm.202302545
C. Zhu, T.Y. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz et al., Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015). https://doi.org/10.1038/ncomms7962
D. Xu, S. Yang, P. Chen, Q. Yu, X. Xiong et al., Synthesis of magnetic graphene aerogels for microwave absorption by in situ pyrolysis. Carbon 146, 301–312 (2019). https://doi.org/10.1016/j.carbon.2019.02.005
X. Huang, G. Yu, Y. Zhang, M. Zhang, G. Shao, Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 426, 131894 (2021). https://doi.org/10.1016/j.cej.2021.131894
C. Li, L. Liang, B. Zhang, Y. Yang, G. Ji, Synergistic customization of interfacial engineering MXene-integrated aerogels enable multifunctional radar-infrared stealth. Chem. Eng. J. 520, 166211 (2025). https://doi.org/10.1016/j.cej.2025.166211
J. Xu, M. Liu, X. Zhang, B. Li, X. Zhang et al., Atomically dispersed cobalt anchored on N-doped graphene aerogels for efficient electromagnetic wave absorption with an ultralow filler ratio. Appl. Phys. Rev. 9, 011402 (2022). https://doi.org/10.1063/5.0067791
W. Wang, Y. Wang, Z. Lu, R. Cheng, H. Zheng, Hollow ZnO/ZnFe2O4 microspheres anchored graphene aerogels as a high-efficiency microwave absorber with thermal insulation and hydrophobic performances. Carbon 203, 397–409 (2023). https://doi.org/10.1016/j.carbon.2022.11.103
X. Liu, B. Zheng, Y. Hua, S. Lu, Z. Nong, J. Wang, Y. Song, Ultralight MXene/rGO aerogel frames with component and structure controlled electromagnetic wave absorption by direct ink writing. Carbon 230, 119650 (2024). https://doi.org/10.1016/j.carbon.2024.119650
Z. Cheng, R. Wang, Y. Wang, Y. Cao, Y. Shen et al., Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials. Carbon 205, 112–137 (2023). https://doi.org/10.1016/j.carbon.2023.01.032
G. Shao, R. Xu, Y. Chen, G. Yu, X. Wu, B. Quan, X. Shen, X. Huang, Miniaturized hard carbon nanofiber aerogels: from multiscale electromagnetic response manipulation to integrated multifunctional absorbers. Adv. Funct. Mater. 34(48), 2408252 (2024). https://doi.org/10.1002/adfm.202408252
X. Huang, L. Zhang, G. Yu, J. Wei, G. Shao, Polarization genes dominated heteroatom-doped graphene aerogels toward super-efficiency microwave absorption. J. Mater. Chem. C 11(29), 9804–9814 (2023). https://doi.org/10.1039/d3tc01965a
Y. Cheng, X. Sun, Y. Yuan, S. Yang, Y. Ning, D. Wang, W. Yin, Y. Li, Flexible SiO2/rGO aerogel for wide-angle broadband microwave absorption. Carbon 217, 118580 (2024). https://doi.org/10.1016/j.carbon.2023.118580
H. Fang, H. Guo, Y. Hu, Y. Ren, P.-C. Hsu, S.-L. Bai, In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity. Compos. Sci. Technol. 188, 107975 (2020). https://doi.org/10.1016/j.compscitech.2019.107975
W. Ma, H. Chen, S. Hou, Z. Huang, Y. Huang et al., Compressible highly stable 3D porous MXene/GO foam with a tunable high-performance stealth property in the terahertz band. ACS Appl. Mater. Interfaces 11(28), 25369–25377 (2019). https://doi.org/10.1021/acsami.9b03406
L. Du, Y. Li, Q. Zhou, L. Zhang, T. Shi et al., Facilitative preparation of graphene/cellulose aerogels with tunable microwave absorption properties for ultra-lightweight applications. J. Colloid Interface Sci. 679(Pt A), 987–994 (2025). https://doi.org/10.1016/j.jcis.2024.10.057
T.-B. Geng, G.-Y. Yu, G.-F. Shao, X.-G. Huang, Enhanced electromagnetic wave absorption properties of ZIF-67 modified polymer-derived SiCN ceramics by in situ construction of multiple heterointerfaces. Rare Met. 42(5), 1635–1644 (2023). https://doi.org/10.1007/s12598-023-02270-8
Y. Guo, Y. Duan, S. Gu, X. Liu, Z. Fan et al., Carbon nanocoils-assisted formation of tunable pore graphene aerogels for lightweight broadband microwave absorption, thermal insulation, and antifreeze devices. Small 21(10), 2412270 (2025). https://doi.org/10.1002/smll.202412270
K. Cao, X. Yang, Y. Zhang, J. Wen, J. Chen et al., Preparation of magnetic three-dimensional porous Co-rGO aerogel for enhanced microwave absorption. Carbon 208, 111–122 (2023). https://doi.org/10.1016/j.carbon.2023.03.037
Y. An, Y. Chen, J. Liu, R. Zhou, W. Wang et al., A carbon nanotube/graphene nanoplatelet pressure sensor prepared by combining 3D printing and freeze-drying method. J. Polym. Res. 31(5), 129 (2024). https://doi.org/10.1007/s10965-024-03972-y
Y. Jiang, Z. Xu, T. Huang, Y. Liu, F. Guo, J. Xi, W. Gao, C. Gao, Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 28(16), 1707024 (2018). https://doi.org/10.1002/adfm.201707024
X. Zeng, X. Cheng, R. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168, 606–623 (2020). https://doi.org/10.1016/j.carbon.2020.07.028
M. Zhu, W. Li, S. Yang, P. Zou, Y. Zhang et al., Ambient pressure dried polyimide/silica aerogels for efficient radar stealth at high temperature. Compos. Commun. 56, 102338 (2025). https://doi.org/10.1016/j.coco.2025.102338
Q. Li, X. Zhao, L. Xu, X. Xun, F. Gao, B. Zhao, Q. Liao, Y. Zhang, Engineering strategies in low-dimensional microwave absorbers: fundamentals, progress, and outlook. Mater. Sci. Eng. R. Rep. 159, 100795 (2024). https://doi.org/10.1016/j.mser.2024.100795
J. Li, D. Zhou, P.-J. Wang, C. Du, W.-F. Liu, J.-Z. Su, L.-X. Pang, M.-S. Cao, L.-B. Kong, Recent progress in two-dimensional materials for microwave absorption applications. Chem. Eng. J. 425, 131558 (2021). https://doi.org/10.1016/j.cej.2021.131558
Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang, R. Yu, J. Shui, Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624 (2019). https://doi.org/10.1002/adfm.201807624
R. Panwar, J.R. Lee, Recent advances in thin and broadband layered microwave absorbing and shielding structures for commercial and defense applications. Funct. Compos. Struct. 1(3), 032001 (2019). https://doi.org/10.1088/2631-6331/ab2863
J. Zhang, D. Li, M. Wang, Multi-material fused deposition modelling of structural–functional integrated absorber with multi-scale structure possessing tunable broadband microwave absorption. Mater. Des. 246, 113315 (2024). https://doi.org/10.1016/j.matdes.2024.113315
N. Qu, G. Xu, Y. Liu, M. He, R. Xing, J. Gu, J. Kong, Multi-scale design of metal–organic framework metamaterials for broad-band microwave absorption. Adv. Funct. Mater. 35(18), 2402923 (2025). https://doi.org/10.1002/adfm.202402923
S. Jorwal, A. Dubey, R. Gupta, S. Agarwal, A review: advancement in metamaterial based RF and microwave absorbers. Sens. Actuat. A Phys. 354, 114283 (2023). https://doi.org/10.1016/j.sna.2023.114283
L. Yao, S. Zhou, L. Pan, H. Mei, Y. Li, K.G. Dassios, P. Colombo, L. Cheng, L. Zhang, Multifunctional metamaterial microwave blackbody with high-frequency compatibility, temperature insensitivity, and structural scalability. Adv. Funct. Mater. 33(5), 2209340 (2023). https://doi.org/10.1002/adfm.202209340
W. Li, M. Xu, J. Gao, X. Zhang, H. Huang, R. Zhao, X. Zhu, Y. Yang, L. Luo, M. Chen, H. Ji, Lu. Zheng, X. Wang, W. Huang, Large-scale ultra-robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics. Adv. Mater. 35(8), 2207447 (2023). https://doi.org/10.1002/adma.202207447
G. Yu, G. Shao, Y. Chen, Z. Xu, B. Quan, X. Zhu, X. Huang, Intelligent hygroscopic aerogels: moisture-activated dual-mode switchable electromagnetic response. Adv. Funct. Mater. 35(42), 2506857 (2025). https://doi.org/10.1002/adfm.202506857
W. Li, Y. Li, M. Xu, Y. Zhou, R. Miao et al., Highly customizable, ultrawide-temperature free-form flexible sensing electronic systems based on medium-entropy alloy paintings. Nat. Commun. 16(1), 7351 (2025). https://doi.org/10.1038/s41467-025-62100-6
W. Li, L. Kong, M. Xu, J. Gao, L. Luo et al.., Microsecond-scale transient thermal sensing enabled by flexible Mo1-xWxS2 alloys. Research 7, 0452 (2024). https://doi.org/10.34133/research.0452
E. MacDonald, R. Wicker, Multiprocess 3D printing for increasing component functionality. Science 353(6307), aaf2093 (2016). https://doi.org/10.1126/science.aaf2093
G. Zhang, H. Wang, W. Xie, S. Zhou, Z. Nie et al., Advancements in 3D-printed architectures for electromagnetic interference shields. J. Mater. Chem. A 12(10), 5581–5605 (2024). https://doi.org/10.1039/d3ta07181b
A. Shahzad, I. Lazoglu, Direct ink writing (DIW) of structural and functional ceramics: recent achievements and future challenges. Compos. Part B Eng. 225, 109249 (2021). https://doi.org/10.1016/j.compositesb.2021.109249
M.A.S.R. Saadi, A. Maguire, N.T. Pottackal, M.S.H. Thakur, M.M. Ikram, A.J. Hart, P.M. Ajayan, M.M. Rahman, Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34(28), 2108855 (2022). https://doi.org/10.1002/adma.202108855
J.W. Kopatz, J. Unangst, A.W. Cook, L.N. Appelhans, Compositional effects on cure kinetics, mechanical properties and printability of dual-cure epoxy/acrylate resins for DIW additive manufacturing. Additive Manuf. 46, 102159 (2021). https://doi.org/10.1016/j.addma.2021.102159
D.A. Rau, C.B. Williams, M.J. Bortner, Rheology and printability: a survey of critical relationships for direct ink write materials design. Prog. Mater. Sci. 140, 101188 (2023). https://doi.org/10.1016/j.pmatsci.2023.101188
H. Baniasadi, R. Abidnejad, M. Fazeli, J. Lipponen, J. Niskanen, E. Kontturi, J. Seppälä, O.J. Rojas, Innovations in hydrogel-based manufacturing: a comprehensive review of direct ink writing technique for biomedical applications. Adv. Colloid Interface Sci. 324, 103095 (2024). https://doi.org/10.1016/j.cis.2024.103095
H. Yuk, X. Zhao, A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks. Adv. Mater. 30(6), 1704028 (2018). https://doi.org/10.1002/adma.201704028
K.P. Zhang, Y.F. Liao, B. Qiu, Y.K. Zheng, L.K. Yu et al., 3D printed embedded metamaterials. Small 17(50), 2103262 (2021). https://doi.org/10.1002/smll.202103262
H. Ye, Q. Liu, J. Cheng, H. Li, B. Jian et al., Multimaterial 3D printed self-locking thick-panel origami metamaterials. Nat. Commun. 14(1), 1607 (2023). https://doi.org/10.1038/s41467-023-37343-w
D. Wang, L. Dong, G. Gu, 3D printed fractal metamaterials with tunable mechanical properties and shape reconfiguration. Adv. Funct. Mater. 33(1), 2208849 (2023). https://doi.org/10.1002/adfm.202208849
N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik et al., Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11(3), 771–778 (1999). https://doi.org/10.1021/cm981085u
W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). https://doi.org/10.1021/ja01539a017
F.I. Safitri, D. Nawangsari, D. Febrina, Overview: application of carbopol 940 in gel. Proceedings of the International Conference on Health and Medical Sciences (AHMS 2020). June 30-July 1, 2020. Yogyakarta, Indonesia. Atlantis Press, (2021). https://doi.org/10.2991/ahsr.k.210127.018
G. Bonacucina, S. Martelli, G.F. Palmieri, Rheological, mucoadhesive and release properties of Carbopol gels in hydrophilic cosolvents. Int. J. Pharm. 282(1–2), 115–130 (2004). https://doi.org/10.1016/j.ijpharm.2004.06.012
P.R. Varges, C.M. Costa, B.S. Fonseca, M.F. Naccache, P.R. De Souza Mendes, Rheological characterization of carbopol® dispersions in water and in water/glycerol solutions. Fluids 4(1), 3 (2019). https://doi.org/10.3390/fluids4010003
S. Zhang, F. Wu, F. Hu, P. Hu, M. Li et al., Cross-dimensional assembly of MXene/SiO2/KNF composite aerogels for radar and infrared stealth. Mater. Horiz. 12(17), 6862–6874 (2025). https://doi.org/10.1039/d5mh00667h
M. Peng, F. Qin, L. Zhou, H. Wei, Z. Zhu et al., Material-structure integrated design for ultra-broadband all-dielectric metamaterial absorber. J. Phys. Condens. Matter 34(11), ac431e (2021). https://doi.org/10.1088/1361-648X/ac431e
F. He, K. Si, D. Zha, R. Li, Y. Zhang et al., Broadband microwave absorption properties of a frequency-selective surface embedded in a patterned honeycomb absorber. IEEE Trans. Electromagn. Compat. 63(4), 1290–1294 (2021). https://doi.org/10.1109/TEMC.2021.3050184
S. Ghosh, S. Lim, Perforated lightweight broadband metamaterial absorber based on 3-D printed honeycomb. IEEE Antennas Wireless Propag. Lett. 17(12), 2379–2383 (2018). https://doi.org/10.1109/LAWP.2018.2876023
Q. Li, Z. Wang, X. Wang, Y. Wang, J. Yang, The 3D printing of novel honeycomb-hollow pyramid sandwich structures for microwave and mechanical energy absorption. Polymers 15(24), 4719 (2023). https://doi.org/10.3390/polym15244719
C. Li, G. Wang, M. Peng, C. Liu, T. Feng et al., Reconfigurable origami/kirigami metamaterial absorbers developed by fast inverse design and low-concentration MXene inks. ACS Appl. Mater. Interfaces 16(32), 42448–42460 (2024). https://doi.org/10.1021/acsami.4c07084
M. Muniyalakshmi, K. Sethuraman, D. Silambarasan, Synthesis and characterization of graphene oxide nanosheets. Mater. Today Proc. 21, 408–410 (2020). https://doi.org/10.1016/j.matpr.2019.06.375
Z. Xiang, J. Xiong, B. Deng, E. Cui, L. Yu et al., Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C 8(6), 2123–2134 (2020). https://doi.org/10.1039/c9tc06526a
N. Kharbanda, M. Sachdeva, N. Ghorai, A. Kaur, V. Kumar et al., Plasmon-induced ultrafast hot hole transfer in nonstoichiometric CuxInyS/CdS heteronanocrystals. J. Phys. Chem. Lett. 15(19), 5056–5062 (2024). https://doi.org/10.1021/acs.jpclett.4c00712
F. Li, L. Wang, L. Gao, D. Zu, D. Zhang et al., Reducing dielectric loss of high-dielectric-constant elastomer via rigid short-chain crosslinking. Adv. Mater. 36(47), e2411082 (2024). https://doi.org/10.1002/adma.202411082
S. Huang, X. Dong, L. Pei, X. Zhang, Enhancing interface polarization by interface engineering of MoSe2/FeSe to achieve efficient microwave absorption. Mater. Today Phys. 57, 101819 (2025). https://doi.org/10.1016/j.mtphys.2025.101819
Y. Ao, L. Jin, S. Wang, B. Lan, G. Tian et al., Dual structure reinforces interfacial polarized MXene/PVDF-TrFE piezoelectric nanocomposite for pressure monitoring. Nano-Micro Lett. 17(1), 320 (2025). https://doi.org/10.1007/s40820-025-01839-5
J. Xiao, J. Li, S. Yang, M. Liu, S. Xue et al., Synergistic microstructure-driven polarization and conductive loss in 3D Chrysanthemum-like MoC@NiCo LDH composite for ultra-high microwave absorption performance. Inorg. Chem. 64(9), 4698–4711 (2025). https://doi.org/10.1021/acs.inorgchem.5c00416
Y. Tian, D. Estevez, H. Wei, M. Peng, L. Zhou, P. Xu, C. Wu, Mi. Yan, H. Wang, H.-X. Peng, F. Qin, Chitosan-derived carbon aerogels with multiscale features for efficient microwave absorption. Chem. Eng. J. 421, 129781 (2021). https://doi.org/10.1016/j.cej.2021.129781
T. Zhang, Y. Duan, J. Liu, H. Pang, L. Huang et al., Polarization insensitive hierarchical metamaterial for broadband microwave absorption with multi-scale optimization and integrated design. Compos. Sci. Technol. 228, 109643 (2022). https://doi.org/10.1016/j.compscitech.2022.109643
U.C. Hasar, G. Buldu, M. Bute, A. Muratoglu, Calibration-free extraction of constitutive parameters of magnetically coupled anisotropic metamaterials using waveguide measurements. Rev. Sci. Instrum. 88(10), 104702 (2017). https://doi.org/10.1063/1.4997096
Y. Zhang, L. Xu, J. Chen, X. Bai, X. Zhou, High sensitivity detection of ethanol solution based on waveguide resonant cavity combined with metamaterials. Measurement 225, 114030 (2024). https://doi.org/10.1016/j.measurement.2023.114030
Y. Zheng, J. Gao, Y. Zhou, X. Cao, H. Yang et al., Wideband gain enhancement and RCS reduction of fabry–perot resonator antenna with chessboard arranged metamaterial superstrate. IEEE Trans. Anntenas. Propag. 66(2), 590–599 (2018). https://doi.org/10.1109/TAP.2017.2780896