Dynamic Network- and Microcellular Architecture-Driven Biomass Elastomer toward Sustainable and Versatile Soft Electronics
Corresponding Author: Jingguo Li
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 88
Abstract
Conductive elastomers combining micromechanical sensitivity, lightweight adaptability, and environmental sustainability are critically needed for advanced flexible electronics requiring precise responsiveness and long-term wearability; however, the integration of these properties remains a significant challenge. Here, we present a biomass-derived conductive elastomer featuring a rationally engineered dynamic crosslinked network integrated with a tunable microporous architecture. This structural design imparts pronounced micromechanical sensitivity, an ultralow density (~ 0.25 g cm−3), and superior mechanical compliance for adaptive deformation. Moreover, the unique micro-spring effect derived from the porous architecture ensures exceptional stretchability (> 500% elongation at break) and superior resilience, delivering immediate and stable electrical response under both subtle (< 1%) and large (> 200%) mechanical stimuli. Intrinsic dynamic interactions endow the elastomer with efficient room temperature self-healing and complete recyclability without compromising performance. First-principles simulations clarify the mechanisms behind micropore formation and the resulting functionality. Beyond its facile and mild fabrication process, this work establishes a scalable route toward high-performance, sustainable conductive elastomers tailored for next-generation soft electronics.
Highlights:
1 Biomass-derived conductive elastomer featuring dynamic networks and microporous architecture enables ultralight and highly mechanosensitive soft electronics.
2 Micro-spring-like porous structure imparts excellent stretchability, superior resilience, and rapid and precise electrical responsiveness under subtle and large mechanical stimuli.
3 Intrinsic dynamic interactions enable efficient room temperature self-healing and full recyclability, promoting sustainable and scalable fabrication of advanced flexible electronics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Tang, J. Li, R. Wang, J. Zhang, Y. Lu et al., Current trends in bio-based elastomer materials. SusMat 2(1), 2–33 (2022). https://doi.org/10.1002/sus2.45
- J. Yuan, Y. Zhang, G. Li, S. Liu, R. Zhu, Printable and stretchable conductive elastomers for monitoring dynamic strain with high fidelity. Adv. Funct. Mater. 32(34), 2204878 (2022). https://doi.org/10.1002/adfm.202204878
- D. Pei, S. Yu, P. Liu, Y. Wu, X. Zhang et al., Reversible wet-adhesive and self-healing conductive composite elastomer of liquid metal. Adv. Funct. Mater. 32(35), 2204257 (2022). https://doi.org/10.1002/adfm.202204257
- Y. Guo, Q. Qin, Z. Han, R. Plamthottam, M. Possinger et al., Dielectric elastomer artificial muscle materials advancement and soft robotic applications. SmartMat 4(4), e1203 (2023). https://doi.org/10.1002/smm2.1203
- P. Xu, S. Wang, A. Lin, H.-K. Min, Z. Zhou et al., Conductive and elastic bottlebrush elastomers for ultrasoft electronics. Nat. Commun. 14, 623 (2023). https://doi.org/10.1038/s41467-023-36214-8
- W. Wu, J. Fan, C. Zeng, X. Cheng, X. Liu et al., Soft, tough, antifatigue fracture elastomer composites with low thermal resistance through synergistic crack pinning and interfacial slippage. Adv. Mater. 36(40), 2403661 (2024). https://doi.org/10.1002/adma.202403661
- B. Yiming, S. Hubert, A. Cartier, B. Bresson, G. Mello et al., Elastic, strong and tough ionically conductive elastomers. Nat. Commun. 16, 431 (2025). https://doi.org/10.1038/s41467-024-55472-8
- E.J. Markvicka, R. Tutika, M.D. Bartlett, C. Majidi, Soft electronic skin for multi-site damage detection and localization. Adv. Funct. Mater. 29(29), 1900160 (2019). https://doi.org/10.1002/adfm.201900160
- T. Yimyai, D. Crespy, A. Pena-Francesch, Self-healing photochromic elastomer composites for wearable UV-sensors. Adv. Funct. Mater. 33(20), 2213717 (2023). https://doi.org/10.1002/adfm.202213717
- J. Wang, M.-F. Lin, S. Park, P.S. Lee, Deformable conductors for human–machine interface. Mater. Today 21(5), 508–526 (2018). https://doi.org/10.1016/j.mattod.2017.12.006
- Y. He, Y. Cheng, C. Yang, C.F. Guo, Creep-free polyelectrolyte elastomer for drift-free iontronic sensing. Nat. Mater. 23(8), 1107–1114 (2024). https://doi.org/10.1038/s41563-024-01848-6
- Y. Yu, X. Liao, W. Feng, Recent development of elastomer-based smart sensing materials and structures. Adv. Compos. Hybrid Mater. 8(1), 138 (2025). https://doi.org/10.1007/s42114-024-01168-y
- X. Xun, X. Zhao, Q. Li, B. Zhao, T. Ouyang et al., Tough and degradable self-healing elastomer from synergistic soft–hard segments design for biomechano-robust artificial skin. ACS Nano 15(12), 20656–20665 (2021). https://doi.org/10.1021/acsnano.1c09732
- X. Guo, J. Liang, Z. Wang, J. Qin, Q. Zhang et al., Tough, recyclable, and degradable elastomers for potential biomedical applications. Adv. Mater. 35(20), 2210092 (2023). https://doi.org/10.1002/adma.202210092
- Q. Liu, L. Jiang, R. Shi, L. Zhang, Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers: a review. Prog. Polym. Sci. 37(5), 715–765 (2012). https://doi.org/10.1016/j.progpolymsci.2011.11.001
- Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14(1), 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
- J.-H. Lee, K. Cho, J.-K. Kim, Age of flexible electronics: emerging trends in soft multifunctional sensors. Adv. Mater. 36(16), e2310505 (2024). https://doi.org/10.1002/adma.202310505
- W.B. Han, G.-J. Ko, K.-G. Lee, D. Kim, J.H. Lee et al., Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat. Commun. 14(1), 2263 (2023). https://doi.org/10.1038/s41467-023-38040-4
- S. Chen, Z. Wu, C. Chu, Y. Ni, R.E. Neisiany et al., Biodegradable elastomers and gels for elastic electronics. Adv. Sci. 9(13), 2105146 (2022). https://doi.org/10.1002/advs.202105146
- Q. Liu, P. Lou, Z. Sun, D. Li, H. Ji et al., Bio-based elastomers: design, properties, and biomedical applications. Adv. Mater. 37(22), 2417193 (2025). https://doi.org/10.1002/adma.202417193
- D. Sun, J. Mo, W. Liu, N. Yan, X. Qiu, Ultra-strong and tough bio-based polyester elastomer with excellent photothermal shape memory effect and degradation performance. Adv. Funct. Mater. 34(39), 2403333 (2024). https://doi.org/10.1002/adfm.202403333
- E. Siéfert, E. Reyssat, J. Bico, B. Roman, Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 18(1), 24–28 (2019). https://doi.org/10.1038/s41563-018-0219-x
- J. You, M. Li, B. Ding, X. Wu, C. Li, Crab chitin-based 2D soft nanomaterials for fully biobased electric devices. Adv. Mater. 29(19), 1606895 (2017). https://doi.org/10.1002/adma.201606895
- S. Xu, D.M. Vogt, W.-H. Hsu, J. Osborne, T. Walsh et al., Biocompatible soft fluidic strain and force sensors for wearable devices. Adv. Funct. Mater. 29(7), 201807058 (2019). https://doi.org/10.1002/adfm.201807058
- M. Chao, P. Di, Y. Yuan, Y. Xu, L. Zhang et al., Flexible breathable photothermal-therapy epidermic sensor with MXene for ultrasensitive wearable human-machine interaction. Nano Energy 108, 108201 (2023). https://doi.org/10.1016/j.nanoen.2023.108201
- J. Liang, L. Li, D. Chen, T. Hajagos, Z. Ren et al., Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat. Commun. 6, 7647 (2015). https://doi.org/10.1038/ncomms8647
- H. Kim, G. Kim, J.H. Kang, M.J. Oh, N. Qaiser et al., Intrinsically conductive and highly stretchable liquid metal/carbon nanotube/elastomer composites for strain sensing and electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 8(1), 14 (2024). https://doi.org/10.1007/s42114-024-01093-0
- X. Mou, Z. Yang, X. Lai, J. Ding, Y. Chen et al., Self-healing and reprocessable biobased non-isocyanate polyurethane elastomer with dual dynamic covalent adaptive network for flexible strain sensor. Chem. Eng. J. 493, 152876 (2024). https://doi.org/10.1016/j.cej.2024.152876
- Research briefing, Strain-resilient porous conductors with fewer nanofillers from in situ phase separation. Nat. Nanotechnol. 19(8), 1089–1090 (2024). https://doi.org/10.1038/s41565-024-01661-x
- R. Ma, S.-Y. Chou, Y. Xie, Q. Pei, Morphological/nanostructural control toward intrinsically stretchable organic electronics. Chem. Soc. Rev. 48(6), 1741–1786 (2019). https://doi.org/10.1039/c8cs00834e
- M. Zhang, Y. Yang, M. Li, Q. Shang, R. Xie et al., Toughening double-network hydrogels by polyelectrolytes. Adv. Mater. 35(26), e2301551 (2023). https://doi.org/10.1002/adma.202301551
- H. Wang, L. Zhang, Z. Su, C. Chen, W. Yang et al., Bio-based polyurethane triboelectric nanogenerator with superior low-temperature self-healing performance for unmanned surveillance. Nano Energy 130, 110144 (2024). https://doi.org/10.1016/j.nanoen.2024.110144
- K. Zhang, J. Zhang, Y. Liu, Z. Wang, C. Yan et al., A NIR laser induced self-healing PDMS/Gold nanops conductive elastomer for wearable sensor. J. Colloid Interface Sci. 599, 360–369 (2021). https://doi.org/10.1016/j.jcis.2021.04.117
- K.-X. Hou, S.-P. Zhao, D.-P. Wang, P.-C. Zhao, C.-H. Li et al., A puncture-resistant and self-healing conductive gel for multifunctional electronic skin. Adv. Funct. Mater. 31(49), 2107006 (2021). https://doi.org/10.1002/adfm.202107006
- D. Woo, N. Kang, H. Park, S. Myoung, G. Lee et al., Biomass-derived closed-loop recyclable chemically crosslinked polymer composites for green soft electronics. Chem. Eng. J. 488, 150818 (2024). https://doi.org/10.1016/j.cej.2024.150818
- Q. Han, C. Zhang, T. Guo, Y. Tian, W. Song et al., Hydrogel nanoarchitectonics of a flexible and self-adhesive electrode for long-term wireless electroencephalogram recording and high-accuracy sustained attention evaluation. Adv. Mater. 35(12), 2209606 (2023). https://doi.org/10.1002/adma.202209606
- X. Li, M. Jiang, Y. Du, X. Ding, C. Xiao et al., Self-healing liquid metal hydrogel for human-computer interaction and infrared camouflage. Mater. Horiz. 10(8), 2945–2957 (2023). https://doi.org/10.1039/d3mh00341h
- X. Dou, Z. Chen, F. Ren, L. He, J. Chen et al., Dielectric elastomer network with large side groups achieves large electroactive deformation for soft robotic grippers. Adv. Funct. Mater. 34(44), 2407049 (2024). https://doi.org/10.1002/adfm.202407049
- X. Li, J. Wang, W. Wang, H. Zhang, Y. Jiao et al., A durable metalgel maintaining 3 × 106 S∙M-1 conductivity under 1 000 000 stretching cycles. Adv. Mater. 37(20), e2420628 (2025). https://doi.org/10.1002/adma.202420628
- Z. Qin, X. Chen, Y. Lv, B. Zhao, X. Fang et al., Wearable and high-performance piezoresistive sensor based on nanofiber/sodium alginate synergistically enhanced MXene composite aerogel. Chem. Eng. J. 451, 138586 (2023). https://doi.org/10.1016/j.cej.2022.138586
- J. Huang, J. Li, X. Xu, L. Hua, Z. Lu, In situ loading of polypyrrole onto aramid nanofiber and carbon nanotube aerogel fibers as physiology and motion sensors. ACS Nano 16(5), 8161–8171 (2022). https://doi.org/10.1021/acsnano.2c01540
- S. Liu, S. Yin, J. Duvigneau, G.J. Vancso, Bubble seeding nanocavities: multiple polymer foam cell nucleation by polydimethylsiloxane-grafted designer silica nanops. ACS Nano 14(2), 1623–1634 (2020). https://doi.org/10.1021/acsnano.9b06837
- Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014). https://doi.org/10.1038/ncomms6802
- Z.-L. Yu, B. Qin, Z.-Y. Ma, J. Huang, S.-C. Li et al., Superelastic hard carbon nanofiber aerogels. Adv. Mater. 31(23), 1900651 (2019). https://doi.org/10.1002/adma.201900651
- Y. Ma, Z. Zhao, Z. Zheng, J. Li, M.-H. Li et al., High-performance poly(thioctic acid)-based thermosets featuring upcycling ability for in situ foaming enabled by dual-dynamic networks. Matter 7(11), 4046–4058 (2024). https://doi.org/10.1016/j.matt.2024.08.008
- M.S. Kim, H. Chang, L. Zheng, Q. Yan, B.F. Pfleger et al., A review of biodegradable plastics: chemistry, applications, properties, and future research needs. Chem. Rev. 123(16), 9915–9939 (2023). https://doi.org/10.1021/acs.chemrev.2c00876
- G. Wang, M. Dong, H. Deng, X. Ma, B. Zhu et al., Polypropylene foaming using supercritical carbon dioxide: a review on fundamentals, technology, and applications. Adv. Compos. Hybrid Mater. 8(1), 84 (2024). https://doi.org/10.1007/s42114-024-01117-9
- M. Dong, G. Wang, X. Zhang, D. Tan et al., An overview of polymer foaming assisted by supercritical fluid. Adv. Compos. Hybrid Mater. 6(6), 207 (2023). https://doi.org/10.1007/s42114-023-00790-6
- F. Monie, T. Vidil, B. Grignard, H. Cramail, C. Detrembleur, Self-foaming polymers: opportunities for the next generation of personal protective equipment. Mater. Sci. Eng. R. Rep. 145, 100628 (2021). https://doi.org/10.1016/j.mser.2021.100628
- M. Nabeel, M. Mousa, B. Viskolcz, B. Fiser, L. Vanyorek, Recent advances in flexible foam pressure sensors: manufacturing, characterization, and applications–a review. Polym. Rev. 64(2), 449–489 (2024). https://doi.org/10.1080/15583724.2023.2262558
- C. Xie, S. Liu, Q. Zhang, H. Ma, S. Yang et al., Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing-drying method. ACS Nano 15(6), 10000–10009 (2021). https://doi.org/10.1021/acsnano.1c01551
- P. Wang, D.B. Berry, Z. Song, W. Kiratitanaporn, J. Schimelman et al., 3D printing of a biocompatible double network elastomer with digital control of mechanical properties. Adv. Funct. Mater. 30(14), 1910391 (2020). https://doi.org/10.1002/adfm.201910391
- V. Kumar, N.P. Suh, A process for making microcellular thermoplastic parts. Polym. Eng. Sci. 30(20), 1323–1329 (1990). https://doi.org/10.1002/pen.760302010
- G. Kresse, J. Hafner, Ab initiomolecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993). https://doi.org/10.1103/physrevb.47.558
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- W. Xun, C. Wu, H. Sun, W. Zhang, Y.-Z. Wu et al., Coexisting magnetism, ferroelectric, and ferrovalley multiferroic in stacking-dependent two-dimensional materials. Nano Lett. 24(11), 3541–3547 (2024). https://doi.org/10.1021/acs.nanolett.4c00597
- Y. Wang, H. Sun, C. Wu, W. Zhang, S.-D. Guo et al., Multifield tunable valley splitting and anomalous valley Hall effect in two-dimensional antiferromagnetic MnBr. Phys. Rev. B 111(8), 085432 (2025). https://doi.org/10.1103/physrevb.111.085432
- C. Wu, H. Sun, P. Dong, Y.-Z. Wu, P. Li, Coexisting triferroic and multiple types of valley polarization by structural phase transition in 2D materials. Adv. Funct. Mater. 35(31), 2501506 (2025). https://doi.org/10.1002/adfm.202501506
- X. Wang, Q. Wang, P. Wang, M. Zhou, B. Xu et al., A soft multifunctional film from chitosan modified with disulfide bond cross-links and prepared by a simple method. Int. J. Biol. Macromol. 253, 126774 (2023). https://doi.org/10.1016/j.ijbiomac.2023.126774
- H. Li, J. Sun, S. Qin, Y. Song, Z. Liu et al., Zwitterion functionalized graphene oxide/polyacrylamide/polyacrylic acid hydrogels with photothermal conversion and antibacterial properties for highly efficient uranium extraction from seawater. Adv. Funct. Mater. 33(32), 2301773 (2023). https://doi.org/10.1002/adfm.202301773
- Y. Li, Y.-Q. Liang, X.-M. Mao, H. Li, Efficient removal of Cu(II) from an aqueous solution using a novel chitosan assisted EDTA-intercalated hydrotalcite-like compound composite: preparation, characterization, and adsorption mechanism. Chem. Eng. J. 438, 135531 (2022). https://doi.org/10.1016/j.cej.2022.135531
- Y. Shang, C. Wu, C. Hang, H. Lu, Q. Wang, Hofmeister-effect-guided ionohydrogel design as printable bioelectronic devices. Adv. Mater. 32(30), e2000189 (2020). https://doi.org/10.1002/adma.202000189
- Z. Lei, P. Wu, A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nat. Commun. 10(1), 3429 (2019). https://doi.org/10.1038/s41467-019-11364-w
- C.-Y. Shi, Q. Zhang, B.-S. Wang, M. Chen, D.-H. Qu, Intrinsically photopolymerizable dynamic polymers derived from a natural small molecule. ACS Appl. Mater. Interfaces 13(37), 44860–44867 (2021). https://doi.org/10.1021/acsami.1c11679
- J. Luo, Z. Shen, W. Jian, S. Wang, Y. Li et al., A facile strategy to fabricate stretchable, low hysteresis and adhesive zwitterionic elastomers by concentration-induced polymerization for wound healing. Chem. Eng. J. 496, 153804 (2024). https://doi.org/10.1016/j.cej.2024.153804
- S. Liu, S. de Beer, K.M. Batenburg, H. Gojzewski, J. Duvigneau et al., Designer core–shell nanops as polymer foam cell nucleating agents: the impact of molecularly engineered interfaces. ACS Appl. Mater. Interfaces 13(14), 17034–17045 (2021). https://doi.org/10.1021/acsami.1c00569
- S. Liu, R. Eijkelenkamp, J. Duvigneau, G.J. Vancso, Silica-assisted nucleation of polymer foam cells with nanoscopic dimensions: impact of p size, line tension, and surface functionality. ACS Appl. Mater. Interfaces 9(43), 37929–37940 (2017). https://doi.org/10.1021/acsami.7b11248
- T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15(1), 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
- S. Liu, Y. Li, W. Jun, Z. Shen, M. Qiu et al., Versatile stretchable conductor with exceptional resilience and rapid rebound capabilities: toward sustainable and damage-resistant soft electronics. Adv. Funct. Mater. 34(16), 2313397 (2024). https://doi.org/10.1002/adfm.202313397
- D. Yang, K. Zhao, R. Yang, S.-W. Zhou, M. Chen et al., A rational design of bio-derived disulfide CANs for wearable capacitive pressure sensor. Adv. Mater. 36(30), 2403880 (2024). https://doi.org/10.1002/adma.202403880
- Y. Deng, Q. Zhang, D.-H. Qu, Emerging hydrogen-bond design for high-performance dynamic polymeric materials. ACS Mater. Lett. 5(2), 480–490 (2023). https://doi.org/10.1021/acsmaterialslett.2c00865
- Q. Zhang, D.-H. Qu, B.L. Feringa, H. Tian, Disulfide-mediated reversible polymerization toward intrinsically dynamic smart materials. J. Am. Chem. Soc. 144(5), 2022–2033 (2022). https://doi.org/10.1021/jacs.1c10359
References
S. Tang, J. Li, R. Wang, J. Zhang, Y. Lu et al., Current trends in bio-based elastomer materials. SusMat 2(1), 2–33 (2022). https://doi.org/10.1002/sus2.45
J. Yuan, Y. Zhang, G. Li, S. Liu, R. Zhu, Printable and stretchable conductive elastomers for monitoring dynamic strain with high fidelity. Adv. Funct. Mater. 32(34), 2204878 (2022). https://doi.org/10.1002/adfm.202204878
D. Pei, S. Yu, P. Liu, Y. Wu, X. Zhang et al., Reversible wet-adhesive and self-healing conductive composite elastomer of liquid metal. Adv. Funct. Mater. 32(35), 2204257 (2022). https://doi.org/10.1002/adfm.202204257
Y. Guo, Q. Qin, Z. Han, R. Plamthottam, M. Possinger et al., Dielectric elastomer artificial muscle materials advancement and soft robotic applications. SmartMat 4(4), e1203 (2023). https://doi.org/10.1002/smm2.1203
P. Xu, S. Wang, A. Lin, H.-K. Min, Z. Zhou et al., Conductive and elastic bottlebrush elastomers for ultrasoft electronics. Nat. Commun. 14, 623 (2023). https://doi.org/10.1038/s41467-023-36214-8
W. Wu, J. Fan, C. Zeng, X. Cheng, X. Liu et al., Soft, tough, antifatigue fracture elastomer composites with low thermal resistance through synergistic crack pinning and interfacial slippage. Adv. Mater. 36(40), 2403661 (2024). https://doi.org/10.1002/adma.202403661
B. Yiming, S. Hubert, A. Cartier, B. Bresson, G. Mello et al., Elastic, strong and tough ionically conductive elastomers. Nat. Commun. 16, 431 (2025). https://doi.org/10.1038/s41467-024-55472-8
E.J. Markvicka, R. Tutika, M.D. Bartlett, C. Majidi, Soft electronic skin for multi-site damage detection and localization. Adv. Funct. Mater. 29(29), 1900160 (2019). https://doi.org/10.1002/adfm.201900160
T. Yimyai, D. Crespy, A. Pena-Francesch, Self-healing photochromic elastomer composites for wearable UV-sensors. Adv. Funct. Mater. 33(20), 2213717 (2023). https://doi.org/10.1002/adfm.202213717
J. Wang, M.-F. Lin, S. Park, P.S. Lee, Deformable conductors for human–machine interface. Mater. Today 21(5), 508–526 (2018). https://doi.org/10.1016/j.mattod.2017.12.006
Y. He, Y. Cheng, C. Yang, C.F. Guo, Creep-free polyelectrolyte elastomer for drift-free iontronic sensing. Nat. Mater. 23(8), 1107–1114 (2024). https://doi.org/10.1038/s41563-024-01848-6
Y. Yu, X. Liao, W. Feng, Recent development of elastomer-based smart sensing materials and structures. Adv. Compos. Hybrid Mater. 8(1), 138 (2025). https://doi.org/10.1007/s42114-024-01168-y
X. Xun, X. Zhao, Q. Li, B. Zhao, T. Ouyang et al., Tough and degradable self-healing elastomer from synergistic soft–hard segments design for biomechano-robust artificial skin. ACS Nano 15(12), 20656–20665 (2021). https://doi.org/10.1021/acsnano.1c09732
X. Guo, J. Liang, Z. Wang, J. Qin, Q. Zhang et al., Tough, recyclable, and degradable elastomers for potential biomedical applications. Adv. Mater. 35(20), 2210092 (2023). https://doi.org/10.1002/adma.202210092
Q. Liu, L. Jiang, R. Shi, L. Zhang, Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers: a review. Prog. Polym. Sci. 37(5), 715–765 (2012). https://doi.org/10.1016/j.progpolymsci.2011.11.001
Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14(1), 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
J.-H. Lee, K. Cho, J.-K. Kim, Age of flexible electronics: emerging trends in soft multifunctional sensors. Adv. Mater. 36(16), e2310505 (2024). https://doi.org/10.1002/adma.202310505
W.B. Han, G.-J. Ko, K.-G. Lee, D. Kim, J.H. Lee et al., Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat. Commun. 14(1), 2263 (2023). https://doi.org/10.1038/s41467-023-38040-4
S. Chen, Z. Wu, C. Chu, Y. Ni, R.E. Neisiany et al., Biodegradable elastomers and gels for elastic electronics. Adv. Sci. 9(13), 2105146 (2022). https://doi.org/10.1002/advs.202105146
Q. Liu, P. Lou, Z. Sun, D. Li, H. Ji et al., Bio-based elastomers: design, properties, and biomedical applications. Adv. Mater. 37(22), 2417193 (2025). https://doi.org/10.1002/adma.202417193
D. Sun, J. Mo, W. Liu, N. Yan, X. Qiu, Ultra-strong and tough bio-based polyester elastomer with excellent photothermal shape memory effect and degradation performance. Adv. Funct. Mater. 34(39), 2403333 (2024). https://doi.org/10.1002/adfm.202403333
E. Siéfert, E. Reyssat, J. Bico, B. Roman, Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 18(1), 24–28 (2019). https://doi.org/10.1038/s41563-018-0219-x
J. You, M. Li, B. Ding, X. Wu, C. Li, Crab chitin-based 2D soft nanomaterials for fully biobased electric devices. Adv. Mater. 29(19), 1606895 (2017). https://doi.org/10.1002/adma.201606895
S. Xu, D.M. Vogt, W.-H. Hsu, J. Osborne, T. Walsh et al., Biocompatible soft fluidic strain and force sensors for wearable devices. Adv. Funct. Mater. 29(7), 201807058 (2019). https://doi.org/10.1002/adfm.201807058
M. Chao, P. Di, Y. Yuan, Y. Xu, L. Zhang et al., Flexible breathable photothermal-therapy epidermic sensor with MXene for ultrasensitive wearable human-machine interaction. Nano Energy 108, 108201 (2023). https://doi.org/10.1016/j.nanoen.2023.108201
J. Liang, L. Li, D. Chen, T. Hajagos, Z. Ren et al., Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat. Commun. 6, 7647 (2015). https://doi.org/10.1038/ncomms8647
H. Kim, G. Kim, J.H. Kang, M.J. Oh, N. Qaiser et al., Intrinsically conductive and highly stretchable liquid metal/carbon nanotube/elastomer composites for strain sensing and electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 8(1), 14 (2024). https://doi.org/10.1007/s42114-024-01093-0
X. Mou, Z. Yang, X. Lai, J. Ding, Y. Chen et al., Self-healing and reprocessable biobased non-isocyanate polyurethane elastomer with dual dynamic covalent adaptive network for flexible strain sensor. Chem. Eng. J. 493, 152876 (2024). https://doi.org/10.1016/j.cej.2024.152876
Research briefing, Strain-resilient porous conductors with fewer nanofillers from in situ phase separation. Nat. Nanotechnol. 19(8), 1089–1090 (2024). https://doi.org/10.1038/s41565-024-01661-x
R. Ma, S.-Y. Chou, Y. Xie, Q. Pei, Morphological/nanostructural control toward intrinsically stretchable organic electronics. Chem. Soc. Rev. 48(6), 1741–1786 (2019). https://doi.org/10.1039/c8cs00834e
M. Zhang, Y. Yang, M. Li, Q. Shang, R. Xie et al., Toughening double-network hydrogels by polyelectrolytes. Adv. Mater. 35(26), e2301551 (2023). https://doi.org/10.1002/adma.202301551
H. Wang, L. Zhang, Z. Su, C. Chen, W. Yang et al., Bio-based polyurethane triboelectric nanogenerator with superior low-temperature self-healing performance for unmanned surveillance. Nano Energy 130, 110144 (2024). https://doi.org/10.1016/j.nanoen.2024.110144
K. Zhang, J. Zhang, Y. Liu, Z. Wang, C. Yan et al., A NIR laser induced self-healing PDMS/Gold nanops conductive elastomer for wearable sensor. J. Colloid Interface Sci. 599, 360–369 (2021). https://doi.org/10.1016/j.jcis.2021.04.117
K.-X. Hou, S.-P. Zhao, D.-P. Wang, P.-C. Zhao, C.-H. Li et al., A puncture-resistant and self-healing conductive gel for multifunctional electronic skin. Adv. Funct. Mater. 31(49), 2107006 (2021). https://doi.org/10.1002/adfm.202107006
D. Woo, N. Kang, H. Park, S. Myoung, G. Lee et al., Biomass-derived closed-loop recyclable chemically crosslinked polymer composites for green soft electronics. Chem. Eng. J. 488, 150818 (2024). https://doi.org/10.1016/j.cej.2024.150818
Q. Han, C. Zhang, T. Guo, Y. Tian, W. Song et al., Hydrogel nanoarchitectonics of a flexible and self-adhesive electrode for long-term wireless electroencephalogram recording and high-accuracy sustained attention evaluation. Adv. Mater. 35(12), 2209606 (2023). https://doi.org/10.1002/adma.202209606
X. Li, M. Jiang, Y. Du, X. Ding, C. Xiao et al., Self-healing liquid metal hydrogel for human-computer interaction and infrared camouflage. Mater. Horiz. 10(8), 2945–2957 (2023). https://doi.org/10.1039/d3mh00341h
X. Dou, Z. Chen, F. Ren, L. He, J. Chen et al., Dielectric elastomer network with large side groups achieves large electroactive deformation for soft robotic grippers. Adv. Funct. Mater. 34(44), 2407049 (2024). https://doi.org/10.1002/adfm.202407049
X. Li, J. Wang, W. Wang, H. Zhang, Y. Jiao et al., A durable metalgel maintaining 3 × 106 S∙M-1 conductivity under 1 000 000 stretching cycles. Adv. Mater. 37(20), e2420628 (2025). https://doi.org/10.1002/adma.202420628
Z. Qin, X. Chen, Y. Lv, B. Zhao, X. Fang et al., Wearable and high-performance piezoresistive sensor based on nanofiber/sodium alginate synergistically enhanced MXene composite aerogel. Chem. Eng. J. 451, 138586 (2023). https://doi.org/10.1016/j.cej.2022.138586
J. Huang, J. Li, X. Xu, L. Hua, Z. Lu, In situ loading of polypyrrole onto aramid nanofiber and carbon nanotube aerogel fibers as physiology and motion sensors. ACS Nano 16(5), 8161–8171 (2022). https://doi.org/10.1021/acsnano.2c01540
S. Liu, S. Yin, J. Duvigneau, G.J. Vancso, Bubble seeding nanocavities: multiple polymer foam cell nucleation by polydimethylsiloxane-grafted designer silica nanops. ACS Nano 14(2), 1623–1634 (2020). https://doi.org/10.1021/acsnano.9b06837
Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014). https://doi.org/10.1038/ncomms6802
Z.-L. Yu, B. Qin, Z.-Y. Ma, J. Huang, S.-C. Li et al., Superelastic hard carbon nanofiber aerogels. Adv. Mater. 31(23), 1900651 (2019). https://doi.org/10.1002/adma.201900651
Y. Ma, Z. Zhao, Z. Zheng, J. Li, M.-H. Li et al., High-performance poly(thioctic acid)-based thermosets featuring upcycling ability for in situ foaming enabled by dual-dynamic networks. Matter 7(11), 4046–4058 (2024). https://doi.org/10.1016/j.matt.2024.08.008
M.S. Kim, H. Chang, L. Zheng, Q. Yan, B.F. Pfleger et al., A review of biodegradable plastics: chemistry, applications, properties, and future research needs. Chem. Rev. 123(16), 9915–9939 (2023). https://doi.org/10.1021/acs.chemrev.2c00876
G. Wang, M. Dong, H. Deng, X. Ma, B. Zhu et al., Polypropylene foaming using supercritical carbon dioxide: a review on fundamentals, technology, and applications. Adv. Compos. Hybrid Mater. 8(1), 84 (2024). https://doi.org/10.1007/s42114-024-01117-9
M. Dong, G. Wang, X. Zhang, D. Tan et al., An overview of polymer foaming assisted by supercritical fluid. Adv. Compos. Hybrid Mater. 6(6), 207 (2023). https://doi.org/10.1007/s42114-023-00790-6
F. Monie, T. Vidil, B. Grignard, H. Cramail, C. Detrembleur, Self-foaming polymers: opportunities for the next generation of personal protective equipment. Mater. Sci. Eng. R. Rep. 145, 100628 (2021). https://doi.org/10.1016/j.mser.2021.100628
M. Nabeel, M. Mousa, B. Viskolcz, B. Fiser, L. Vanyorek, Recent advances in flexible foam pressure sensors: manufacturing, characterization, and applications–a review. Polym. Rev. 64(2), 449–489 (2024). https://doi.org/10.1080/15583724.2023.2262558
C. Xie, S. Liu, Q. Zhang, H. Ma, S. Yang et al., Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing-drying method. ACS Nano 15(6), 10000–10009 (2021). https://doi.org/10.1021/acsnano.1c01551
P. Wang, D.B. Berry, Z. Song, W. Kiratitanaporn, J. Schimelman et al., 3D printing of a biocompatible double network elastomer with digital control of mechanical properties. Adv. Funct. Mater. 30(14), 1910391 (2020). https://doi.org/10.1002/adfm.201910391
V. Kumar, N.P. Suh, A process for making microcellular thermoplastic parts. Polym. Eng. Sci. 30(20), 1323–1329 (1990). https://doi.org/10.1002/pen.760302010
G. Kresse, J. Hafner, Ab initiomolecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993). https://doi.org/10.1103/physrevb.47.558
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
W. Xun, C. Wu, H. Sun, W. Zhang, Y.-Z. Wu et al., Coexisting magnetism, ferroelectric, and ferrovalley multiferroic in stacking-dependent two-dimensional materials. Nano Lett. 24(11), 3541–3547 (2024). https://doi.org/10.1021/acs.nanolett.4c00597
Y. Wang, H. Sun, C. Wu, W. Zhang, S.-D. Guo et al., Multifield tunable valley splitting and anomalous valley Hall effect in two-dimensional antiferromagnetic MnBr. Phys. Rev. B 111(8), 085432 (2025). https://doi.org/10.1103/physrevb.111.085432
C. Wu, H. Sun, P. Dong, Y.-Z. Wu, P. Li, Coexisting triferroic and multiple types of valley polarization by structural phase transition in 2D materials. Adv. Funct. Mater. 35(31), 2501506 (2025). https://doi.org/10.1002/adfm.202501506
X. Wang, Q. Wang, P. Wang, M. Zhou, B. Xu et al., A soft multifunctional film from chitosan modified with disulfide bond cross-links and prepared by a simple method. Int. J. Biol. Macromol. 253, 126774 (2023). https://doi.org/10.1016/j.ijbiomac.2023.126774
H. Li, J. Sun, S. Qin, Y. Song, Z. Liu et al., Zwitterion functionalized graphene oxide/polyacrylamide/polyacrylic acid hydrogels with photothermal conversion and antibacterial properties for highly efficient uranium extraction from seawater. Adv. Funct. Mater. 33(32), 2301773 (2023). https://doi.org/10.1002/adfm.202301773
Y. Li, Y.-Q. Liang, X.-M. Mao, H. Li, Efficient removal of Cu(II) from an aqueous solution using a novel chitosan assisted EDTA-intercalated hydrotalcite-like compound composite: preparation, characterization, and adsorption mechanism. Chem. Eng. J. 438, 135531 (2022). https://doi.org/10.1016/j.cej.2022.135531
Y. Shang, C. Wu, C. Hang, H. Lu, Q. Wang, Hofmeister-effect-guided ionohydrogel design as printable bioelectronic devices. Adv. Mater. 32(30), e2000189 (2020). https://doi.org/10.1002/adma.202000189
Z. Lei, P. Wu, A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nat. Commun. 10(1), 3429 (2019). https://doi.org/10.1038/s41467-019-11364-w
C.-Y. Shi, Q. Zhang, B.-S. Wang, M. Chen, D.-H. Qu, Intrinsically photopolymerizable dynamic polymers derived from a natural small molecule. ACS Appl. Mater. Interfaces 13(37), 44860–44867 (2021). https://doi.org/10.1021/acsami.1c11679
J. Luo, Z. Shen, W. Jian, S. Wang, Y. Li et al., A facile strategy to fabricate stretchable, low hysteresis and adhesive zwitterionic elastomers by concentration-induced polymerization for wound healing. Chem. Eng. J. 496, 153804 (2024). https://doi.org/10.1016/j.cej.2024.153804
S. Liu, S. de Beer, K.M. Batenburg, H. Gojzewski, J. Duvigneau et al., Designer core–shell nanops as polymer foam cell nucleating agents: the impact of molecularly engineered interfaces. ACS Appl. Mater. Interfaces 13(14), 17034–17045 (2021). https://doi.org/10.1021/acsami.1c00569
S. Liu, R. Eijkelenkamp, J. Duvigneau, G.J. Vancso, Silica-assisted nucleation of polymer foam cells with nanoscopic dimensions: impact of p size, line tension, and surface functionality. ACS Appl. Mater. Interfaces 9(43), 37929–37940 (2017). https://doi.org/10.1021/acsami.7b11248
T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15(1), 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
S. Liu, Y. Li, W. Jun, Z. Shen, M. Qiu et al., Versatile stretchable conductor with exceptional resilience and rapid rebound capabilities: toward sustainable and damage-resistant soft electronics. Adv. Funct. Mater. 34(16), 2313397 (2024). https://doi.org/10.1002/adfm.202313397
D. Yang, K. Zhao, R. Yang, S.-W. Zhou, M. Chen et al., A rational design of bio-derived disulfide CANs for wearable capacitive pressure sensor. Adv. Mater. 36(30), 2403880 (2024). https://doi.org/10.1002/adma.202403880
Y. Deng, Q. Zhang, D.-H. Qu, Emerging hydrogen-bond design for high-performance dynamic polymeric materials. ACS Mater. Lett. 5(2), 480–490 (2023). https://doi.org/10.1021/acsmaterialslett.2c00865
Q. Zhang, D.-H. Qu, B.L. Feringa, H. Tian, Disulfide-mediated reversible polymerization toward intrinsically dynamic smart materials. J. Am. Chem. Soc. 144(5), 2022–2033 (2022). https://doi.org/10.1021/jacs.1c10359