Lead-Free Halide Double Perovskite Materials: A New Superstar Toward Green and Stable Optoelectronic Applications
Corresponding Author: Xing’ao Li
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 16
Abstract
Lead-based halide perovskites have emerged as excellent semiconductors for a broad range of optoelectronic applications, such as photovoltaics, lighting, lasing and photon detection. However, toxicity of lead and poor stability still represent significant challenges. Fortunately, halide double perovskite materials with formula of A2M(I)M(III)X6 or A2M(IV)X6 could be potentially regarded as stable and green alternatives for optoelectronic applications, where two divalent lead ions are substituted by combining one monovalent and one trivalent ions, or one tetravalent ion. Here, the article provides an up-to-date review on the developments of halide double perovskite materials and their related optoelectronic applications including photodetectors, X-ray detectors, photocatalyst, light-emitting diodes and solar cells. The synthesized halide double perovskite materials exhibit exceptional stability, and a few possess superior optoelectronic properties. However, the number of synthesized halide double perovskites is limited, and more limited materials have been developed for optoelectronic applications to date. In addition, the band structures and carrier transport properties of the materials are still not desired, and the films still manifest low quality for photovoltaic applications. Therefore, we propose that continuing efforts are needed to develop more halide double perovskites, modulate the properties and grow high-quality films, with the aim of opening the wild practical applications.
Highlights:
1 Lead-based halide perovskite materials have revealed excellent properties in optoelectronic applications. However, the material stability and the toxicity of lead still hinder their large-scale commercial applications.
2 Lead-free halide double perovskite materials possess the characteristics of environmental friendliness, exceptional stability and tunable optoelectronic properties.
3 A limited number of halide double perovskites have been synthesized, and extremely few have been developed for optoelectronic applications. Continuing effort is needed to explore more halide double perovskites and modulate the properties for their further applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 6022–6025 (2012). https://doi.org/10.1038/srep00591
- H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014). https://doi.org/10.1126/science.1254050
- N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). https://doi.org/10.1038/nature14133
- D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu et al., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360(6396), 1442 (2018). https://doi.org/10.1126/science.aap9282
- National Renewable Energy Laboratory (NREL) (2018). https://www.nrel.gov/pv/assets/pdfs/pv-efficiencies-chart.20181214.pdf
- M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakumi, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
- S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Hertz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
- G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
- W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim et al., Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017). https://doi.org/10.1126/science.aan2301
- S.D. Stranks, H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotech. 10(5), 391–402 (2015). https://doi.org/10.1038/nnano.2015.90
- H. Cho, S.H. Jeong, M.H. Park, Y.H. Kim, C. Wolf, C.L. Lee et al., Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222–1225 (2015). https://doi.org/10.1126/science.aad1818
- H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14(6), 636–642 (2015). https://doi.org/10.1038/nmat4271
- F. Zhang, B. Yang, K. Zheng, S. Yang, Y. Li, W. Deng, R. He, Formamidinium lead bromide (FAPbBr3) perovskite microcrystals for sensitive and fast photodetectors. Nano-Micro Lett. 10(3), 43 (2018). https://doi.org/10.1007/s40820-018-0196-2
- L. Chu, R. Hu, W. Liu, Y. Ma, R. Zhang, J. Yang, X. Li, Screen printing large-area organometal halide perovskite thin films for efficient photodetectors. Mater. Res. Bull. 98, 322 (2018). https://doi.org/10.1016/j.materresbull.2017.10.039
- Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq et al., All-inorganic perovskite nanocrystal scintillators. Nature 561(7721), 88 (2018). https://doi.org/10.1038/s41586-018-0451-1
- H. Luo, X. Lin, X. Hou, L. Pan, S. Huang, X. Chen, Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT:PSS hole transport layer. Nano-Micro Lett. 9(4), 39 (2017). https://doi.org/10.1007/s4082
- Y. Yang, J. You, Make perovskite solar cells stable. Nature 544(7649), 155 (2017). https://doi.org/10.1038/544155a
- M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 5557 (2016). https://doi.org/10.1126/science.aah5557
- J.M. Ball, A. Petrozza, Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1(11), 16149 (2016). https://doi.org/10.1038/nenergy.2016.149
- J. Cheng, H. Zhang, S. Zhang, D. Ouyang, Z. Huang, M.K. Nazeeruddin, J. Hou, W.C. Choy, Highly efficient planar perovskite solar cells achieved by simultaneous defect engineering and formation kinetic control. J. Mater. Chem. A 6(46), 23865 (2018). https://doi.org/10.1039/C8TA08819E
- J.C. Hebig, I. Kühn, J. Flohre, T. Kirchartz, Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett. 1(1), 309–314 (2016). https://doi.org/10.1021/acsenergylett.6b00170
- T. Singh, A. Kulkarni, M. Ikegami, T. Miyasaka, Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3Bi2I9 for photovoltaic applications. ACS Appl. Mater. Interfaces. 8(23), 14542–14547 (2016). https://doi.org/10.1021/acsami.6b02843
- J. You, L. Meng, T.B. Song, T.F. Guo, Y.M. Yang et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotech. 11(1), 75–81 (2016). https://doi.org/10.1038/nnano.2015.230
- W. Liao, D. Zhao, Y. Yu, C.R. Grice, C. Wang et al., Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 28(42), 9333–9340 (2016). https://doi.org/10.1002/adma.201602992
- H. Tsai, W. Nie, J.C. Blancon, C.C. Stoumpos, R. Asadpour et al., High-efficiency two-dimensional ruddlesden-popper perovskite solar cells. Nature 536(7616), 312–316 (2016). https://doi.org/10.1038/nature18306
- F. Matteocci, L. Cinà, E. Lamanna, S. Cacovich, G. Divitini, P.A. Midgley, C. Ducati, A.D. Carlo, Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy 30, 162–172 (2016). https://doi.org/10.1016/j.nanoen.2016.09.041
- G. Flora, D. Gupta, A. Tiwari, Toxicity of lead: a review with recent updates. Interdiscip. Toxicol. 5(2), 47–58 (2012). https://doi.org/10.2478/v10102-012-0009-2
- L. Liang, P. Gao, Lead-free hybrid perovskite absorbers for viable application: can we eat the cake and have it too. Adv. Sci. 5(2), 1700331 (2018). https://doi.org/10.1002/advs.201700331
- F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis, Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136(22), 8094–8099 (2014). https://doi.org/10.1021/ja5033259
- T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie et al., Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3(47), 23829–23832 (2015). https://doi.org/10.1039/C5TA05741H
- H. Wang, H. Zhang, C.C. Chueh, T. Zhao, C. Mao, W. Chen, A.K.Y. Jenac, Enhanced crystallization and performance of formamidinium lead triiodide perovskite solar cells through PbI2-SrCl2 modulation. Mater. Today Energy 7, 239 (2018). https://doi.org/10.1016/j.mtener.2017.10.002
- M.T. Klug, A. Osherov, A.A. Haghighirad, S.D. Stranks, P.R. Brown et al., Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy Environ. Sci. 10(1), 236 (2017). https://doi.org/10.1039/C6EE03201J
- J. Jin, H. Li, C. Chen, B. Zhang, L. Xu, B. Dong, H. Song, Q. Dai, Enhanced performance of perovskite solar cells with zinc chloride additives. ACS Appl. Mater. Interfaces. 9(49), 42875–42882 (2017). https://doi.org/10.1021/acsami.7b15310
- Q. Chen, L. Chen, F.Y. Ye, T. Zhao, F. Tang et al., Ag-incorporated organic-inorganic perovskite films and planar heterojunction solar cells. Nano Lett. 17(5), 3231–3237 (2017). https://doi.org/10.1021/acs.nanolett.7b00847
- J. Zhang, M. Shang, P. Wang, X. Huang, J. Xu, Z. Hu, Y. Zhu, L. Han, n-Type doping and energy states tuning in CH3NH3Pb1–xSb2x/3I3 perovskite solar cells. ACS Energy Lett. 1(3), 535–541 (2016). https://doi.org/10.1021/acsenergylett.6b00241
- Y. Hu, T. Qiu, F. Bai, X. Miao, S. Zhang, Enhancing moisture-tolerance and photovoltaic performances of FAPbI3 by bismuth incorporation. J. Mater. Chem. A 5(48), 25258–25265 (2017). https://doi.org/10.1039/C7TA08824H
- F. Wei, Z. Deng, S. Sun, F. Xie, G. Kieslich, D.M. Evans, M.A. Carpenter, P.D. Bristowe, A.K. Cheetham, The synthesis, structure and electronic properties of a lead-free hybrid inorganic-organic double perovskite (MA)2KBiCl6 (MA = methylammonium). Mater. Horiz. 3(4), 328–332 (2016). https://doi.org/10.1039/C6MH00053C
- P.D. Matthews, D.J. Lewis, P. O’Brien, Updating the road map to metal-halide perovskites for photovoltaics. J. Mater. Chem. A 5(33), 17135–17150 (2017). https://doi.org/10.1039/C7TA04544A
- F. Giustino, H.J. Snaith, Toward lead-free perovskite solar cells. ACS Energy Lett. 1(6), 1233–1240 (2016). https://doi.org/10.1021/acsenergylett.6b00499
- K.W. Bagnall, J.B. Laidler, M.A.A. Stewart, Americium chloro-complexes. J. Chem. Soc. A 0, 133–136 (1968). https://doi.org/10.1039/J19680000133
- L.R. Morss, J. Fuger, Preparation and crystal structures of dicesium berkelium hexachloride and dicesium sodium berkelium hexachloride. Inorg. Chem. 8(7), 1433–1439 (1969). https://doi.org/10.1021/ic50077a013
- L.R. Morss, M. Siegal, L. Stenger, N. Edelstein, Preparation of cubic chloro complex compounds of trivalent metals: Cs2NaMCl6. Inorg. Chem. 9(7), 1771–1775 (1970). https://doi.org/10.1021/ic50089a034
- L.R. Morrs, W.R. Robinson, Crystal structure of Cs2NaBiCl6. Acta Crystallogr. B 28(2), 653–654 (1972). https://doi.org/10.1107/S0567740872002948
- F. Prokert, K.S. Aleksandrov, Neutron scattering studies on phase transition and phonon dispersion in Cs2NaBiCl6. Phys. Status Solidi B 124(2), 503 (1984). https://doi.org/10.1002/pssb.2221240208
- W.M.A. Smit, G.J. Dirksen, D.J. Stufkens, Infrared and Raman spectra of the elpasolites Cs2NaSbCl6 and Cs2NaBiCl6: evidence for a pseudo Jahn-Teller distorted ground state. J. Phys. Chem. Solids 51(2), 189–196 (1990). https://doi.org/10.1016/0022-3697(90)90092-T
- I.N. Flerov, M.V. Gorev, K.S. Aleksandrov, A. Tressaud, J. Grannec, M. Couzi, Phase transitions in elpasolites (ordered perovskites). Mater. Sci. Eng. 24(3), 81–151 (1998). https://doi.org/10.1016/S0927-796X(98)00015-1
- E.T. McClure, M.R. Ball, W. Windl, P.M. Woodward, Cs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28(5), 1348–1354 (2016). https://doi.org/10.1021/acs.chemmater.5b04231
- G. Volonakis, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger, H.J. Snaith, F. Giustino, Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 7(7), 1254–1259 (2016). https://doi.org/10.1021/acs.jpclett.6b00376
- Y. Bekenstein, J.C. Dahl, J. Huang, W.T. Osowiecki, J.K. Swabeck, E.M. Chan, P. Yang, A.P. Alivisatos, The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions. Nano Lett. 18(6), 3502 (2018). https://doi.org/10.1021/acs.nanolett.8b00560
- S.E. Creutz, E.N. Crites, M.C. De Siena, D.R. Gamelin, Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: synthesis and anion exchange to access new materials. Nano Lett. 18(2), 1118 (2018). https://doi.org/10.1021/acs.nanolett.7b04659
- A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic application. J. Am. Chem. Soc. 138(7), 2138–2141 (2016). https://doi.org/10.1021/jacs.5b13294
- Y. Bi, E.M. Hutter, Y. Fang, Q. Dong, J. Huang, T.J. Savenije, Charge carrier lifetimes exceeding 15 μs in methylammonium lead iodide single crystals. J. Phys. Chem. Lett. 7(5), 923–928 (2016). https://doi.org/10.1021/acs.jpclett.6b00269
- W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge et al., Cs2AgBiBr 6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 11(11), 726–732 (2017). https://doi.org/10.1038/s41566-017-0012-4
- R.L.Z. Hoye, L. Eyre, F. Wei, F. Brivio, A. Sadhanala et al., Fundamental carrier lifetime exceeding 1 µs in Cs2AgBiBr 6 double perovskite. Adv. Mater. Interfaces 5(15), 1800464 (2018). https://doi.org/10.1002/admi.201800464
- L. Zhou, Y.F. Xu, B.X. Chen, D.B. Kuang, C.Y. Su, Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr 6 perovskite nanocrystals. Small 14(11), 1703762 (2018). https://doi.org/10.1002/smll.201703762
- A.H. Slavney, L. Leppert, D. Bartesaghi, A. Gold-Parker, M.F. Toney, T.J. Savenije, J.B. Neaton, H.I. Karunadasa, Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption. J. Am. Chem. Soc. 139(14), 5015–5018 (2017). https://doi.org/10.1021/jacs.7b01629
- K.Z. Du, W. Meng, X. Wang, Y. Yan, D.B. Mitzi, Bandgap engineering of lead-free double perovskite Cs2AgBiBr 6 through trivalent metal alloying. Angew. Chem. Int. Ed. 56(28), 8158–8274 (2017). https://doi.org/10.1002/anie.201703970
- T.T. Tran, J.R. Panella, J.R. Chamorro, J.R. Morey, T.M. McQueen, Designing indirect-direct bandgap transitions in double perovskites. Mater. Horiz. 4(4), 688–693 (2017). https://doi.org/10.1039/C7MH00239D
- G. Volonakis, A.A. Haghighirad, R.L. Milot, W.H. Sio, M.R. Filip et al., Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 8(4), 772–778 (2017). https://doi.org/10.1021/acs.jpclett.6b02682
- J. Luo, S. Li, H. Wu, Y. Zhou, Y. Li et al., Cs2AgInCl6 double perovskite single crystals: parity forbidden transitions and their application for sensitive and fast UV photodetectors. ACS Photonics 5(2), 398–405 (2017). https://doi.org/10.1021/acsphotonics.7b00837
- N. Nandha, A. Nag, Synthesis and luminescence of Mn-doped Cs2AgInCl6 double perovskites. Chem. Comm. 54(41), 5205–5208 (2018). https://doi.org/10.1039/C8CC01982G
- K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 127(9–10), 619–623 (2003). https://doi.org/10.1016/S0038-1098(03)00566-0
- C. Zhang, L. Gao, S. Teo, Z. Guo, Z. Xu, S. Zhao, T. Ma, Design of a novel and highly stable lead-free Cs2NaBiI6 double perovskite for photovoltaic application. Sustainable Energy Fuels 2(11), 2419 (2018). https://doi.org/10.1039/C8SE00154E
- X.G. Zhao, J.H. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S.H. Wei, L. Zhang, Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139(7), 2630–2638 (2017). https://doi.org/10.1021/jacs.6b09645
- T. Li, X. Zhao, D. Yang, M.H. Du, L. Zhang, Intrinsic defect properties in halide double perovskites for optoelectronic applications. Phys. Rev. Appl. 10(4), 41001 (2018). https://doi.org/10.1103/PhysRevApplied.10.041001
- X.G. Zhao, D. Yang, J.C. Ren, Y. Sun, Z. Xiao, L. Zhang, Rational design of halide double perovskites for optoelectronic applications. Joule 2(9), 1662 (2018). https://doi.org/10.1016/j.joule.2018.06.017
- Q. Xu, D. Yang, J. Lv, Y.Y. Sun, L. Zhang, Perovskite solar absorbers: materials by design. Small Methods 2(5), 1700316 (2018). https://doi.org/10.1002/smtd.201700316
- X.G. Zhao, D. Yang, Y. Sun, T. Li, L. Zhang, L. Yu, A. Zunger, Cu-In halide perovskite solar absorbers. J. Am. Chem. Soc. 139(19), 6718–6725 (2017). https://doi.org/10.1021/jacs.7b02120
- Z.W. Xiao, K.Z. Du, W.W. Meng, J.B. Wang, D.B. Mitzi, Y.F. Yan, Intrinsic instability of Cs2In(I)M(III)X6 (M=Bi, Sb; X=Halogen) double perovskites: a combined density functional theory and experimental study. J. Am. Chem. Soc. 139(17), 6054–6057 (2017). https://doi.org/10.1021/jacs.7b02227
- M.G. Brik, I.V. Kityk, Modeling of lattice constant and their relations with ionic radii and electronegativity of constituting ions of A2XY6 cubic crystals (A=K, Cs, Rb, Tl; X=tetravalent cation, Y=F, Cl, Br, I). J. Phys. Chem. Solids 72(11), 1256–1260 (2011). https://doi.org/10.1016/j.jpcs.2011.07.016
- A.E. Maughan, A.M. Ganose, M.M. Bordelon, E.M. Miller, D.O. Scanlon, J.R. Neilson, Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. J. Am. Chem. Soc. 138(27), 8453–8464 (2016). https://doi.org/10.1021/jacs.6b03207
- A.E. Maughan, A.M. Ganose, A.M. Candia, J.T. Granger, D.O. Scanlon, J.R. Neilson, Anharmonicity and octahedral tilting in hybrid vacancy-ordered double perovskites. Chem. Mater. 30(2), 472–482 (2018). https://doi.org/10.1021/acs.chemmater.7b04516
- B. Lee, C.C. Stoumpos, N. Zhou, F. Hao, C. Malliakas, C.Y. Yeh, T.J. Marks, M.G. Kanatzidis, R.P.H. Chang, Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. J. Am. Chem. Soc. 136(43), 15379–15385 (2014). https://doi.org/10.1021/ja508464w
- S. Ghosh, S. Paul, S.K. De, Control synthesis of air-stable morphology tunable Pb-free Cs2SnI6 perovskite nanoparticles and their photodetection properties. Part. Part. Syst. Char. 35(9), 1800199 (2018). https://doi.org/10.1002/ppsc.201800199
- A. Wang, X. Yan, M. Zhang, S. Sun, M. Yang, W. Shen, X. Pan, P. Wang, Z. Deng, Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process. Chem. Mater. 28(22), 8132–8140 (2016). https://doi.org/10.1021/acs.chemmater.6b01329
- Z. Tan, J. Li, C. Zhang, Z. Li, Q. Hu et al., Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv. Funct. Mater. 28(29), 1801131 (2018). https://doi.org/10.1002/adfm.201801131
- N. Sakai, A.A. Haghighirad, M.R. Filip, P.K. Nayak, S. Nayak et al., Solution-processed cesium hexabromopalladate(IV), Cs2PdBr 6, for optoelectronic applications. J. Am. Chem. Soc. 139(17), 6030–6033 (2017). https://doi.org/10.1021/jacs.6b13258
- L. Zhou, J.F. Liao, Z.G. Huang, X.D. Wang, Y.F. Xu, H.Y. Chen, D.B. Kuang, C.Y. Su, All-inorganic lead-free Cs2PdX6 (X=Br, I) perovskite nanocrystals with single unit cell thickness and high stability. ACS Energy Lett. 3(10), 2613–2619 (2018). https://doi.org/10.1021/acsenergylett.8b01770
- K.F. Guenther, The preparation of some alkali hexabromotitanates (IV). Inorg. Chem. 3(12), 1788–1789 (1964). https://doi.org/10.1021/ic50022a033
- M.G. Ju, M. Chen, Y. Zhou, H.F. Garces, J. Dai et al., Earth-abundant nontoxic titanium (IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications. ACS Energy Lett. 3(2), 297–304 (2018). https://doi.org/10.1021/acsenergylett.7b01167
- Z. Deng, F. Wei, S. Sun, G. Kieslich, A.K. Cheetham, P.D. Bristowe, Exploring the properties of lead-free hybrid double perovskites using a combined computational-experimental approach. J. Mater. Chem. A 4(31), 12025–12029 (2016). https://doi.org/10.1039/C6TA05817E
- F.X. Wei, Z.Y. Deng, S.J. Sun, F.H. Zhang, D.M. Evans et al., Synthesis and properties of a lead-free hybrid double perovskite: (CH3NH3)2AgBiBr 6. Chem. Mater. 29(3), 1089–1094 (2017). https://doi.org/10.1021/acs.chemmater.6b03944
- Y.J. Li, T. Wu, L. Sun, R.X. Yang, L. Jiang et al., Lead-free and stable antimony-silver-halide double perovskite (CH3NH3)2AgSbI6. RSC Adv. 7(56), 3517–35180 (2017). https://doi.org/10.1039/C7RA06130G
- P. Cheng, T. Wu, Y. Li, L. Jiang, W. Deng, K. Han, Combining theory and experiment in the design of a lead-free ((CH3NH3)2AgBiI6) double perovskite. New J. Chem. 41, 9598–9601 (2017). https://doi.org/10.1039/C7NJ02365K
- Z. Deng, F. Wei, F. Brivio, Y. Wu, S. Sun, P.D. Bristowe, A.K. Cheetham, Synthesis and characterization of the rare-earth hybrid double perovskites: (CH3NH3)2KGdCl6 and (CH3NH3)2KYCl6. J. Phys. Chem. Lett. 8(20), 5015–5020 (2017). https://doi.org/10.1021/acs.jpclett.7b02322
- T.T. Tran, M.A. Quintero, K.E. Arpino, Z.A. Kelly, J.R. Panella, X. Wang, T.M. McQueen, Chemically controlled crystal growth of (CH3NH3)2AgInBr 6. CrystEngComm 20, 5929–5934 (2018). https://doi.org/10.1039/C8CE00702K
- F. Funabiki, Y. Toda, H. Hosono, Optical and electrical properties of perovskite variant (CH3NH3)2SnI6. J. Phys. Chem. C 122(20), 10749 (2018). https://doi.org/10.1021/acs.jpcc.8b01820
- W. Meng, X. Wang, Z. Xiao, J. Wang, D.B. Mitzi, Y.J. Yan, Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J. Phys. Chem. Lett. 8(13), 2999–3007 (2017). https://doi.org/10.1021/acs.jpclett.7b01042
- L.Z. Lei, Z.F. Shi, Y. Li, Z.Z. Ma, F. Zhang et al., High-efficiency and air-stable photodetectors based on lead-free double perovskite Cs2AgBiBr 6 thin films. J. Mater. Chem. C 6(30), 7982–7988 (2018). https://doi.org/10.1039/C8TC02305K
- C. Wu, B. Du, W. Luo, Y. Liu, T. Li et al., Highly efficient and stable self-powered ultraviolet and deep-blue photodetector based on Cs2AgBiBr 6/SnO2 heterojunction. Adv. Optical Mater. (2018). https://doi.org/10.1002/adom.201800811
- H. Li, X. Shan, J.N. Neu, T. Geske, M. Davis, P. Mao, K. Xiao, T. Siegrist, Z. Yu, Lead-free halide double perovskite-polymer composites for flexible X-ray imaging. J. Mater. Chem. C 6, 11961–11967 (2018). https://doi.org/10.1039/C8TC01564C
- Q. Hu, Z. Deng, M. Hu, A. Zhao, Y. Zhang, Z. Tan, G. Niu, H. Wu, J. Tang, X-ray scintillation in lead-free double perovskite crystals. Sci. China Chem. 61, 1 (2018). https://doi.org/10.1007/s11426-018-9308-2
- J. Luo, X. Wang, S. Li, J. Liu, Y. Guo et al., Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 563, 541–545 (2018). https://doi.org/10.1038/s41586-018-0691-0
- F. Moser, S. Lyu, Luminescence in pure and I-doped AgBr crystals. J. Lumin. 3(6), 447–458 (1971). https://doi.org/10.1016/0022-2313(71)90025-1
- E. Greul, M.L. Petrus, A. Binek, P. Docampo, T. Bein, Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A 5(37), 19972–19981 (2017). https://doi.org/10.1039/C7TA06816F
- C. Wu, Q. Zhang, Y. Liu, W. Luo, X. Guo et al., The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. 5(3), 1700759 (2018). https://doi.org/10.1002/advs.201700759
- W. Gao, C. Ran, J. Xi, B. Jiao, W. Zhang, M. Wu, X. Hou, Z. Wu, Quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiency. ChemPhysChem 19(14), 1696–1700 (2018). https://doi.org/10.1002/cphc.201800346
- M. Pantaler, K.T. Cho, V.I.E. Queloz, I.G. Benito, C. Fettkenhauer et al., Hysteresis-free lead-free double perovskite solar cells by interface engineering. ACS Energy Lett. 3(8), 1781–1786 (2018). https://doi.org/10.1021/acsenergylett.8b00871
- M. Wang, P. Zeng, S. Bai, J. Gu, F. Li, Z. Yang, M. Liu, High-quality sequential-vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cells. Solar RRL (2018). https://doi.org/10.1002/solr.201800217
- X. Qiu, B. Cao, S. Yuan, X. Chen, Z. Qiu et al., room unstable CsSnI3 to air-stable Cs2SnI6: a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Sol. Energy Mater. Sol. Cells 159, 227–234 (2017). https://doi.org/10.1016/j.solmat.2016.09.022
- X. Qiu, Y. Jiang, H. Zhang, Z. Qiu, S. Yuan, P. Wang, B. Cao, Lead-free mesoscopic Cs2SnI6 perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers. Phys. Status Solidi (RRL) 10(8), 587–591 (2016). https://doi.org/10.1002/pssr.201600166
- B. Lee, A. Krenselewski, S.I. Baik, D.N. Seidman, R.P.H. Chang, Solution processing of air-stable molecular semiconducting iodosalts, Cs2SnI6-xBrx, for potential solar cell applications. Sustainable Energy Fuels 1(4), 710–724 (2017). https://doi.org/10.1039/C7SE00100B
- M. Chen, M.G. Ju, A.D. Carl, Y. Zong, R.L. Grimm et al., Cesium titanium (IV) bromide thin films based stable lead-free perovskite solar cells. Joule 2(3), 558–570 (2018). https://doi.org/10.1016/j.joule.2018.01.009
- Q.A. Akkerman, M. Gandini, F. Di Stasio, P. Rastogi, F. Palazon et al., Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy 2(2), 16194 (2016). https://doi.org/10.1038/nenergy.2016.194
- Z. Liu, B. Sun, X. Liu, J. Han, H. Ye, T. Shi, Z. Tang, G. Liao, Efficient carbon-based CsPbBr3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material. Nano-Micro Lett. 10(2), 34 (2018). https://doi.org/10.1007/s40820-018-0187-3
- Y. Chen, X. Wu, Y. Chu, J. Zhou, B. Zhou, J. Huang, Hybrid field-effect transistors and photodetectors based on organic semiconductor and CsPbI3 perovskite nanorods bilayer structure. Nano-Micro Lett. 10(4), 57 (2018). https://doi.org/10.1007/s40820-018-0210-8
References
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 6022–6025 (2012). https://doi.org/10.1038/srep00591
H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014). https://doi.org/10.1126/science.1254050
N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). https://doi.org/10.1038/nature14133
D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu et al., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360(6396), 1442 (2018). https://doi.org/10.1126/science.aap9282
National Renewable Energy Laboratory (NREL) (2018). https://www.nrel.gov/pv/assets/pdfs/pv-efficiencies-chart.20181214.pdf
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakumi, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Hertz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim et al., Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017). https://doi.org/10.1126/science.aan2301
S.D. Stranks, H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotech. 10(5), 391–402 (2015). https://doi.org/10.1038/nnano.2015.90
H. Cho, S.H. Jeong, M.H. Park, Y.H. Kim, C. Wolf, C.L. Lee et al., Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222–1225 (2015). https://doi.org/10.1126/science.aad1818
H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14(6), 636–642 (2015). https://doi.org/10.1038/nmat4271
F. Zhang, B. Yang, K. Zheng, S. Yang, Y. Li, W. Deng, R. He, Formamidinium lead bromide (FAPbBr3) perovskite microcrystals for sensitive and fast photodetectors. Nano-Micro Lett. 10(3), 43 (2018). https://doi.org/10.1007/s40820-018-0196-2
L. Chu, R. Hu, W. Liu, Y. Ma, R. Zhang, J. Yang, X. Li, Screen printing large-area organometal halide perovskite thin films for efficient photodetectors. Mater. Res. Bull. 98, 322 (2018). https://doi.org/10.1016/j.materresbull.2017.10.039
Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq et al., All-inorganic perovskite nanocrystal scintillators. Nature 561(7721), 88 (2018). https://doi.org/10.1038/s41586-018-0451-1
H. Luo, X. Lin, X. Hou, L. Pan, S. Huang, X. Chen, Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT:PSS hole transport layer. Nano-Micro Lett. 9(4), 39 (2017). https://doi.org/10.1007/s4082
Y. Yang, J. You, Make perovskite solar cells stable. Nature 544(7649), 155 (2017). https://doi.org/10.1038/544155a
M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 5557 (2016). https://doi.org/10.1126/science.aah5557
J.M. Ball, A. Petrozza, Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1(11), 16149 (2016). https://doi.org/10.1038/nenergy.2016.149
J. Cheng, H. Zhang, S. Zhang, D. Ouyang, Z. Huang, M.K. Nazeeruddin, J. Hou, W.C. Choy, Highly efficient planar perovskite solar cells achieved by simultaneous defect engineering and formation kinetic control. J. Mater. Chem. A 6(46), 23865 (2018). https://doi.org/10.1039/C8TA08819E
J.C. Hebig, I. Kühn, J. Flohre, T. Kirchartz, Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett. 1(1), 309–314 (2016). https://doi.org/10.1021/acsenergylett.6b00170
T. Singh, A. Kulkarni, M. Ikegami, T. Miyasaka, Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3Bi2I9 for photovoltaic applications. ACS Appl. Mater. Interfaces. 8(23), 14542–14547 (2016). https://doi.org/10.1021/acsami.6b02843
J. You, L. Meng, T.B. Song, T.F. Guo, Y.M. Yang et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotech. 11(1), 75–81 (2016). https://doi.org/10.1038/nnano.2015.230
W. Liao, D. Zhao, Y. Yu, C.R. Grice, C. Wang et al., Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 28(42), 9333–9340 (2016). https://doi.org/10.1002/adma.201602992
H. Tsai, W. Nie, J.C. Blancon, C.C. Stoumpos, R. Asadpour et al., High-efficiency two-dimensional ruddlesden-popper perovskite solar cells. Nature 536(7616), 312–316 (2016). https://doi.org/10.1038/nature18306
F. Matteocci, L. Cinà, E. Lamanna, S. Cacovich, G. Divitini, P.A. Midgley, C. Ducati, A.D. Carlo, Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy 30, 162–172 (2016). https://doi.org/10.1016/j.nanoen.2016.09.041
G. Flora, D. Gupta, A. Tiwari, Toxicity of lead: a review with recent updates. Interdiscip. Toxicol. 5(2), 47–58 (2012). https://doi.org/10.2478/v10102-012-0009-2
L. Liang, P. Gao, Lead-free hybrid perovskite absorbers for viable application: can we eat the cake and have it too. Adv. Sci. 5(2), 1700331 (2018). https://doi.org/10.1002/advs.201700331
F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis, Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136(22), 8094–8099 (2014). https://doi.org/10.1021/ja5033259
T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie et al., Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3(47), 23829–23832 (2015). https://doi.org/10.1039/C5TA05741H
H. Wang, H. Zhang, C.C. Chueh, T. Zhao, C. Mao, W. Chen, A.K.Y. Jenac, Enhanced crystallization and performance of formamidinium lead triiodide perovskite solar cells through PbI2-SrCl2 modulation. Mater. Today Energy 7, 239 (2018). https://doi.org/10.1016/j.mtener.2017.10.002
M.T. Klug, A. Osherov, A.A. Haghighirad, S.D. Stranks, P.R. Brown et al., Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy Environ. Sci. 10(1), 236 (2017). https://doi.org/10.1039/C6EE03201J
J. Jin, H. Li, C. Chen, B. Zhang, L. Xu, B. Dong, H. Song, Q. Dai, Enhanced performance of perovskite solar cells with zinc chloride additives. ACS Appl. Mater. Interfaces. 9(49), 42875–42882 (2017). https://doi.org/10.1021/acsami.7b15310
Q. Chen, L. Chen, F.Y. Ye, T. Zhao, F. Tang et al., Ag-incorporated organic-inorganic perovskite films and planar heterojunction solar cells. Nano Lett. 17(5), 3231–3237 (2017). https://doi.org/10.1021/acs.nanolett.7b00847
J. Zhang, M. Shang, P. Wang, X. Huang, J. Xu, Z. Hu, Y. Zhu, L. Han, n-Type doping and energy states tuning in CH3NH3Pb1–xSb2x/3I3 perovskite solar cells. ACS Energy Lett. 1(3), 535–541 (2016). https://doi.org/10.1021/acsenergylett.6b00241
Y. Hu, T. Qiu, F. Bai, X. Miao, S. Zhang, Enhancing moisture-tolerance and photovoltaic performances of FAPbI3 by bismuth incorporation. J. Mater. Chem. A 5(48), 25258–25265 (2017). https://doi.org/10.1039/C7TA08824H
F. Wei, Z. Deng, S. Sun, F. Xie, G. Kieslich, D.M. Evans, M.A. Carpenter, P.D. Bristowe, A.K. Cheetham, The synthesis, structure and electronic properties of a lead-free hybrid inorganic-organic double perovskite (MA)2KBiCl6 (MA = methylammonium). Mater. Horiz. 3(4), 328–332 (2016). https://doi.org/10.1039/C6MH00053C
P.D. Matthews, D.J. Lewis, P. O’Brien, Updating the road map to metal-halide perovskites for photovoltaics. J. Mater. Chem. A 5(33), 17135–17150 (2017). https://doi.org/10.1039/C7TA04544A
F. Giustino, H.J. Snaith, Toward lead-free perovskite solar cells. ACS Energy Lett. 1(6), 1233–1240 (2016). https://doi.org/10.1021/acsenergylett.6b00499
K.W. Bagnall, J.B. Laidler, M.A.A. Stewart, Americium chloro-complexes. J. Chem. Soc. A 0, 133–136 (1968). https://doi.org/10.1039/J19680000133
L.R. Morss, J. Fuger, Preparation and crystal structures of dicesium berkelium hexachloride and dicesium sodium berkelium hexachloride. Inorg. Chem. 8(7), 1433–1439 (1969). https://doi.org/10.1021/ic50077a013
L.R. Morss, M. Siegal, L. Stenger, N. Edelstein, Preparation of cubic chloro complex compounds of trivalent metals: Cs2NaMCl6. Inorg. Chem. 9(7), 1771–1775 (1970). https://doi.org/10.1021/ic50089a034
L.R. Morrs, W.R. Robinson, Crystal structure of Cs2NaBiCl6. Acta Crystallogr. B 28(2), 653–654 (1972). https://doi.org/10.1107/S0567740872002948
F. Prokert, K.S. Aleksandrov, Neutron scattering studies on phase transition and phonon dispersion in Cs2NaBiCl6. Phys. Status Solidi B 124(2), 503 (1984). https://doi.org/10.1002/pssb.2221240208
W.M.A. Smit, G.J. Dirksen, D.J. Stufkens, Infrared and Raman spectra of the elpasolites Cs2NaSbCl6 and Cs2NaBiCl6: evidence for a pseudo Jahn-Teller distorted ground state. J. Phys. Chem. Solids 51(2), 189–196 (1990). https://doi.org/10.1016/0022-3697(90)90092-T
I.N. Flerov, M.V. Gorev, K.S. Aleksandrov, A. Tressaud, J. Grannec, M. Couzi, Phase transitions in elpasolites (ordered perovskites). Mater. Sci. Eng. 24(3), 81–151 (1998). https://doi.org/10.1016/S0927-796X(98)00015-1
E.T. McClure, M.R. Ball, W. Windl, P.M. Woodward, Cs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28(5), 1348–1354 (2016). https://doi.org/10.1021/acs.chemmater.5b04231
G. Volonakis, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger, H.J. Snaith, F. Giustino, Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 7(7), 1254–1259 (2016). https://doi.org/10.1021/acs.jpclett.6b00376
Y. Bekenstein, J.C. Dahl, J. Huang, W.T. Osowiecki, J.K. Swabeck, E.M. Chan, P. Yang, A.P. Alivisatos, The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions. Nano Lett. 18(6), 3502 (2018). https://doi.org/10.1021/acs.nanolett.8b00560
S.E. Creutz, E.N. Crites, M.C. De Siena, D.R. Gamelin, Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: synthesis and anion exchange to access new materials. Nano Lett. 18(2), 1118 (2018). https://doi.org/10.1021/acs.nanolett.7b04659
A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic application. J. Am. Chem. Soc. 138(7), 2138–2141 (2016). https://doi.org/10.1021/jacs.5b13294
Y. Bi, E.M. Hutter, Y. Fang, Q. Dong, J. Huang, T.J. Savenije, Charge carrier lifetimes exceeding 15 μs in methylammonium lead iodide single crystals. J. Phys. Chem. Lett. 7(5), 923–928 (2016). https://doi.org/10.1021/acs.jpclett.6b00269
W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge et al., Cs2AgBiBr 6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 11(11), 726–732 (2017). https://doi.org/10.1038/s41566-017-0012-4
R.L.Z. Hoye, L. Eyre, F. Wei, F. Brivio, A. Sadhanala et al., Fundamental carrier lifetime exceeding 1 µs in Cs2AgBiBr 6 double perovskite. Adv. Mater. Interfaces 5(15), 1800464 (2018). https://doi.org/10.1002/admi.201800464
L. Zhou, Y.F. Xu, B.X. Chen, D.B. Kuang, C.Y. Su, Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr 6 perovskite nanocrystals. Small 14(11), 1703762 (2018). https://doi.org/10.1002/smll.201703762
A.H. Slavney, L. Leppert, D. Bartesaghi, A. Gold-Parker, M.F. Toney, T.J. Savenije, J.B. Neaton, H.I. Karunadasa, Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption. J. Am. Chem. Soc. 139(14), 5015–5018 (2017). https://doi.org/10.1021/jacs.7b01629
K.Z. Du, W. Meng, X. Wang, Y. Yan, D.B. Mitzi, Bandgap engineering of lead-free double perovskite Cs2AgBiBr 6 through trivalent metal alloying. Angew. Chem. Int. Ed. 56(28), 8158–8274 (2017). https://doi.org/10.1002/anie.201703970
T.T. Tran, J.R. Panella, J.R. Chamorro, J.R. Morey, T.M. McQueen, Designing indirect-direct bandgap transitions in double perovskites. Mater. Horiz. 4(4), 688–693 (2017). https://doi.org/10.1039/C7MH00239D
G. Volonakis, A.A. Haghighirad, R.L. Milot, W.H. Sio, M.R. Filip et al., Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 8(4), 772–778 (2017). https://doi.org/10.1021/acs.jpclett.6b02682
J. Luo, S. Li, H. Wu, Y. Zhou, Y. Li et al., Cs2AgInCl6 double perovskite single crystals: parity forbidden transitions and their application for sensitive and fast UV photodetectors. ACS Photonics 5(2), 398–405 (2017). https://doi.org/10.1021/acsphotonics.7b00837
N. Nandha, A. Nag, Synthesis and luminescence of Mn-doped Cs2AgInCl6 double perovskites. Chem. Comm. 54(41), 5205–5208 (2018). https://doi.org/10.1039/C8CC01982G
K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 127(9–10), 619–623 (2003). https://doi.org/10.1016/S0038-1098(03)00566-0
C. Zhang, L. Gao, S. Teo, Z. Guo, Z. Xu, S. Zhao, T. Ma, Design of a novel and highly stable lead-free Cs2NaBiI6 double perovskite for photovoltaic application. Sustainable Energy Fuels 2(11), 2419 (2018). https://doi.org/10.1039/C8SE00154E
X.G. Zhao, J.H. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S.H. Wei, L. Zhang, Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139(7), 2630–2638 (2017). https://doi.org/10.1021/jacs.6b09645
T. Li, X. Zhao, D. Yang, M.H. Du, L. Zhang, Intrinsic defect properties in halide double perovskites for optoelectronic applications. Phys. Rev. Appl. 10(4), 41001 (2018). https://doi.org/10.1103/PhysRevApplied.10.041001
X.G. Zhao, D. Yang, J.C. Ren, Y. Sun, Z. Xiao, L. Zhang, Rational design of halide double perovskites for optoelectronic applications. Joule 2(9), 1662 (2018). https://doi.org/10.1016/j.joule.2018.06.017
Q. Xu, D. Yang, J. Lv, Y.Y. Sun, L. Zhang, Perovskite solar absorbers: materials by design. Small Methods 2(5), 1700316 (2018). https://doi.org/10.1002/smtd.201700316
X.G. Zhao, D. Yang, Y. Sun, T. Li, L. Zhang, L. Yu, A. Zunger, Cu-In halide perovskite solar absorbers. J. Am. Chem. Soc. 139(19), 6718–6725 (2017). https://doi.org/10.1021/jacs.7b02120
Z.W. Xiao, K.Z. Du, W.W. Meng, J.B. Wang, D.B. Mitzi, Y.F. Yan, Intrinsic instability of Cs2In(I)M(III)X6 (M=Bi, Sb; X=Halogen) double perovskites: a combined density functional theory and experimental study. J. Am. Chem. Soc. 139(17), 6054–6057 (2017). https://doi.org/10.1021/jacs.7b02227
M.G. Brik, I.V. Kityk, Modeling of lattice constant and their relations with ionic radii and electronegativity of constituting ions of A2XY6 cubic crystals (A=K, Cs, Rb, Tl; X=tetravalent cation, Y=F, Cl, Br, I). J. Phys. Chem. Solids 72(11), 1256–1260 (2011). https://doi.org/10.1016/j.jpcs.2011.07.016
A.E. Maughan, A.M. Ganose, M.M. Bordelon, E.M. Miller, D.O. Scanlon, J.R. Neilson, Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. J. Am. Chem. Soc. 138(27), 8453–8464 (2016). https://doi.org/10.1021/jacs.6b03207
A.E. Maughan, A.M. Ganose, A.M. Candia, J.T. Granger, D.O. Scanlon, J.R. Neilson, Anharmonicity and octahedral tilting in hybrid vacancy-ordered double perovskites. Chem. Mater. 30(2), 472–482 (2018). https://doi.org/10.1021/acs.chemmater.7b04516
B. Lee, C.C. Stoumpos, N. Zhou, F. Hao, C. Malliakas, C.Y. Yeh, T.J. Marks, M.G. Kanatzidis, R.P.H. Chang, Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. J. Am. Chem. Soc. 136(43), 15379–15385 (2014). https://doi.org/10.1021/ja508464w
S. Ghosh, S. Paul, S.K. De, Control synthesis of air-stable morphology tunable Pb-free Cs2SnI6 perovskite nanoparticles and their photodetection properties. Part. Part. Syst. Char. 35(9), 1800199 (2018). https://doi.org/10.1002/ppsc.201800199
A. Wang, X. Yan, M. Zhang, S. Sun, M. Yang, W. Shen, X. Pan, P. Wang, Z. Deng, Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process. Chem. Mater. 28(22), 8132–8140 (2016). https://doi.org/10.1021/acs.chemmater.6b01329
Z. Tan, J. Li, C. Zhang, Z. Li, Q. Hu et al., Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv. Funct. Mater. 28(29), 1801131 (2018). https://doi.org/10.1002/adfm.201801131
N. Sakai, A.A. Haghighirad, M.R. Filip, P.K. Nayak, S. Nayak et al., Solution-processed cesium hexabromopalladate(IV), Cs2PdBr 6, for optoelectronic applications. J. Am. Chem. Soc. 139(17), 6030–6033 (2017). https://doi.org/10.1021/jacs.6b13258
L. Zhou, J.F. Liao, Z.G. Huang, X.D. Wang, Y.F. Xu, H.Y. Chen, D.B. Kuang, C.Y. Su, All-inorganic lead-free Cs2PdX6 (X=Br, I) perovskite nanocrystals with single unit cell thickness and high stability. ACS Energy Lett. 3(10), 2613–2619 (2018). https://doi.org/10.1021/acsenergylett.8b01770
K.F. Guenther, The preparation of some alkali hexabromotitanates (IV). Inorg. Chem. 3(12), 1788–1789 (1964). https://doi.org/10.1021/ic50022a033
M.G. Ju, M. Chen, Y. Zhou, H.F. Garces, J. Dai et al., Earth-abundant nontoxic titanium (IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications. ACS Energy Lett. 3(2), 297–304 (2018). https://doi.org/10.1021/acsenergylett.7b01167
Z. Deng, F. Wei, S. Sun, G. Kieslich, A.K. Cheetham, P.D. Bristowe, Exploring the properties of lead-free hybrid double perovskites using a combined computational-experimental approach. J. Mater. Chem. A 4(31), 12025–12029 (2016). https://doi.org/10.1039/C6TA05817E
F.X. Wei, Z.Y. Deng, S.J. Sun, F.H. Zhang, D.M. Evans et al., Synthesis and properties of a lead-free hybrid double perovskite: (CH3NH3)2AgBiBr 6. Chem. Mater. 29(3), 1089–1094 (2017). https://doi.org/10.1021/acs.chemmater.6b03944
Y.J. Li, T. Wu, L. Sun, R.X. Yang, L. Jiang et al., Lead-free and stable antimony-silver-halide double perovskite (CH3NH3)2AgSbI6. RSC Adv. 7(56), 3517–35180 (2017). https://doi.org/10.1039/C7RA06130G
P. Cheng, T. Wu, Y. Li, L. Jiang, W. Deng, K. Han, Combining theory and experiment in the design of a lead-free ((CH3NH3)2AgBiI6) double perovskite. New J. Chem. 41, 9598–9601 (2017). https://doi.org/10.1039/C7NJ02365K
Z. Deng, F. Wei, F. Brivio, Y. Wu, S. Sun, P.D. Bristowe, A.K. Cheetham, Synthesis and characterization of the rare-earth hybrid double perovskites: (CH3NH3)2KGdCl6 and (CH3NH3)2KYCl6. J. Phys. Chem. Lett. 8(20), 5015–5020 (2017). https://doi.org/10.1021/acs.jpclett.7b02322
T.T. Tran, M.A. Quintero, K.E. Arpino, Z.A. Kelly, J.R. Panella, X. Wang, T.M. McQueen, Chemically controlled crystal growth of (CH3NH3)2AgInBr 6. CrystEngComm 20, 5929–5934 (2018). https://doi.org/10.1039/C8CE00702K
F. Funabiki, Y. Toda, H. Hosono, Optical and electrical properties of perovskite variant (CH3NH3)2SnI6. J. Phys. Chem. C 122(20), 10749 (2018). https://doi.org/10.1021/acs.jpcc.8b01820
W. Meng, X. Wang, Z. Xiao, J. Wang, D.B. Mitzi, Y.J. Yan, Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J. Phys. Chem. Lett. 8(13), 2999–3007 (2017). https://doi.org/10.1021/acs.jpclett.7b01042
L.Z. Lei, Z.F. Shi, Y. Li, Z.Z. Ma, F. Zhang et al., High-efficiency and air-stable photodetectors based on lead-free double perovskite Cs2AgBiBr 6 thin films. J. Mater. Chem. C 6(30), 7982–7988 (2018). https://doi.org/10.1039/C8TC02305K
C. Wu, B. Du, W. Luo, Y. Liu, T. Li et al., Highly efficient and stable self-powered ultraviolet and deep-blue photodetector based on Cs2AgBiBr 6/SnO2 heterojunction. Adv. Optical Mater. (2018). https://doi.org/10.1002/adom.201800811
H. Li, X. Shan, J.N. Neu, T. Geske, M. Davis, P. Mao, K. Xiao, T. Siegrist, Z. Yu, Lead-free halide double perovskite-polymer composites for flexible X-ray imaging. J. Mater. Chem. C 6, 11961–11967 (2018). https://doi.org/10.1039/C8TC01564C
Q. Hu, Z. Deng, M. Hu, A. Zhao, Y. Zhang, Z. Tan, G. Niu, H. Wu, J. Tang, X-ray scintillation in lead-free double perovskite crystals. Sci. China Chem. 61, 1 (2018). https://doi.org/10.1007/s11426-018-9308-2
J. Luo, X. Wang, S. Li, J. Liu, Y. Guo et al., Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 563, 541–545 (2018). https://doi.org/10.1038/s41586-018-0691-0
F. Moser, S. Lyu, Luminescence in pure and I-doped AgBr crystals. J. Lumin. 3(6), 447–458 (1971). https://doi.org/10.1016/0022-2313(71)90025-1
E. Greul, M.L. Petrus, A. Binek, P. Docampo, T. Bein, Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A 5(37), 19972–19981 (2017). https://doi.org/10.1039/C7TA06816F
C. Wu, Q. Zhang, Y. Liu, W. Luo, X. Guo et al., The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. 5(3), 1700759 (2018). https://doi.org/10.1002/advs.201700759
W. Gao, C. Ran, J. Xi, B. Jiao, W. Zhang, M. Wu, X. Hou, Z. Wu, Quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiency. ChemPhysChem 19(14), 1696–1700 (2018). https://doi.org/10.1002/cphc.201800346
M. Pantaler, K.T. Cho, V.I.E. Queloz, I.G. Benito, C. Fettkenhauer et al., Hysteresis-free lead-free double perovskite solar cells by interface engineering. ACS Energy Lett. 3(8), 1781–1786 (2018). https://doi.org/10.1021/acsenergylett.8b00871
M. Wang, P. Zeng, S. Bai, J. Gu, F. Li, Z. Yang, M. Liu, High-quality sequential-vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cells. Solar RRL (2018). https://doi.org/10.1002/solr.201800217
X. Qiu, B. Cao, S. Yuan, X. Chen, Z. Qiu et al., room unstable CsSnI3 to air-stable Cs2SnI6: a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Sol. Energy Mater. Sol. Cells 159, 227–234 (2017). https://doi.org/10.1016/j.solmat.2016.09.022
X. Qiu, Y. Jiang, H. Zhang, Z. Qiu, S. Yuan, P. Wang, B. Cao, Lead-free mesoscopic Cs2SnI6 perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers. Phys. Status Solidi (RRL) 10(8), 587–591 (2016). https://doi.org/10.1002/pssr.201600166
B. Lee, A. Krenselewski, S.I. Baik, D.N. Seidman, R.P.H. Chang, Solution processing of air-stable molecular semiconducting iodosalts, Cs2SnI6-xBrx, for potential solar cell applications. Sustainable Energy Fuels 1(4), 710–724 (2017). https://doi.org/10.1039/C7SE00100B
M. Chen, M.G. Ju, A.D. Carl, Y. Zong, R.L. Grimm et al., Cesium titanium (IV) bromide thin films based stable lead-free perovskite solar cells. Joule 2(3), 558–570 (2018). https://doi.org/10.1016/j.joule.2018.01.009
Q.A. Akkerman, M. Gandini, F. Di Stasio, P. Rastogi, F. Palazon et al., Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy 2(2), 16194 (2016). https://doi.org/10.1038/nenergy.2016.194
Z. Liu, B. Sun, X. Liu, J. Han, H. Ye, T. Shi, Z. Tang, G. Liao, Efficient carbon-based CsPbBr3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material. Nano-Micro Lett. 10(2), 34 (2018). https://doi.org/10.1007/s40820-018-0187-3
Y. Chen, X. Wu, Y. Chu, J. Zhou, B. Zhou, J. Huang, Hybrid field-effect transistors and photodetectors based on organic semiconductor and CsPbI3 perovskite nanorods bilayer structure. Nano-Micro Lett. 10(4), 57 (2018). https://doi.org/10.1007/s40820-018-0210-8