Fuel-Powered Soft Actuators: Emerging Strategies for Autonomous and Miniaturized Robots
Corresponding Author: Xinghao Hu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 129
Abstract
Soft actuators, capable of producing mechanical work in response to external stimuli, have potential applications in robotics and exoskeletons. However, they face major challenges related to energy supply, especially in long-distance and miniaturized environments. Fuel-driven actuators offer a promising solution by enabling the conversion of chemical energy into mechanical energy, supporting self-sustaining operations. Chemical energy from fuel can be converted into mechanical energy either directly or indirectly through methods such as electron transfer-induced charge injection, structural changes, fuel-to-electricity conversion, fuel combustion-induced heat, or fuel-induced pneumatic actuation. This paper provides a comprehensive review of recent developments in fuel-powered actuators, covering their fundamental principles, advancements, and challenges. It concludes with an outlook for miniaturized and autonomous robots, highlighting the great potential of integrating fuel-powered actuators.
Highlights:
1 Fuel-powered soft actuators are elucidated in terms of their high power densities, enabling robots to operate effectively in long-distance or miniaturized environments.
2 The working principles, applications, and potential future improvements of typical fuel-powered actuators are comprehensively reviewed and discussed
3 Existing challenges and the future pathways for fuel-powered soft robots are delineated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.A. York, R. Peña, D. Kent, R.J. Wood, Microrobotic laser steering for minimally invasive surgery. Sci. Robot. 6(50), eabd5476 (2021). https://doi.org/10.1126/scirobotics.abd5476
- G.G. Muscolo, P. Fiorini, Force–torque sensors for minimally invasive surgery robotic tools: an overview. IEEE Trans. Med. Robot. Bionics. 5(3), 458–471 (2023). https://doi.org/10.1109/TMRB.2023.3261102
- Y. Piskarev, Y. Sun, M. Righi, Q. Boehler, C. Chautems et al., Fast-response variable-stiffness magnetic catheters for minimally invasive surgery. Adv. Sci. 11(12), 2305537 (2024). https://doi.org/10.1002/advs.202305537
- M. Kalulu, B. Chilikwazi, J. Hu, G. Fu, Soft actuators and actuation: design, synthesis, and applications. Macromol. Rapid Commun. 46(7), e2400282 (2025). https://doi.org/10.1002/marc.202400282
- J. Yuan, W. Neri, C. Zakri, P. Merzeau, K. Kratz et al., Shape memory nanocomposite fibers for untethered high-energy microengines. Science 365(6449), 155–158 (2019). https://doi.org/10.1126/science.aaw3722
- M. Li, Y. Tang, R.H. Soon, B. Dong, W. Hu et al., Miniature coiled artificial muscle for wireless soft medical devices. Sci. Adv. 8(10), eabm5616 (2022). https://doi.org/10.1126/sciadv.abm5616
- P.T. Phan, T.T. Hoang, M.T. Thai, H. Low, N.H. Lovell et al., Twisting and braiding fluid-driven soft artificial muscle fibers for robotic applications. Soft Robot. 9(4), 820–836 (2022). https://doi.org/10.1089/soro.2021.0040
- Y. Chen, H. Zhao, J. Mao, P. Chirarattananon, E.F. Helbling et al., Controlled flight of a microrobot powered by soft artificial muscles. Nature 575(7782), 324–329 (2019). https://doi.org/10.1038/s41586-019-1737-7
- M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch, M. Sitti, Soft actuators for real-world applications. Nat. Rev. Mater. 7(3), 235–249 (2022). https://doi.org/10.1038/s41578-021-00389-7
- X. Hu, J. Jia, Y. Wang, X. Tang, S. Fang et al., Fast large-stroke sheath-driven electrothermal artificial muscles with high power densities. Adv. Funct. Mater. 32(30), 2200591 (2022). https://doi.org/10.1002/adfm.202200591
- X. Hu, J. Jiang, H. Wei, J. Chen, Z. Wang et al., Electroosmotic-driven coiled hydrogel-based yarn muscles. Chem. Eng. J. 507, 160398 (2025). https://doi.org/10.1016/j.cej.2025.160398
- P. Xue, Y. Chen, Y. Xu, C. Valenzuela, X. Zhang et al., Bioinspired MXene-based soft actuators exhibiting angle-independent structural color. Nano-Micro Lett. 15(1), 1 (2022). https://doi.org/10.1007/s40820-022-00977-4
- Y. Hu, Q. Ji, M. Huang, L. Chang, C. Zhang et al., Light-driven self-oscillating actuators with phototactic locomotion based on black phosphorus heterostructure. Angew. Chem. Int. Ed. 60(37), 20511–20517 (2021). https://doi.org/10.1002/anie.202108058
- K. Hou, D. Guan, H. Li, Y. Sun, Y. Long et al., Programmable light-driven swimming actuators via wavelength signal switching. Sci. Adv. 7(37), eabh3051 (2021). https://doi.org/10.1126/sciadv.abh3051
- W. Seo, J.A. Lee, G. Noh, Y.-C. Song, C. Kim et al., Reconfigurable fiber actuators with crystallized liquid crystal elastomer and carbon nanotube composites. Sensors Actuators B Chem. 442, 138107 (2025). https://doi.org/10.1016/j.snb.2025.138107
- C. Chen, P. Shi, Z. Liu, S. Duan, M. Si et al., Advancing physical intelligence for autonomous soft robots. Sci. Robot. 10(102), eads1292 (2025). https://doi.org/10.1126/scirobotics.ads1292
- C.S. Haines, M.D. Lima, N. Li, G.M. Spinks, J. Foroughi et al., Artificial muscles from fishing line and sewing thread. Science 343(6173), 868–872 (2014). https://doi.org/10.1126/science.1246906
- J. Mu, M. Jung de Andrade, S. Fang, X. Wang, E. Gao et al., Sheath-run artificial muscles. Science 365(6449), 150–155 (2019). https://doi.org/10.1126/science.aaw2403
- H. Chu, X. Hu, Z. Wang, J. Mu, N. Li et al., Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science 371(6528), 494–498 (2021). https://doi.org/10.1126/science.abc4538
- X. Yang, Y. Chen, F. Wang, S. Chen, Z. Cao et al., Bioinspired artificial phototaxis and phototropism enabled by photoresponsive smart materials. Mater. Today 87, 348–377 (2025). https://doi.org/10.1016/j.mattod.2025.05.004
- L. Zhang, Y. Dong, L. Li, Y. Shi, Y. Zhang et al., Concurrently boosting activity and stability of oxygen reduction reaction catalysts via judiciously crafting Fe-Mn dual atoms for fuel cells. Nano-Micro Lett. 17(1), 88 (2024). https://doi.org/10.1007/s40820-024-01580-5
- Y. Li, M.-S. Yao, Y. He, S. Du, Recent advances of electrocatalysts and electrodes for direct formic acid fuel cells: from nano to meter scale challenges. Nano-Micro Lett. 17(1), 148 (2025). https://doi.org/10.1007/s40820-025-01648-w
- S. Ma, P. Xue, C. Valenzuela, Y. Liu, Y. Chen et al., 4D-printed adaptive and programmable shape-morphing batteries. Adv. Mater. 37(30), e2505018 (2025). https://doi.org/10.1002/adma.202505018
- L. Yang, Y. Liu, R. Bi, Y. Chen, C. Valenzuela et al., Direct-ink-written shape-programmable micro-supercapacitors with electrothermal liquid crystal elastomers. Adv. Funct. Mater. 35(39), 2504979 (2025). https://doi.org/10.1002/adfm.202504979
- P. Xue, H.K. Bisoyi, Y. Chen, H. Zeng, J. Yang et al., Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. 60(7), 3390–3396 (2021). https://doi.org/10.1002/anie.202014533
- Y. Bar-Cohen, I.A. Anderson, Electroactive polymer (EAP) actuators: background review. Mech. Soft Mater. 1(1), 5 (2019). https://doi.org/10.1007/s42558-019-0005-1
- R. Shankar, T.K. Ghosh, R.J. Spontak, Electroactive nanostructured polymers as tunable actuators. Adv. Mater. 19(17), 2218–2223 (2007). https://doi.org/10.1002/adma.200602644
- P.W. Ruch, R. Kötz, A. Wokaun, Electrochemical characterization of single-walled carbon nanotubes for electrochemical double layer capacitors using non-aqueous electrolyte. Electrochim. Acta 54(19), 4451–4458 (2009). https://doi.org/10.1016/j.electacta.2009.03.022
- T. Trunzer, P. Fraga-García, M.A. Tschuschner, D. Voltmer, S. Berensmeier, The electrosorptive response of a carbon nanotube flow-through electrode in aqueous systems. Chem. Eng. J. 428, 131009 (2022). https://doi.org/10.1016/j.cej.2021.131009
- N.W. Bartlett, M.T. Tolley, J.T.B. Overvelde, J.C. Weaver, B. Mosadegh et al., A 3D-printed, functionally graded soft robot powered by combustion. Science 349(6244), 161–165 (2015). https://doi.org/10.1126/science.aab0129
- C.A. Aubin, R.H. Heisser, O. Peretz, J. Timko, J. Lo et al., Powerful, soft combustion actuators for insect-scale robots. Science 381(6663), 1212–1217 (2023). https://doi.org/10.1126/science.adg5067
- S. Sarikaya, F. Gardea, J.T. Auletta, J. Kavosi, A. Langrock et al., Athermal artificial muscles with drastically improved work capacity from pH-responsive coiled polymer fibers. Sensors Actuators B Chem. 335, 129703 (2021). https://doi.org/10.1016/j.snb.2021.129703
- W. Scaff, O. Horikawa, M. de Sales Guerra Tsuzuki, Pneumatic artificial muscle optimal control with simulated annealing. IFAC Pap. OnLine 51(27), 333–338 (2018). https://doi.org/10.1016/j.ifacol.2018.11.618
- F. Vitale, D. Accoto, L. Turchetti, S. Indini, M.C. Annesini et al., Low-temperature H2O2-powered actuators for biorobotics: thermodynamic and kinetic analysis. In: 2010 IEEE International Conference on Robotics and Automation, pp 2197–2202. IEEE, New York (2010).
- L. Yu, M. Cheng, M. Song, D. Zhang, M. Xiao et al., pH-responsive round-way motions of a smart device through integrating two types of chemical actuators in one smart system. Adv. Funct. Mater. 25(36), 5786–5793 (2015). https://doi.org/10.1002/adfm.201502447
- C.W.H. Rajawasam, D. Konkolewicz, C.S. Hartley, Autonomous changes in polymer materials driven by chemical fuels. ChemSystemsChem 7(4), e202400090 (2025). https://doi.org/10.1002/syst.202400090
- M. Villeda-Hernandez, B.C. Baker, C. Romero, J.M. Rossiter, C.F. Faul, Soft alchemy: a comprehensive guide to chemical reactions for pneumatic soft actuation. Soft Sci. 4(2), 14 (2024). https://doi.org/10.20517/ss.2023.52
- R.L. Truby, S. Li, Integrating chemical fuels and artificial muscles for untethered microrobots. Sci. Robot. 5(45), eabd7338 (2020). https://doi.org/10.1126/scirobotics.abd7338
- C.J. Barclay, N.A. Curtin, Advances in understanding the energetics of muscle contraction. J. Biomech. 156, 111669 (2023). https://doi.org/10.1016/j.jbiomech.2023.111669
- D.F. Cain, A.A. Infante, R.E. Davies, Chemistry of muscle contraction: adenosine triphosphate and phosphorylcreatine as energy supplies for single contractions of working muscle. Nature 196(4851), 214–217 (1962). https://doi.org/10.1038/196214a0
- J. Xiang, M. Dabbour, X. Gao, B.K. Mintah, Y. Yang et al., Influence of low-intensity ultrasound on ε-polylysine production: intracellular ATP and key biosynthesis enzymes during Streptomyces albulus fermentation. Foods 11(21), 3525 (2022). https://doi.org/10.3390/foods11213525
- X. Leng, G. Mei, G. Zhang, Z. Liu, X. Zhou, Tethering of twisted-fiber artificial muscles. Chem. Soc. Rev. 52(7), 2377–2390 (2023). https://doi.org/10.1039/d2cs00489e
- D. Pang, M. Alhabeb, X. Mu, Y. Dall’Agnese, Y. Gogotsi et al., Electrochemical actuators based on two-dimensional Ti3C2Tx (MXene). Nano Lett. 19(10), 7443–7448 (2019). https://doi.org/10.1021/acs.nanolett.9b03147.s004
- S. Umrao, R. Tabassian, J. Kim, V.H. Nguyen, Q. Zhou et al., MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 4(33), eaaw7797 (2019). https://doi.org/10.1126/scirobotics.aaw7797
- S. Sarikaya, F. Gardea, J.T. Auletta, A. Langrock, H. Kim et al., Fuel-driven redox reactions in electrolyte-free polymer actuators for soft robotics. ACS Appl. Mater. Interfaces 15(26), 31803–31811 (2023). https://doi.org/10.1021/acsami.3c04883
- H. Hu, S. Zhang, M. Zhang, J. Xu, T. Salim et al., Artificial muscles based on coiled conductive polymer yarns. Adv. Funct. Mater. 34(33), 2401685 (2024). https://doi.org/10.1002/adfm.202401685
- T. Lang, L. Yang, S. Yang, N. Sheng, Y. Zhang et al., Emerging innovations in electrically powered artificial muscle fibers. Natl. Sci. Rev. 11(10), nwae232 (2024). https://doi.org/10.1093/nsr/nwae232
- W. Lubitz, W. Tumas, Hydrogen: an overview. Chem. Rev. 107(10), 3900–3903 (2007). https://doi.org/10.1021/cr050200z
- F.M.N.U. Khan, M.G. Rasul, A.S.M. Sayem, N. Mandal, Maximizing energy density of lithium-ion batteries for electric vehicles: a critical review. Energy Rep. 9, 11–21 (2023). https://doi.org/10.1016/j.egyr.2023.08.069
- J. Xie, Y.-C. Lu, A retrospective on lithium-ion batteries. Nat. Commun. 11, 2499 (2020). https://doi.org/10.1038/s41467-020-16259-9
- J. Di, X. Zhang, Z. Yong, Y. Zhang, D. Li, Ru. Li, Q. Li, Carbon-nanotube fibers for wearable devices and smart textiles. Adv. Mater. 28(47), 10529–10538 (2016). https://doi.org/10.1002/adma.201601186
- X. Hu, X. Bao, M. Zhang, S. Fang, K. Liu et al., Recent advances in carbon nanotube-based energy harvesting technologies. Adv. Mater. 35(49), e2303035 (2023). https://doi.org/10.1002/adma.202303035
- K. Wu, B. Wang, Y. Niu, W. Wang, C. Wu et al., Carbon nanotube fibers with excellent mechanical and electrical properties by structural realigning and densification. Nano Res. 16(11), 12762–12771 (2023). https://doi.org/10.1007/s12274-023-6157-1
- V.H. Ebron, Z. Yang, D.J. Seyer, M.E. Kozlov, J. Oh et al., Fuel-powered artificial muscles. Science 311(5767), 1580–1583 (2006). https://doi.org/10.1126/science.1120182
- L. Dong, M. Ren, Y. Wang, G. Wang, S. Zhang et al., Artificial neuromuscular fibers by multilayered coaxial integration with dynamic adaption. Sci. Adv. 8(46), eabq7703 (2022). https://doi.org/10.1126/sciadv.abq7703
- X. Hu, X. Wang, J. Wang, G. Zhang, S. Fang et al., Fast, variable stiffness-induced braided coiled artificial muscles. Proc. Natl. Acad. Sci. U. S. A. 121(41), e2412288121 (2024). https://doi.org/10.1073/pnas.2412288121
- Y. Chen, C. Valenzuela, Y. Liu, X. Yang, Y. Yang et al., Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback. Matter 8(2), 101904 (2025). https://doi.org/10.1016/j.matt.2024.10.022
- X. Zhou, M. Li, X. Cao, X. Dong, S. Fang et al., Direct catalysis-driven yarn artificial muscles: chemically induced actuation. Adv. Funct. Mater. 34(51), 2409634 (2024). https://doi.org/10.1002/adfm.202409634
- A.B. Ortega-Santos, J.G. Martínez, E.W.H. Jager, Synchronous cation-driven and anion-driven polypyrrole-based yarns toward in-air linear actuators. Chem. Mater. 36(19), 9391–9405 (2024). https://doi.org/10.1021/acs.chemmater.4c00873
- Z. Huang, C. Li, Y. Zhang, T. Pang, Z. Sun et al., Ionic conductive elastomers with enhanced mechanical properties and applications in triboelectric nanogenerators. ACS Appl. Polym. Mater. 7(11), 7294–7302 (2025). https://doi.org/10.1021/acsapm.5c00868
- S. Aziz, J.G. Martinez, B. Salahuddin, N.-K. Persson, E.W.H. Jager, Fast and high-strain electrochemically driven yarn actuators in twisted and coiled configurations. Adv. Funct. Mater. 31(10), 2008959 (2021). https://doi.org/10.1002/adfm.202008959
- F. Hik, E. Taatizadeh, S.E. Takalloo, J.D.W. Madden, Fast electrochemical response of PEDOT: PSS electrodes through large combined increases to ionic and electronic conductivities. Electrochim. Acta 468, 143136 (2023). https://doi.org/10.1016/j.electacta.2023.143136
- A. Maziz, A. Concas, A. Khaldi, J. Stålhand, N.-K. Persson et al., Knitting and weaving artificial muscles. Sci. Adv. 3, e1600327 (2017). https://doi.org/10.1126/sciadv.1600327
- M. Brinker, G. Dittrich, C. Richert, P. Lakner, T. Krekeler et al., Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material. Sci. Adv. 6(40), eaba1483 (2020). https://doi.org/10.1126/sciadv.aba1483
- C. Küttel, A. Stemmer, X. Wei, Strain response of polypyrrole actuators induced by redox agents in solution. Sens. Actuators, B Chem. 141(2), 478–484 (2009). https://doi.org/10.1016/j.snb.2009.06.044
- F. Mashayekhi Mazar, J.G. Martinez, M. Tyagi, M. Alijanianzadeh, A.P.F. Turner et al., Artificial muscles powered by glucose. Adv. Mater. 31(32), 1901677 (2019). https://doi.org/10.1002/adma.201901677
- G. Strack, V. Bocharova, M.A. Arugula, M. Pita, J. Halámek et al., Artificial muscle reversibly controlled by enzyme reactions. J. Phys. Chem. Lett. 1(5), 839–843 (2010). https://doi.org/10.1021/jz100070u
- A.V. Abadia, K.M. Herbert, T.J. White, D.K. Schwartz, J.L. Kaar, Biocatalytic 3D actuation in liquid crystal elastomers via enzyme patterning. ACS Appl. Mater. Interfaces 14(23), 26480–26488 (2022). https://doi.org/10.1021/acsami.2c05802
- A. Zebda, C. Gondran, A. Le Goff, M. Holzinger, P. Cinquin et al., Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat. Commun. 2, 370 (2011). https://doi.org/10.1038/ncomms1365
- C.H. Kwon, S.-H. Lee, Y.-B. Choi, J.A. Lee, S.H. Kim et al., High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns. Nat. Commun. 5, 3928 (2014). https://doi.org/10.1038/ncomms4928
- S. Arnaboldi, G. Salinas, S. Bichon, S. Gounel, N. Mano et al., Bi-enzymatic chemo-mechanical feedback loop for continuous self-sustained actuation of conducting polymers. Nat. Commun. 14, 6390 (2023). https://doi.org/10.1038/s41467-023-42153-1
- M.-S. Kim, J.-K. Heo, H. Rodrigue, H.-T. Lee, S. Pané et al., Shape memory alloy (SMA) actuators: the role of material, form, and scaling effects. Adv. Mater. 35(33), 2208517 (2023). https://doi.org/10.1002/adma.202208517
- Z. Wang, Z. Wang, Y. Zheng, Q. He, Y. Wang et al., Three-dimensional printing of functionally graded liquid crystal elastomer. Sci. Adv. 6(39), eabc0034 (2020). https://doi.org/10.1126/sciadv.abc0034
- Q. He, Z. Wang, Y. Wang, Z. Wang, C. Li et al., Electrospun liquid crystal elastomer microfiber actuator. Sci. Robot. 6(57), eabi9704 (2021). https://doi.org/10.1126/scirobotics.abi9704
- A. Kotikian, J.M. Morales, A. Lu, J. Mueller, Z.S. Davidson et al., Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Adv. Mater. 33(27), e2101814 (2021). https://doi.org/10.1002/adma.202101814
- W. Liang, H. Liu, K. Wang, Z. Qian, L. Ren, Comparative study of robotic artificial actuators and biological muscle. Adv. Mech. Eng. 12(6), 1687814020933409 (2020). https://doi.org/10.1177/1687814020933409
- S.M. Mirvakili, I.W. Hunter, Artificial muscles: mechanisms, applications, and challenges. Adv. Mater. 30(6), 1704407 (2018). https://doi.org/10.1002/adma.201704407
- Y. Tadesse, A. Villanueva, C. Haines, D. Novitski, R. Baughman et al., Hydrogen-fuel-powered bell segments of biomimetic jellyfish. Smart Mater. Struct. 21(4), 045013 (2012). https://doi.org/10.1088/0964-1726/21/4/045013
- A. Villanueva, C. Smith, S. Priya, A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspir. Biomim. 6(3), 036004 (2011). https://doi.org/10.1088/1748-3182/6/3/036004
- J. Pi, J. Liu, K. Zhou, M. Qian, An octopus-inspired bionic flexible gripper for apple grasping. Agriculture 11(10), 1014 (2021). https://doi.org/10.3390/agriculture11101014
- X. Yang, L. Chang, N.O. Pérez-Arancibia, An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle. Sci. Robot. 5(45), eaba0015 (2020). https://doi.org/10.1126/scirobotics.aba0015
- Y. Shi, H. Janßen, W. Lehnert, A transient behavior study of polymer electrolyte fuel cells with cyclic current profiles. Energies 12(12), 2370 (2019). https://doi.org/10.3390/en12122370
- X.-T. Nguyen, A.A. Calderón, A. Rigo, J.Z. Ge, N.O. Pérez-Arancibia, Smallbug: a 30-mg crawling robot driven by a high-frequency flexible SMA microactuator. IEEE Robot. Autom. Lett. 5(4), 6796–6803 (2020). https://doi.org/10.1109/LRA.2020.3015457
- F. Maimani, A.A. Calderón, X. Yang, A. Rigo, J.Z. Ge et al., A 7-mg miniature catalytic-combustion engine for millimeter-scale robotic actuation. Sensors Actuators A Phys. 341, 112818 (2022). https://doi.org/10.1016/j.sna.2021.112818
- P. Nagwade, M. Kang, J. Park, J. Jeong, H. Shin et al., Development of a chemically driven biomimetic modular artificial muscle (BiMAM). Adv. Intell. Syst. 5(10), 2370048 (2023). https://doi.org/10.1002/aisy.202370048
- M. Sivaperuman Kalairaj, H. Banerjee, C.M. Lim, P.-Y. Chen, H. Ren, Hydrogel-matrix encapsulated Nitinol actuation with self-cooling mechanism. RSC Adv. 9(59), 34244–34255 (2019). https://doi.org/10.1039/c9ra05360c
- H.-T. Lee, F. Seichepine, G.-Z. Yang, Microtentacle actuators based on shape memory alloy smart soft composite. Adv. Funct. Mater. 30(34), 2002510 (2020). https://doi.org/10.1002/adfm.202002510
- J.-G. Lee, H. Rodrigue, Origami-based vacuum pneumatic artificial muscles with large contraction ratios. Soft Robot. 6(1), 109–117 (2019). https://doi.org/10.1089/soro.2018.0063
- S. Li, D.M. Vogt, D. Rus, R.J. Wood, Fluid-driven origami-inspired artificial muscles. Proc. Natl. Acad. Sci. U. S. A. 114(50), 13132–13137 (2017). https://doi.org/10.1073/pnas.1713450114
- J. Zhang, L. Liu, Y. Chen, M. Zhu, L. Tang et al., Fiber-reinforced soft polymeric manipulator with smart motion scaling and stiffness tunability. Cell Rep. Phys. Sci. 2(10), 100600 (2021). https://doi.org/10.1016/j.xcrp.2021.100600
- M. Feng, D. Yang, L. Ren, G. Wei, G. Gu, X-crossing pneumatic artificial muscles. Sci. Adv. 9(38), eadi7133 (2023). https://doi.org/10.1126/sciadv.adi7133
- N. Oh, Y.J. Park, S. Lee, H. Lee, H. Rodrigue, Design of paired pouch motors for robotic applications. Adv. Mater. Technol. 4(1), 1800414 (2019). https://doi.org/10.1002/admt.201800414
- D.R. Higueras-Ruiz, M.W. Shafer, H.P. Feigenbaum, Cavatappi artificial muscles from drawing, twisting, and coiling polymer tubes. Sci. Robot. 6(53), eabd5383 (2021). https://doi.org/10.1126/scirobotics.abd5383
- R. Niiyama, X. Sun, C. Sung, B. An, D. Rus et al., Pouch motors: printable soft actuators integrated with computational design. Soft Robot. 2(2), 59–70 (2015). https://doi.org/10.1089/soro.2014.0023
- S. Wu, J. Liu, X. Lei, S. Zhao, J. Lu et al., Research progress on efficient pollination technology of crops. Agronomy 12(11), 2872 (2022). https://doi.org/10.3390/agronomy12112872
- A. Wada, H. Nabae, T. Kitamori, K. Suzumori, Energy regenerative hose-free pneumatic actuator. Sens. Actuat. A Phys. 249, 1–7 (2016). https://doi.org/10.1016/j.sna.2016.07.004
- J. Shin, B. Jamil, H. Moon, J.C. Koo, H.R. Choi et al., Thermo-pneumatic artificial muscle: air-based thermo-pneumatic artificial muscles for pumpless pneumatic actuation. Soft Robot. 11(2), 187–197 (2024). https://doi.org/10.1089/soro.2022.0229
- M. Wehner, R.L. Truby, D.J. Fitzgerald, B. Mosadegh, G.M. Whitesides et al., An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617), 451–455 (2016). https://doi.org/10.1038/nature19100
- M. Loepfe, C.M. Schumacher, U.B. Lustenberger, W.J. Stark, An untethered, jumping roly-poly soft robot driven by combustion. Soft Robot. 2(1), 33–41 (2015). https://doi.org/10.1089/soro.2014.0021
- R.F. Shepherd, A.A. Stokes, J. Freake, J. Barber, P.W. Snyder et al., Using explosions to power a soft robot. Angew. Chem. Int. Ed. 52(10), 2892–2896 (2013). https://doi.org/10.1002/anie.201209540
- X. Ji, X. Liu, V. Cacucciolo, M. Imboden, Y. Civet et al., An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 4(37), eaaz6451 (2019). https://doi.org/10.1126/scirobotics.aaz6451
- Z. Ren, S. Kim, X. Ji, W. Zhu, F. Niroui et al., A high-lift micro-aerial-robot powered by low-voltage and long-endurance dielectric elastomer actuators. Adv. Mater. 34(7), 2106757 (2022). https://doi.org/10.1002/adma.202106757
- Z. Ma, D. Sameoto, A review of electrically driven soft actuators for soft robotics. Micromachines 13(11), 1881 (2022). https://doi.org/10.3390/mi13111881
- N.T. Jafferis, K. Jayaram, P.A. York, R.J. Wood, A streamlined fabrication process for high energy density piezoelectric bending actuators. Sens. Actuators, A Phys. 332, 113155 (2021). https://doi.org/10.1016/j.sna.2021.113155
- T.-Y. Liu, D.-D. Li, J. Ye, Q. Li, L. Sheng et al., An integrated soft jumping robotic module based on liquid metals. Adv. Eng. Mater. 23(12), 2100515 (2021). https://doi.org/10.1002/adem.202100515
- H. Zhou, S. Cao, S. Zhang, F. Li, N. Ma, Design of a fuel explosion-based chameleon-like soft robot aided by the comprehensive dynamic model. Cyborg. Bionic Syst. 4, 0010 (2023). https://doi.org/10.34133/cbsystems.0010
- R. Zakeri, R. Zakeri, Bio inspired general artificial muscle using hybrid of mixed electrolysis and fluids chemical reaction (HEFR). Sci. Rep. 12(1), 3627 (2022). https://doi.org/10.1038/s41598-022-07799-9
- M. Villeda-Hernandez, B.C. Baker, C. Romero, J.M. Rossiter, M.P.M. Dicker et al., Chemically driven oscillating soft pneumatic actuation. Soft Robot. 10(6), 1159–1170 (2023). https://doi.org/10.1089/soro.2022.0168
- T.M. Sutter, M.B. Dickerson, T.S. Creasy, R.S. Justice, Rubber muscle actuation with pressurized CO2 from enzyme-catalyzed urea hydrolysis. Smart Mater. Struct. 22(9), 094022 (2013). https://doi.org/10.1088/0964-1726/22/9/094022
- Y. Tian, D. Deng, L. Xu, M. Li, H. Chen et al., Strategies for sustainable production of hydrogen peroxide via oxygen reduction reaction: from catalyst design to device setup. Nano-Micro Lett. 15(1), 122 (2023). https://doi.org/10.1007/s40820-023-01067-9
- J. Ge, Y. Zhao, Y. Wang, H. Li, Electrochemical pneumatic battery for untethered robotics. Device 2(9), 100460 (2024). https://doi.org/10.1016/j.device.2024.100460
- M. Zadan, D.K. Patel, A.P. Sabelhaus, J. Liao, A. Wertz et al., Liquid crystal elastomer with integrated soft thermoelectrics for shape memory actuation and energy harvesting. Adv. Mater. 34(23), 2200857 (2022). https://doi.org/10.1002/adma.202200857
- Y. Qu, W. Tang, Y. Zhong, Q. Sheng, H. Xu et al., Programmable chemical reactions enable ultrastrong soft pneumatic actuation. Adv. Mater. 36(41), e2403954 (2024). https://doi.org/10.1002/adma.202403954
- Y. Zhong, W. Tang, H. Gui, Q. Sheng, H. Xu et al., Human camouflage and expression via soft mask from reprogrammable chemical fluid skin. Sci. Adv. 11(7), eadq6141 (2025). https://doi.org/10.1126/sciadv.adq6141
- D. Kagan, R. Laocharoensuk, M. Zimmerman, C. Clawson, S. Balasubramanian et al., Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small 6(23), 2741–2747 (2010). https://doi.org/10.1002/smll.201001257
- H. Wang, M. Pumera, Fabrication of micro/nanoscale motors. Chem. Rev. 115(16), 8704–8735 (2015). https://doi.org/10.1021/acs.chemrev.5b00047
- S. Sánchez, L. Soler, J. Katuri, Chemically powered micro- and nanomotors. Angew. Chem. Int. Ed. 54(5), 1414–1444 (2015). https://doi.org/10.1002/anie.201406096
- C.K. Schmidt, M. Medina-Sánchez, R.J. Edmondson, O.G. Schmidt, Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 11(1), 5618 (2020). https://doi.org/10.1038/s41467-020-19322-7
- Y. Wu, X. Lin, Z. Wu, H. Möhwald, Q. He, Self-propelled polymer multilayer Janus capsules for effective drug delivery and light-triggered release. ACS Appl. Mater. Interfaces 6(13), 10476–10481 (2014). https://doi.org/10.1021/am502458h
- P.S. Sadalage, M.A. Dar, R.D. Bhor, B.M. Bhalerao, P.N. Kamble et al., Optimization of biogenic synthesis of biocompatible platinum nanops with catalytic, enzyme mimetic and antioxidant activities. Food Biosci. 50, 102024 (2022). https://doi.org/10.1016/j.fbio.2022.102024
- M.C. Symons, S. Rusakiewicz, R.C. Rees, S.I. Ahmad, Hydrogen peroxide: a potent cytotoxic agent effective in causing cellular damage and used in the possible treatment for certain tumours. Med. Hypotheses 57(1), 56–58 (2001). https://doi.org/10.1054/mehy.2000.1406
- D. Pantarotto, W.R. Browne, B.L. Feringa, Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. Chem. Commun. 13, 1533–1535 (2008). https://doi.org/10.1039/b715310d
- D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit et al., Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2(12), 751–760 (2007). https://doi.org/10.1038/nnano.2007.387
- S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991–1003 (2013). https://doi.org/10.1038/nmat3776
- Y. Lu, A.A. Aimetti, R. Langer, Z. Gu, Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2017). https://doi.org/10.1038/natrevmats.2016.75
- S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 126(3), 187–204 (2008). https://doi.org/10.1016/j.jconrel.2007.12.017
- J. Li, P. Angsantikul, W. Liu, B. Esteban-Fernández de Ávila, S. Thamphiwatana et al., Micromotors spontaneously neutralize gastric acid for pH-responsive payload release. Angew. Chem. Int. Ed. 56(8), 2156–2161 (2017). https://doi.org/10.1002/anie.201611774
- Q. Liang, M. Chalamaiah, X. Ren, H. Ma, J. Wu, Identification of new anti-inflammatory peptides from zein hydrolysate after simulated gastrointestinal digestion and transport in caco-2 cells. J. Agric. Food Chem. 66(5), 1114–1120 (2018). https://doi.org/10.1021/acs.jafc.7b04562
- D.-P. Wang, J. Shen, C.-Y. Qin, Y.-M. Li, L.-J. Gao et al., Platinum nanops promote breast cancer cell metastasis by disrupting endothelial barrier and inducing intravasation and extravasation. Nano Res. 15(8), 7366–7377 (2022). https://doi.org/10.1007/s12274-022-4404-5
- J.I. Lachowicz, J. Alexander, J.O. Aaseth, Cyanide and cyanogenic compounds-toxicity, molecular targets, and therapeutic agents. Biomolecules 14(11), 1420 (2024). https://doi.org/10.3390/biom14111420
- H.J. Sim, J. Kim, C. Choi, Biomimetic self-powered artificial muscle using tri-functional yarns that combine generator, supercapacitor, and actuator functions. Sens. Actuators B Chem. 357, 131461 (2022). https://doi.org/10.1016/j.snb.2022.131461
- P. Woo, S. Hyeon, H. Sang, Z. Wang, B.H. et al., Zinc-air powered carbon nanotube yarn artificial muscle. Sens. Actuat. B Chem. 431, 137447 (2025). https://doi.org/10.1016/j.snb.2025.137447
References
P.A. York, R. Peña, D. Kent, R.J. Wood, Microrobotic laser steering for minimally invasive surgery. Sci. Robot. 6(50), eabd5476 (2021). https://doi.org/10.1126/scirobotics.abd5476
G.G. Muscolo, P. Fiorini, Force–torque sensors for minimally invasive surgery robotic tools: an overview. IEEE Trans. Med. Robot. Bionics. 5(3), 458–471 (2023). https://doi.org/10.1109/TMRB.2023.3261102
Y. Piskarev, Y. Sun, M. Righi, Q. Boehler, C. Chautems et al., Fast-response variable-stiffness magnetic catheters for minimally invasive surgery. Adv. Sci. 11(12), 2305537 (2024). https://doi.org/10.1002/advs.202305537
M. Kalulu, B. Chilikwazi, J. Hu, G. Fu, Soft actuators and actuation: design, synthesis, and applications. Macromol. Rapid Commun. 46(7), e2400282 (2025). https://doi.org/10.1002/marc.202400282
J. Yuan, W. Neri, C. Zakri, P. Merzeau, K. Kratz et al., Shape memory nanocomposite fibers for untethered high-energy microengines. Science 365(6449), 155–158 (2019). https://doi.org/10.1126/science.aaw3722
M. Li, Y. Tang, R.H. Soon, B. Dong, W. Hu et al., Miniature coiled artificial muscle for wireless soft medical devices. Sci. Adv. 8(10), eabm5616 (2022). https://doi.org/10.1126/sciadv.abm5616
P.T. Phan, T.T. Hoang, M.T. Thai, H. Low, N.H. Lovell et al., Twisting and braiding fluid-driven soft artificial muscle fibers for robotic applications. Soft Robot. 9(4), 820–836 (2022). https://doi.org/10.1089/soro.2021.0040
Y. Chen, H. Zhao, J. Mao, P. Chirarattananon, E.F. Helbling et al., Controlled flight of a microrobot powered by soft artificial muscles. Nature 575(7782), 324–329 (2019). https://doi.org/10.1038/s41586-019-1737-7
M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch, M. Sitti, Soft actuators for real-world applications. Nat. Rev. Mater. 7(3), 235–249 (2022). https://doi.org/10.1038/s41578-021-00389-7
X. Hu, J. Jia, Y. Wang, X. Tang, S. Fang et al., Fast large-stroke sheath-driven electrothermal artificial muscles with high power densities. Adv. Funct. Mater. 32(30), 2200591 (2022). https://doi.org/10.1002/adfm.202200591
X. Hu, J. Jiang, H. Wei, J. Chen, Z. Wang et al., Electroosmotic-driven coiled hydrogel-based yarn muscles. Chem. Eng. J. 507, 160398 (2025). https://doi.org/10.1016/j.cej.2025.160398
P. Xue, Y. Chen, Y. Xu, C. Valenzuela, X. Zhang et al., Bioinspired MXene-based soft actuators exhibiting angle-independent structural color. Nano-Micro Lett. 15(1), 1 (2022). https://doi.org/10.1007/s40820-022-00977-4
Y. Hu, Q. Ji, M. Huang, L. Chang, C. Zhang et al., Light-driven self-oscillating actuators with phototactic locomotion based on black phosphorus heterostructure. Angew. Chem. Int. Ed. 60(37), 20511–20517 (2021). https://doi.org/10.1002/anie.202108058
K. Hou, D. Guan, H. Li, Y. Sun, Y. Long et al., Programmable light-driven swimming actuators via wavelength signal switching. Sci. Adv. 7(37), eabh3051 (2021). https://doi.org/10.1126/sciadv.abh3051
W. Seo, J.A. Lee, G. Noh, Y.-C. Song, C. Kim et al., Reconfigurable fiber actuators with crystallized liquid crystal elastomer and carbon nanotube composites. Sensors Actuators B Chem. 442, 138107 (2025). https://doi.org/10.1016/j.snb.2025.138107
C. Chen, P. Shi, Z. Liu, S. Duan, M. Si et al., Advancing physical intelligence for autonomous soft robots. Sci. Robot. 10(102), eads1292 (2025). https://doi.org/10.1126/scirobotics.ads1292
C.S. Haines, M.D. Lima, N. Li, G.M. Spinks, J. Foroughi et al., Artificial muscles from fishing line and sewing thread. Science 343(6173), 868–872 (2014). https://doi.org/10.1126/science.1246906
J. Mu, M. Jung de Andrade, S. Fang, X. Wang, E. Gao et al., Sheath-run artificial muscles. Science 365(6449), 150–155 (2019). https://doi.org/10.1126/science.aaw2403
H. Chu, X. Hu, Z. Wang, J. Mu, N. Li et al., Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science 371(6528), 494–498 (2021). https://doi.org/10.1126/science.abc4538
X. Yang, Y. Chen, F. Wang, S. Chen, Z. Cao et al., Bioinspired artificial phototaxis and phototropism enabled by photoresponsive smart materials. Mater. Today 87, 348–377 (2025). https://doi.org/10.1016/j.mattod.2025.05.004
L. Zhang, Y. Dong, L. Li, Y. Shi, Y. Zhang et al., Concurrently boosting activity and stability of oxygen reduction reaction catalysts via judiciously crafting Fe-Mn dual atoms for fuel cells. Nano-Micro Lett. 17(1), 88 (2024). https://doi.org/10.1007/s40820-024-01580-5
Y. Li, M.-S. Yao, Y. He, S. Du, Recent advances of electrocatalysts and electrodes for direct formic acid fuel cells: from nano to meter scale challenges. Nano-Micro Lett. 17(1), 148 (2025). https://doi.org/10.1007/s40820-025-01648-w
S. Ma, P. Xue, C. Valenzuela, Y. Liu, Y. Chen et al., 4D-printed adaptive and programmable shape-morphing batteries. Adv. Mater. 37(30), e2505018 (2025). https://doi.org/10.1002/adma.202505018
L. Yang, Y. Liu, R. Bi, Y. Chen, C. Valenzuela et al., Direct-ink-written shape-programmable micro-supercapacitors with electrothermal liquid crystal elastomers. Adv. Funct. Mater. 35(39), 2504979 (2025). https://doi.org/10.1002/adfm.202504979
P. Xue, H.K. Bisoyi, Y. Chen, H. Zeng, J. Yang et al., Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. 60(7), 3390–3396 (2021). https://doi.org/10.1002/anie.202014533
Y. Bar-Cohen, I.A. Anderson, Electroactive polymer (EAP) actuators: background review. Mech. Soft Mater. 1(1), 5 (2019). https://doi.org/10.1007/s42558-019-0005-1
R. Shankar, T.K. Ghosh, R.J. Spontak, Electroactive nanostructured polymers as tunable actuators. Adv. Mater. 19(17), 2218–2223 (2007). https://doi.org/10.1002/adma.200602644
P.W. Ruch, R. Kötz, A. Wokaun, Electrochemical characterization of single-walled carbon nanotubes for electrochemical double layer capacitors using non-aqueous electrolyte. Electrochim. Acta 54(19), 4451–4458 (2009). https://doi.org/10.1016/j.electacta.2009.03.022
T. Trunzer, P. Fraga-García, M.A. Tschuschner, D. Voltmer, S. Berensmeier, The electrosorptive response of a carbon nanotube flow-through electrode in aqueous systems. Chem. Eng. J. 428, 131009 (2022). https://doi.org/10.1016/j.cej.2021.131009
N.W. Bartlett, M.T. Tolley, J.T.B. Overvelde, J.C. Weaver, B. Mosadegh et al., A 3D-printed, functionally graded soft robot powered by combustion. Science 349(6244), 161–165 (2015). https://doi.org/10.1126/science.aab0129
C.A. Aubin, R.H. Heisser, O. Peretz, J. Timko, J. Lo et al., Powerful, soft combustion actuators for insect-scale robots. Science 381(6663), 1212–1217 (2023). https://doi.org/10.1126/science.adg5067
S. Sarikaya, F. Gardea, J.T. Auletta, J. Kavosi, A. Langrock et al., Athermal artificial muscles with drastically improved work capacity from pH-responsive coiled polymer fibers. Sensors Actuators B Chem. 335, 129703 (2021). https://doi.org/10.1016/j.snb.2021.129703
W. Scaff, O. Horikawa, M. de Sales Guerra Tsuzuki, Pneumatic artificial muscle optimal control with simulated annealing. IFAC Pap. OnLine 51(27), 333–338 (2018). https://doi.org/10.1016/j.ifacol.2018.11.618
F. Vitale, D. Accoto, L. Turchetti, S. Indini, M.C. Annesini et al., Low-temperature H2O2-powered actuators for biorobotics: thermodynamic and kinetic analysis. In: 2010 IEEE International Conference on Robotics and Automation, pp 2197–2202. IEEE, New York (2010).
L. Yu, M. Cheng, M. Song, D. Zhang, M. Xiao et al., pH-responsive round-way motions of a smart device through integrating two types of chemical actuators in one smart system. Adv. Funct. Mater. 25(36), 5786–5793 (2015). https://doi.org/10.1002/adfm.201502447
C.W.H. Rajawasam, D. Konkolewicz, C.S. Hartley, Autonomous changes in polymer materials driven by chemical fuels. ChemSystemsChem 7(4), e202400090 (2025). https://doi.org/10.1002/syst.202400090
M. Villeda-Hernandez, B.C. Baker, C. Romero, J.M. Rossiter, C.F. Faul, Soft alchemy: a comprehensive guide to chemical reactions for pneumatic soft actuation. Soft Sci. 4(2), 14 (2024). https://doi.org/10.20517/ss.2023.52
R.L. Truby, S. Li, Integrating chemical fuels and artificial muscles for untethered microrobots. Sci. Robot. 5(45), eabd7338 (2020). https://doi.org/10.1126/scirobotics.abd7338
C.J. Barclay, N.A. Curtin, Advances in understanding the energetics of muscle contraction. J. Biomech. 156, 111669 (2023). https://doi.org/10.1016/j.jbiomech.2023.111669
D.F. Cain, A.A. Infante, R.E. Davies, Chemistry of muscle contraction: adenosine triphosphate and phosphorylcreatine as energy supplies for single contractions of working muscle. Nature 196(4851), 214–217 (1962). https://doi.org/10.1038/196214a0
J. Xiang, M. Dabbour, X. Gao, B.K. Mintah, Y. Yang et al., Influence of low-intensity ultrasound on ε-polylysine production: intracellular ATP and key biosynthesis enzymes during Streptomyces albulus fermentation. Foods 11(21), 3525 (2022). https://doi.org/10.3390/foods11213525
X. Leng, G. Mei, G. Zhang, Z. Liu, X. Zhou, Tethering of twisted-fiber artificial muscles. Chem. Soc. Rev. 52(7), 2377–2390 (2023). https://doi.org/10.1039/d2cs00489e
D. Pang, M. Alhabeb, X. Mu, Y. Dall’Agnese, Y. Gogotsi et al., Electrochemical actuators based on two-dimensional Ti3C2Tx (MXene). Nano Lett. 19(10), 7443–7448 (2019). https://doi.org/10.1021/acs.nanolett.9b03147.s004
S. Umrao, R. Tabassian, J. Kim, V.H. Nguyen, Q. Zhou et al., MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 4(33), eaaw7797 (2019). https://doi.org/10.1126/scirobotics.aaw7797
S. Sarikaya, F. Gardea, J.T. Auletta, A. Langrock, H. Kim et al., Fuel-driven redox reactions in electrolyte-free polymer actuators for soft robotics. ACS Appl. Mater. Interfaces 15(26), 31803–31811 (2023). https://doi.org/10.1021/acsami.3c04883
H. Hu, S. Zhang, M. Zhang, J. Xu, T. Salim et al., Artificial muscles based on coiled conductive polymer yarns. Adv. Funct. Mater. 34(33), 2401685 (2024). https://doi.org/10.1002/adfm.202401685
T. Lang, L. Yang, S. Yang, N. Sheng, Y. Zhang et al., Emerging innovations in electrically powered artificial muscle fibers. Natl. Sci. Rev. 11(10), nwae232 (2024). https://doi.org/10.1093/nsr/nwae232
W. Lubitz, W. Tumas, Hydrogen: an overview. Chem. Rev. 107(10), 3900–3903 (2007). https://doi.org/10.1021/cr050200z
F.M.N.U. Khan, M.G. Rasul, A.S.M. Sayem, N. Mandal, Maximizing energy density of lithium-ion batteries for electric vehicles: a critical review. Energy Rep. 9, 11–21 (2023). https://doi.org/10.1016/j.egyr.2023.08.069
J. Xie, Y.-C. Lu, A retrospective on lithium-ion batteries. Nat. Commun. 11, 2499 (2020). https://doi.org/10.1038/s41467-020-16259-9
J. Di, X. Zhang, Z. Yong, Y. Zhang, D. Li, Ru. Li, Q. Li, Carbon-nanotube fibers for wearable devices and smart textiles. Adv. Mater. 28(47), 10529–10538 (2016). https://doi.org/10.1002/adma.201601186
X. Hu, X. Bao, M. Zhang, S. Fang, K. Liu et al., Recent advances in carbon nanotube-based energy harvesting technologies. Adv. Mater. 35(49), e2303035 (2023). https://doi.org/10.1002/adma.202303035
K. Wu, B. Wang, Y. Niu, W. Wang, C. Wu et al., Carbon nanotube fibers with excellent mechanical and electrical properties by structural realigning and densification. Nano Res. 16(11), 12762–12771 (2023). https://doi.org/10.1007/s12274-023-6157-1
V.H. Ebron, Z. Yang, D.J. Seyer, M.E. Kozlov, J. Oh et al., Fuel-powered artificial muscles. Science 311(5767), 1580–1583 (2006). https://doi.org/10.1126/science.1120182
L. Dong, M. Ren, Y. Wang, G. Wang, S. Zhang et al., Artificial neuromuscular fibers by multilayered coaxial integration with dynamic adaption. Sci. Adv. 8(46), eabq7703 (2022). https://doi.org/10.1126/sciadv.abq7703
X. Hu, X. Wang, J. Wang, G. Zhang, S. Fang et al., Fast, variable stiffness-induced braided coiled artificial muscles. Proc. Natl. Acad. Sci. U. S. A. 121(41), e2412288121 (2024). https://doi.org/10.1073/pnas.2412288121
Y. Chen, C. Valenzuela, Y. Liu, X. Yang, Y. Yang et al., Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback. Matter 8(2), 101904 (2025). https://doi.org/10.1016/j.matt.2024.10.022
X. Zhou, M. Li, X. Cao, X. Dong, S. Fang et al., Direct catalysis-driven yarn artificial muscles: chemically induced actuation. Adv. Funct. Mater. 34(51), 2409634 (2024). https://doi.org/10.1002/adfm.202409634
A.B. Ortega-Santos, J.G. Martínez, E.W.H. Jager, Synchronous cation-driven and anion-driven polypyrrole-based yarns toward in-air linear actuators. Chem. Mater. 36(19), 9391–9405 (2024). https://doi.org/10.1021/acs.chemmater.4c00873
Z. Huang, C. Li, Y. Zhang, T. Pang, Z. Sun et al., Ionic conductive elastomers with enhanced mechanical properties and applications in triboelectric nanogenerators. ACS Appl. Polym. Mater. 7(11), 7294–7302 (2025). https://doi.org/10.1021/acsapm.5c00868
S. Aziz, J.G. Martinez, B. Salahuddin, N.-K. Persson, E.W.H. Jager, Fast and high-strain electrochemically driven yarn actuators in twisted and coiled configurations. Adv. Funct. Mater. 31(10), 2008959 (2021). https://doi.org/10.1002/adfm.202008959
F. Hik, E. Taatizadeh, S.E. Takalloo, J.D.W. Madden, Fast electrochemical response of PEDOT: PSS electrodes through large combined increases to ionic and electronic conductivities. Electrochim. Acta 468, 143136 (2023). https://doi.org/10.1016/j.electacta.2023.143136
A. Maziz, A. Concas, A. Khaldi, J. Stålhand, N.-K. Persson et al., Knitting and weaving artificial muscles. Sci. Adv. 3, e1600327 (2017). https://doi.org/10.1126/sciadv.1600327
M. Brinker, G. Dittrich, C. Richert, P. Lakner, T. Krekeler et al., Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material. Sci. Adv. 6(40), eaba1483 (2020). https://doi.org/10.1126/sciadv.aba1483
C. Küttel, A. Stemmer, X. Wei, Strain response of polypyrrole actuators induced by redox agents in solution. Sens. Actuators, B Chem. 141(2), 478–484 (2009). https://doi.org/10.1016/j.snb.2009.06.044
F. Mashayekhi Mazar, J.G. Martinez, M. Tyagi, M. Alijanianzadeh, A.P.F. Turner et al., Artificial muscles powered by glucose. Adv. Mater. 31(32), 1901677 (2019). https://doi.org/10.1002/adma.201901677
G. Strack, V. Bocharova, M.A. Arugula, M. Pita, J. Halámek et al., Artificial muscle reversibly controlled by enzyme reactions. J. Phys. Chem. Lett. 1(5), 839–843 (2010). https://doi.org/10.1021/jz100070u
A.V. Abadia, K.M. Herbert, T.J. White, D.K. Schwartz, J.L. Kaar, Biocatalytic 3D actuation in liquid crystal elastomers via enzyme patterning. ACS Appl. Mater. Interfaces 14(23), 26480–26488 (2022). https://doi.org/10.1021/acsami.2c05802
A. Zebda, C. Gondran, A. Le Goff, M. Holzinger, P. Cinquin et al., Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat. Commun. 2, 370 (2011). https://doi.org/10.1038/ncomms1365
C.H. Kwon, S.-H. Lee, Y.-B. Choi, J.A. Lee, S.H. Kim et al., High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns. Nat. Commun. 5, 3928 (2014). https://doi.org/10.1038/ncomms4928
S. Arnaboldi, G. Salinas, S. Bichon, S. Gounel, N. Mano et al., Bi-enzymatic chemo-mechanical feedback loop for continuous self-sustained actuation of conducting polymers. Nat. Commun. 14, 6390 (2023). https://doi.org/10.1038/s41467-023-42153-1
M.-S. Kim, J.-K. Heo, H. Rodrigue, H.-T. Lee, S. Pané et al., Shape memory alloy (SMA) actuators: the role of material, form, and scaling effects. Adv. Mater. 35(33), 2208517 (2023). https://doi.org/10.1002/adma.202208517
Z. Wang, Z. Wang, Y. Zheng, Q. He, Y. Wang et al., Three-dimensional printing of functionally graded liquid crystal elastomer. Sci. Adv. 6(39), eabc0034 (2020). https://doi.org/10.1126/sciadv.abc0034
Q. He, Z. Wang, Y. Wang, Z. Wang, C. Li et al., Electrospun liquid crystal elastomer microfiber actuator. Sci. Robot. 6(57), eabi9704 (2021). https://doi.org/10.1126/scirobotics.abi9704
A. Kotikian, J.M. Morales, A. Lu, J. Mueller, Z.S. Davidson et al., Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Adv. Mater. 33(27), e2101814 (2021). https://doi.org/10.1002/adma.202101814
W. Liang, H. Liu, K. Wang, Z. Qian, L. Ren, Comparative study of robotic artificial actuators and biological muscle. Adv. Mech. Eng. 12(6), 1687814020933409 (2020). https://doi.org/10.1177/1687814020933409
S.M. Mirvakili, I.W. Hunter, Artificial muscles: mechanisms, applications, and challenges. Adv. Mater. 30(6), 1704407 (2018). https://doi.org/10.1002/adma.201704407
Y. Tadesse, A. Villanueva, C. Haines, D. Novitski, R. Baughman et al., Hydrogen-fuel-powered bell segments of biomimetic jellyfish. Smart Mater. Struct. 21(4), 045013 (2012). https://doi.org/10.1088/0964-1726/21/4/045013
A. Villanueva, C. Smith, S. Priya, A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspir. Biomim. 6(3), 036004 (2011). https://doi.org/10.1088/1748-3182/6/3/036004
J. Pi, J. Liu, K. Zhou, M. Qian, An octopus-inspired bionic flexible gripper for apple grasping. Agriculture 11(10), 1014 (2021). https://doi.org/10.3390/agriculture11101014
X. Yang, L. Chang, N.O. Pérez-Arancibia, An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle. Sci. Robot. 5(45), eaba0015 (2020). https://doi.org/10.1126/scirobotics.aba0015
Y. Shi, H. Janßen, W. Lehnert, A transient behavior study of polymer electrolyte fuel cells with cyclic current profiles. Energies 12(12), 2370 (2019). https://doi.org/10.3390/en12122370
X.-T. Nguyen, A.A. Calderón, A. Rigo, J.Z. Ge, N.O. Pérez-Arancibia, Smallbug: a 30-mg crawling robot driven by a high-frequency flexible SMA microactuator. IEEE Robot. Autom. Lett. 5(4), 6796–6803 (2020). https://doi.org/10.1109/LRA.2020.3015457
F. Maimani, A.A. Calderón, X. Yang, A. Rigo, J.Z. Ge et al., A 7-mg miniature catalytic-combustion engine for millimeter-scale robotic actuation. Sensors Actuators A Phys. 341, 112818 (2022). https://doi.org/10.1016/j.sna.2021.112818
P. Nagwade, M. Kang, J. Park, J. Jeong, H. Shin et al., Development of a chemically driven biomimetic modular artificial muscle (BiMAM). Adv. Intell. Syst. 5(10), 2370048 (2023). https://doi.org/10.1002/aisy.202370048
M. Sivaperuman Kalairaj, H. Banerjee, C.M. Lim, P.-Y. Chen, H. Ren, Hydrogel-matrix encapsulated Nitinol actuation with self-cooling mechanism. RSC Adv. 9(59), 34244–34255 (2019). https://doi.org/10.1039/c9ra05360c
H.-T. Lee, F. Seichepine, G.-Z. Yang, Microtentacle actuators based on shape memory alloy smart soft composite. Adv. Funct. Mater. 30(34), 2002510 (2020). https://doi.org/10.1002/adfm.202002510
J.-G. Lee, H. Rodrigue, Origami-based vacuum pneumatic artificial muscles with large contraction ratios. Soft Robot. 6(1), 109–117 (2019). https://doi.org/10.1089/soro.2018.0063
S. Li, D.M. Vogt, D. Rus, R.J. Wood, Fluid-driven origami-inspired artificial muscles. Proc. Natl. Acad. Sci. U. S. A. 114(50), 13132–13137 (2017). https://doi.org/10.1073/pnas.1713450114
J. Zhang, L. Liu, Y. Chen, M. Zhu, L. Tang et al., Fiber-reinforced soft polymeric manipulator with smart motion scaling and stiffness tunability. Cell Rep. Phys. Sci. 2(10), 100600 (2021). https://doi.org/10.1016/j.xcrp.2021.100600
M. Feng, D. Yang, L. Ren, G. Wei, G. Gu, X-crossing pneumatic artificial muscles. Sci. Adv. 9(38), eadi7133 (2023). https://doi.org/10.1126/sciadv.adi7133
N. Oh, Y.J. Park, S. Lee, H. Lee, H. Rodrigue, Design of paired pouch motors for robotic applications. Adv. Mater. Technol. 4(1), 1800414 (2019). https://doi.org/10.1002/admt.201800414
D.R. Higueras-Ruiz, M.W. Shafer, H.P. Feigenbaum, Cavatappi artificial muscles from drawing, twisting, and coiling polymer tubes. Sci. Robot. 6(53), eabd5383 (2021). https://doi.org/10.1126/scirobotics.abd5383
R. Niiyama, X. Sun, C. Sung, B. An, D. Rus et al., Pouch motors: printable soft actuators integrated with computational design. Soft Robot. 2(2), 59–70 (2015). https://doi.org/10.1089/soro.2014.0023
S. Wu, J. Liu, X. Lei, S. Zhao, J. Lu et al., Research progress on efficient pollination technology of crops. Agronomy 12(11), 2872 (2022). https://doi.org/10.3390/agronomy12112872
A. Wada, H. Nabae, T. Kitamori, K. Suzumori, Energy regenerative hose-free pneumatic actuator. Sens. Actuat. A Phys. 249, 1–7 (2016). https://doi.org/10.1016/j.sna.2016.07.004
J. Shin, B. Jamil, H. Moon, J.C. Koo, H.R. Choi et al., Thermo-pneumatic artificial muscle: air-based thermo-pneumatic artificial muscles for pumpless pneumatic actuation. Soft Robot. 11(2), 187–197 (2024). https://doi.org/10.1089/soro.2022.0229
M. Wehner, R.L. Truby, D.J. Fitzgerald, B. Mosadegh, G.M. Whitesides et al., An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617), 451–455 (2016). https://doi.org/10.1038/nature19100
M. Loepfe, C.M. Schumacher, U.B. Lustenberger, W.J. Stark, An untethered, jumping roly-poly soft robot driven by combustion. Soft Robot. 2(1), 33–41 (2015). https://doi.org/10.1089/soro.2014.0021
R.F. Shepherd, A.A. Stokes, J. Freake, J. Barber, P.W. Snyder et al., Using explosions to power a soft robot. Angew. Chem. Int. Ed. 52(10), 2892–2896 (2013). https://doi.org/10.1002/anie.201209540
X. Ji, X. Liu, V. Cacucciolo, M. Imboden, Y. Civet et al., An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 4(37), eaaz6451 (2019). https://doi.org/10.1126/scirobotics.aaz6451
Z. Ren, S. Kim, X. Ji, W. Zhu, F. Niroui et al., A high-lift micro-aerial-robot powered by low-voltage and long-endurance dielectric elastomer actuators. Adv. Mater. 34(7), 2106757 (2022). https://doi.org/10.1002/adma.202106757
Z. Ma, D. Sameoto, A review of electrically driven soft actuators for soft robotics. Micromachines 13(11), 1881 (2022). https://doi.org/10.3390/mi13111881
N.T. Jafferis, K. Jayaram, P.A. York, R.J. Wood, A streamlined fabrication process for high energy density piezoelectric bending actuators. Sens. Actuators, A Phys. 332, 113155 (2021). https://doi.org/10.1016/j.sna.2021.113155
T.-Y. Liu, D.-D. Li, J. Ye, Q. Li, L. Sheng et al., An integrated soft jumping robotic module based on liquid metals. Adv. Eng. Mater. 23(12), 2100515 (2021). https://doi.org/10.1002/adem.202100515
H. Zhou, S. Cao, S. Zhang, F. Li, N. Ma, Design of a fuel explosion-based chameleon-like soft robot aided by the comprehensive dynamic model. Cyborg. Bionic Syst. 4, 0010 (2023). https://doi.org/10.34133/cbsystems.0010
R. Zakeri, R. Zakeri, Bio inspired general artificial muscle using hybrid of mixed electrolysis and fluids chemical reaction (HEFR). Sci. Rep. 12(1), 3627 (2022). https://doi.org/10.1038/s41598-022-07799-9
M. Villeda-Hernandez, B.C. Baker, C. Romero, J.M. Rossiter, M.P.M. Dicker et al., Chemically driven oscillating soft pneumatic actuation. Soft Robot. 10(6), 1159–1170 (2023). https://doi.org/10.1089/soro.2022.0168
T.M. Sutter, M.B. Dickerson, T.S. Creasy, R.S. Justice, Rubber muscle actuation with pressurized CO2 from enzyme-catalyzed urea hydrolysis. Smart Mater. Struct. 22(9), 094022 (2013). https://doi.org/10.1088/0964-1726/22/9/094022
Y. Tian, D. Deng, L. Xu, M. Li, H. Chen et al., Strategies for sustainable production of hydrogen peroxide via oxygen reduction reaction: from catalyst design to device setup. Nano-Micro Lett. 15(1), 122 (2023). https://doi.org/10.1007/s40820-023-01067-9
J. Ge, Y. Zhao, Y. Wang, H. Li, Electrochemical pneumatic battery for untethered robotics. Device 2(9), 100460 (2024). https://doi.org/10.1016/j.device.2024.100460
M. Zadan, D.K. Patel, A.P. Sabelhaus, J. Liao, A. Wertz et al., Liquid crystal elastomer with integrated soft thermoelectrics for shape memory actuation and energy harvesting. Adv. Mater. 34(23), 2200857 (2022). https://doi.org/10.1002/adma.202200857
Y. Qu, W. Tang, Y. Zhong, Q. Sheng, H. Xu et al., Programmable chemical reactions enable ultrastrong soft pneumatic actuation. Adv. Mater. 36(41), e2403954 (2024). https://doi.org/10.1002/adma.202403954
Y. Zhong, W. Tang, H. Gui, Q. Sheng, H. Xu et al., Human camouflage and expression via soft mask from reprogrammable chemical fluid skin. Sci. Adv. 11(7), eadq6141 (2025). https://doi.org/10.1126/sciadv.adq6141
D. Kagan, R. Laocharoensuk, M. Zimmerman, C. Clawson, S. Balasubramanian et al., Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small 6(23), 2741–2747 (2010). https://doi.org/10.1002/smll.201001257
H. Wang, M. Pumera, Fabrication of micro/nanoscale motors. Chem. Rev. 115(16), 8704–8735 (2015). https://doi.org/10.1021/acs.chemrev.5b00047
S. Sánchez, L. Soler, J. Katuri, Chemically powered micro- and nanomotors. Angew. Chem. Int. Ed. 54(5), 1414–1444 (2015). https://doi.org/10.1002/anie.201406096
C.K. Schmidt, M. Medina-Sánchez, R.J. Edmondson, O.G. Schmidt, Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 11(1), 5618 (2020). https://doi.org/10.1038/s41467-020-19322-7
Y. Wu, X. Lin, Z. Wu, H. Möhwald, Q. He, Self-propelled polymer multilayer Janus capsules for effective drug delivery and light-triggered release. ACS Appl. Mater. Interfaces 6(13), 10476–10481 (2014). https://doi.org/10.1021/am502458h
P.S. Sadalage, M.A. Dar, R.D. Bhor, B.M. Bhalerao, P.N. Kamble et al., Optimization of biogenic synthesis of biocompatible platinum nanops with catalytic, enzyme mimetic and antioxidant activities. Food Biosci. 50, 102024 (2022). https://doi.org/10.1016/j.fbio.2022.102024
M.C. Symons, S. Rusakiewicz, R.C. Rees, S.I. Ahmad, Hydrogen peroxide: a potent cytotoxic agent effective in causing cellular damage and used in the possible treatment for certain tumours. Med. Hypotheses 57(1), 56–58 (2001). https://doi.org/10.1054/mehy.2000.1406
D. Pantarotto, W.R. Browne, B.L. Feringa, Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. Chem. Commun. 13, 1533–1535 (2008). https://doi.org/10.1039/b715310d
D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit et al., Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2(12), 751–760 (2007). https://doi.org/10.1038/nnano.2007.387
S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991–1003 (2013). https://doi.org/10.1038/nmat3776
Y. Lu, A.A. Aimetti, R. Langer, Z. Gu, Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2017). https://doi.org/10.1038/natrevmats.2016.75
S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 126(3), 187–204 (2008). https://doi.org/10.1016/j.jconrel.2007.12.017
J. Li, P. Angsantikul, W. Liu, B. Esteban-Fernández de Ávila, S. Thamphiwatana et al., Micromotors spontaneously neutralize gastric acid for pH-responsive payload release. Angew. Chem. Int. Ed. 56(8), 2156–2161 (2017). https://doi.org/10.1002/anie.201611774
Q. Liang, M. Chalamaiah, X. Ren, H. Ma, J. Wu, Identification of new anti-inflammatory peptides from zein hydrolysate after simulated gastrointestinal digestion and transport in caco-2 cells. J. Agric. Food Chem. 66(5), 1114–1120 (2018). https://doi.org/10.1021/acs.jafc.7b04562
D.-P. Wang, J. Shen, C.-Y. Qin, Y.-M. Li, L.-J. Gao et al., Platinum nanops promote breast cancer cell metastasis by disrupting endothelial barrier and inducing intravasation and extravasation. Nano Res. 15(8), 7366–7377 (2022). https://doi.org/10.1007/s12274-022-4404-5
J.I. Lachowicz, J. Alexander, J.O. Aaseth, Cyanide and cyanogenic compounds-toxicity, molecular targets, and therapeutic agents. Biomolecules 14(11), 1420 (2024). https://doi.org/10.3390/biom14111420
H.J. Sim, J. Kim, C. Choi, Biomimetic self-powered artificial muscle using tri-functional yarns that combine generator, supercapacitor, and actuator functions. Sens. Actuators B Chem. 357, 131461 (2022). https://doi.org/10.1016/j.snb.2022.131461
P. Woo, S. Hyeon, H. Sang, Z. Wang, B.H. et al., Zinc-air powered carbon nanotube yarn artificial muscle. Sens. Actuat. B Chem. 431, 137447 (2025). https://doi.org/10.1016/j.snb.2025.137447