Temperature-Responsive Tensile Actuator Based on Multi-walled Carbon Nanotube Yarn
Corresponding Author: Seon Jeong Kim
Nano-Micro Letters,
Vol. 8 No. 3 (2016), Article Number: 254-259
Abstract
Many temperature indicators or sensors show color changes for materials used in food and medical fields. However, they are not helpful for a color-blind person or children who lack judgment. In this paper, we introduce simply fabricated and more useful low-temperature indicator (~30 °C) for devices that actuates using paraffin-infiltrated multi-walled carbon nanotube (MWCNT) coiled yarn. The density difference of MWCNT yarn provides large strain (~330 %) when heat causes the melted polymer to move. Furthermore, the MWCNT yarn decreases the melting point of paraffin. These properties allow control of the actuating temperature. In addition, mechanical strength was enhanced by MWCNT than previously reported temperature-responsive actuators based on shape memory polymers. This simply fabricated temperature indicator can be applied in latching devices for medical and biological fields.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Yoon, H. Shin, O. Yarimaga, D.Y. Ham, J. Kim, I.S. Park, J.M. Kim, An inkjet-printable microemulsion system for colorimetric polydiacetylene supramolecules on paper substrates. J. Mater. Chem. 22(17), 8680–8686 (2012). doi:10.1039/C2JM30301A
- M. Gou, G. Gou, J. Zhang, K. Men, J. Song, F. Luo, X. Zhao, Z.Y. Qian, Y.Q. Wei, Time-temperature chromatic sensor based on polydiacetylene (PDA) vesicle and amphiphilic copolymer. Sens. Actuator B-Chem. 150(1), 406–411 (2010). doi:10.1016/j.snb.2010.06.041
- B. Yoon, J. Lee, I.S. Park, S. Jeon, J. Lee, J.M. Kim, Recent functional material based approaches to prevent and detect counterfeiting. J. Mater. Chem. C 1(12), 2388–2403 (2013). doi:10.1039/C3TC00818E
- B. Yoon, D.-Y. Ham, O. Yarimaga, H. An, C.W. Lee, J.-M. Kim, Inkjet printing of conjugated polymer precursors on paper substrates for colorimetric sensing and flexible electrothermochromic display. Adv. Mater. 23(46), 5492–5497 (2011). doi:10.1002/adma.201103471
- K. Gall, C.M. Yakacki, Y. Liu, R. Shandas, N. Willett, K.S. Anseth, Thermomechanics of the shape memory effect in polymers for biomedical applications. J. Biomed. Mater. Res. A 73(3), 339–348 (2005). doi:10.1002/jbm.a.30296
- C.M. Yakacki, R. Shandas, C. Lanning, B. Rech, A. Eckstein, K. Gall, Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28(14), 2255–2263 (2007). doi:10.1016/j.biomaterials.2007.01.030
- K. Gall, P. Kreiner, D. Turner, M. Hulse, Shape-memory polymers for microelectromechanical system. Microelectromechanical Syst. 13(3), 472–483 (2004). doi:10.1109/JMEMS.2004.828727
- A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573), 1673–1676 (2002). doi:10.1126/science.1066102
- M. Zhang, K.R. Atkinson, R.H. Baughman, Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700), 1358–1361 (2004). doi:10.1126/science.1104276
- N. Ukrainczyk, S. Kurajica, J. Šipušiæ, Thermophysical comparison of five commercial paraffin waxes as latent heat storage materials. Chem. Biochem. Eng. Q. 24(2), 129–137 (2010)
- M.C. Serrano, L. Carbajal, G.A. Ameer, Novel biodegradable shape-memory elastomers with drug-releasing capabilities. Adv. Mater. 23(19), 2211–2215 (2011). doi:10.1002/adma.201004566
- W. Voit, T. Ware, R.R. Dasari, P. Smith, L. Danz, D. Simon, S. Barlow, S.R. Marder, K. Gall, High-strain shape-memory polymers. Adv. Funct. Mater. 20(1), 162–171 (2010). doi:10.1002/adfm.200901409
- S. Gu, B. Yan, L. Liu, J. Ren, Carbon nanotube-polyurethane shape memory nanocomposites with low trigger temperature. Eur. Polym. J. 49(12), 3867–3877 (2013). doi:10.1016/j.eurpolymj.2013.10.007
- J. Chen, Z.X. Zhang, W.B. Huang, J.L. Li, J.H. Yang, Y. Wang, Z.W. Zhou, J.H. Zhang, Carbon nanotube network structure induced strain sensitivity and shape memory behavior changes of thermoplastic polyurethane. Mater. Des. 69, 105–113 (2015). doi:10.1016/j.matdes.2014.12.054
References
B. Yoon, H. Shin, O. Yarimaga, D.Y. Ham, J. Kim, I.S. Park, J.M. Kim, An inkjet-printable microemulsion system for colorimetric polydiacetylene supramolecules on paper substrates. J. Mater. Chem. 22(17), 8680–8686 (2012). doi:10.1039/C2JM30301A
M. Gou, G. Gou, J. Zhang, K. Men, J. Song, F. Luo, X. Zhao, Z.Y. Qian, Y.Q. Wei, Time-temperature chromatic sensor based on polydiacetylene (PDA) vesicle and amphiphilic copolymer. Sens. Actuator B-Chem. 150(1), 406–411 (2010). doi:10.1016/j.snb.2010.06.041
B. Yoon, J. Lee, I.S. Park, S. Jeon, J. Lee, J.M. Kim, Recent functional material based approaches to prevent and detect counterfeiting. J. Mater. Chem. C 1(12), 2388–2403 (2013). doi:10.1039/C3TC00818E
B. Yoon, D.-Y. Ham, O. Yarimaga, H. An, C.W. Lee, J.-M. Kim, Inkjet printing of conjugated polymer precursors on paper substrates for colorimetric sensing and flexible electrothermochromic display. Adv. Mater. 23(46), 5492–5497 (2011). doi:10.1002/adma.201103471
K. Gall, C.M. Yakacki, Y. Liu, R. Shandas, N. Willett, K.S. Anseth, Thermomechanics of the shape memory effect in polymers for biomedical applications. J. Biomed. Mater. Res. A 73(3), 339–348 (2005). doi:10.1002/jbm.a.30296
C.M. Yakacki, R. Shandas, C. Lanning, B. Rech, A. Eckstein, K. Gall, Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28(14), 2255–2263 (2007). doi:10.1016/j.biomaterials.2007.01.030
K. Gall, P. Kreiner, D. Turner, M. Hulse, Shape-memory polymers for microelectromechanical system. Microelectromechanical Syst. 13(3), 472–483 (2004). doi:10.1109/JMEMS.2004.828727
A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573), 1673–1676 (2002). doi:10.1126/science.1066102
M. Zhang, K.R. Atkinson, R.H. Baughman, Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700), 1358–1361 (2004). doi:10.1126/science.1104276
N. Ukrainczyk, S. Kurajica, J. Šipušiæ, Thermophysical comparison of five commercial paraffin waxes as latent heat storage materials. Chem. Biochem. Eng. Q. 24(2), 129–137 (2010)
M.C. Serrano, L. Carbajal, G.A. Ameer, Novel biodegradable shape-memory elastomers with drug-releasing capabilities. Adv. Mater. 23(19), 2211–2215 (2011). doi:10.1002/adma.201004566
W. Voit, T. Ware, R.R. Dasari, P. Smith, L. Danz, D. Simon, S. Barlow, S.R. Marder, K. Gall, High-strain shape-memory polymers. Adv. Funct. Mater. 20(1), 162–171 (2010). doi:10.1002/adfm.200901409
S. Gu, B. Yan, L. Liu, J. Ren, Carbon nanotube-polyurethane shape memory nanocomposites with low trigger temperature. Eur. Polym. J. 49(12), 3867–3877 (2013). doi:10.1016/j.eurpolymj.2013.10.007
J. Chen, Z.X. Zhang, W.B. Huang, J.L. Li, J.H. Yang, Y. Wang, Z.W. Zhou, J.H. Zhang, Carbon nanotube network structure induced strain sensitivity and shape memory behavior changes of thermoplastic polyurethane. Mater. Des. 69, 105–113 (2015). doi:10.1016/j.matdes.2014.12.054