Regularly Arranged Micropore Architecture Enables Efficient Lithium-Ion Transport in SiOx/Artificial Graphite Composite Electrode
Corresponding Author: Yong Min Lee
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 75
Abstract
To enhance the electrochemical performance of lithium-ion battery anodes with higher silicon content, it is essential to engineer their microstructure for better lithium-ion transport and mitigated volume change as well. Herein, we suggest an effective approach to control the micropore structure of silicon oxide (SiOx)/artificial graphite (AG) composite electrodes using a perforated current collector. The electrode features a unique pore structure, where alternating high-porosity domains and low-porosity domains markedly reduce overall electrode resistance, leading to a 20% improvement in rate capability at a 5C-rate discharge condition. Using microstructure-resolved modeling and simulations, we demonstrate that the patterned micropore structure enhances lithium-ion transport, mitigating the electrolyte concentration gradient of lithium-ion. Additionally, perforating current collector with a chemical etching process increases the number of hydrogen bonding sites and enlarges the interface with the SiOx/AG composite electrode, significantly improving adhesion strength. This, in turn, suppresses mechanical degradation and leads to a 50% higher capacity retention. Thus, regularly arranged micropore structure enabled by the perforated current collector successfully improves both rate capability and cycle life in SiOx/AG composite electrodes, providing valuable insights into electrode engineering.
Highlights:
1 The internal pores of the electrode were engineered into a regularly arranged micropore (RAM) structure by introducing a perforated and surface-modified Cu current collector (pCu).
2 The pore network, favorable for fast ion transport, effectively mitigates concentration polarization and enables uniform ion distribution, contributing to high-rate operation of lithium-ion batteries.
3 The RAM structure, featuring a unique interlocking electrode configuration and hydroxyl-rich pCu surface, suppressed mechanical degradation and improved long-term cyclability by 50%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Hannan, M.S.H. Lipu, A. Hussain, A. Mohamed, A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew. Sustain. Energy Rev. 78, 834–854 (2017). https://doi.org/10.1016/j.rser.2017.05.001
- C. Sun, X. Zhang, C. Li, K. Wang, X. Sun et al., High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Mater. 24, 160–166 (2020). https://doi.org/10.1016/j.ensm.2019.08.023
- K. Naoi, S. Ishimoto, J.-I. Miyamoto, W. Naoi, Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ. Sci. 5(11), 9363 (2012). https://doi.org/10.1039/c2ee21675b
- M. Yang, Y. Zhong, J. Ren, X. Zhou, J. Wei et al., Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage. Adv. Energy Mater. 5(17), 1500550 (2015). https://doi.org/10.1002/aenm.201500550
- Y. Ding, Z.P. Cano, A. Yu, J. Lu, Z. Chen, Automotive Li-ion batteries: current status and future perspectives. Electrochem. Energy Rev. 2(1), 1–28 (2019). https://doi.org/10.1007/s41918-018-0022-z
- R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3(4), 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
- X. Zeng, M. Li, D. Abd El-Hady, W. Alshitari, A.S. Al-Bogami et al., Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 9(27), 1900161 (2019). https://doi.org/10.1002/aenm.201900161
- H.-W. Lee, Y.-M. Lee, Principles and comparative studies of various power measurement methods for lithium secondary batteries. J. Korean Electrochem. Soc. 15(3), 115–123 (2012). https://doi.org/10.5229/jkes.2012.15.3.115
- N. Nitta, G. Yushin, High-capacity anode materials for lithium-ion batteries: choice of elements and structures for active ps. Part. Part. Syst. Charact. 31(3), 317–336 (2014). https://doi.org/10.1002/ppsc.201300231
- S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria et al., Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power. Sources 257, 421–443 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.103
- N. Mahmood, T. Tang, Y. Hou, Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv. Energy Mater. 6(17), 1600374 (2016). https://doi.org/10.1002/aenm.201600374
- Z. Yang, S.E. Trask, J.A. Gilbert, X. Li, Y. Tsai et al., Exploring the promise of multifunctional “zintl-phase-forming” electrolytes for Si-based full cells. ACS Appl. Mater. Interfaces 14(48), 53860–53871 (2022). https://doi.org/10.1021/acsami.2c16420
- M. Khan, S. Yan, M. Ali, F. Mahmood, Y. Zheng et al., Innovative solutions for high-performance silicon anodes in lithium-ion batteries: overcoming challenges and real-world applications. Nano-Micro Lett. 16(1), 179 (2024). https://doi.org/10.1007/s40820-024-01388-3
- J. Park, C. Jeon, W. Kim, S.-J. Bong, S. Jeong et al., Challenges, laser processing and electrochemical characteristics on application of ultra-thick electrode for high-energy lithium-ion battery. J. Power. Sources 482, 228948 (2021). https://doi.org/10.1016/j.jpowsour.2020.228948
- L.S. Kremer, A. Hoffmann, T. Danner, S. Hein, B. Prifling et al., Manufacturing process for improved ultra-thick cathodes in high-energy lithium-ion batteries. Energy Technol. 8(2), 1900167 (2020). https://doi.org/10.1002/ente.201900167
- C.-C. Zhou, Z. Su, X.-L. Gao, R. Cao, S.-C. Yang et al., Ultra-high-energy lithium-ion batteries enabled by aligned structured thick electrode design. Rare Met. 41(1), 14–20 (2022). https://doi.org/10.1007/s12598-021-01785-2
- L. Gottschalk, C. Oertel, N. Strzelczyk, J. Müller, J. Krüger et al., Improving the performance of lithium-ion batteries using a two-layer, hard carbon-containing silicon anode for use in high-energy electrodes. Energy Technol. 11(5), 2200858 (2023). https://doi.org/10.1002/ente.202200858
- J. Ni, Y. Huang, L. Gao, A high-performance hard carbon for Li-ion batteries and supercapacitors application. J. Power. Sources 223, 306–311 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.047
- S.C. Jung, J.W. Choi, Y.-K. Han, Anisotropic volume expansion of crystalline silicon during electrochemical lithium insertion: an atomic level rationale. Nano Lett. 12(10), 5342–5347 (2012). https://doi.org/10.1021/nl3027197
- M.N. Obrovac, L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7(5), A93 (2004). https://doi.org/10.1149/1.1652421
- X. Liu, Z. Xu, A. Iqbal, M. Chen, N. Ali et al., Chemical coupled PEDOT: PSS/Si electrode: suppressed electrolyte consumption enables long-term stability. Nano-Micro Lett. 13(1), 54 (2021). https://doi.org/10.1007/s40820-020-00564-5
- W. Yang, H. Liu, Z. Ren, N. Jian, M. Gao et al., A novel multielement, multiphase, and B-containing SiOx composite as a stable anode material for Li-ion batteries. Adv. Mater. Interfaces 6(5), 1801631 (2019). https://doi.org/10.1002/admi.201801631
- B.-C. Yu, Y. Hwa, C.-M. Park, H.-J. Sohn, Reaction mechanism and enhancement of cyclability of SiO anodes by surface etching with NaOH for Li-ion batteries. J. Mater. Chem. A 1(15), 4820 (2013). https://doi.org/10.1039/c3ta00045a
- C.-M. Park, W. Choi, Y. Hwa, J.-H. Kim, G. Jeong et al., Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries. J. Mater. Chem. 20(23), 4854–4860 (2010). https://doi.org/10.1039/B923926J
- Z. Wang, N. Yang, L. Ren, X. Wang, X. Zhang, Core-shell structured SiOx@C with controllable mesopores as anode materials for lithium-ion batteries. Microporous Mesoporous Mater. 307, 110480 (2020). https://doi.org/10.1016/j.micromeso.2020.110480
- R. Zhang, Z. Xiao, Z. Lin, X. Yan, Z. He et al., Unraveling the fundamental mechanism of interface conductive network influence on the fast-charging performance of SiO-based anode for lithium-ion batteries. Nano-Micro Lett. 16(1), 43 (2023). https://doi.org/10.1007/s40820-023-01267-3
- J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14(1), 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
- M. Liu, J. Liu, Y. Jia, C. Li, A. Zhang et al., Hydrolysis-engineered robust porous micron silicon anode for high-energy lithium-ion batteries. Nano-Micro Lett. 17(1), 297 (2025). https://doi.org/10.1007/s40820-025-01808-y
- C. Luo, H. Zhang, C. Sun, X. Chen, W. Zhang et al., A mechanically robust in situ solidified polymer electrolyte for SiO(x)-based anodes toward high-energy lithium batteries. Nano-Micro Lett. 17(1), 250 (2025). https://doi.org/10.1007/s40820-025-01759-4
- A. Veluchamy, C.-H. Doh, D.-H. Kim, J.-H. Lee, D.-J. Lee et al., Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4SiO4 inert phase for lithium batteries. J. Power. Sources 188(2), 574–577 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.137
- J.-H. Kim, H.-J. Sohn, H. Kim, G. Jeong, W. Choi, Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries. J. Power. Sources 170(2), 456–459 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.081
- J. Wang, H. Zhao, J. He, C. Wang, J. Wang, Nano-sized SiOx/C composite anode for lithium ion batteries. J. Power. Sources 196(10), 4811–4815 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.053
- L. Lee, W.T.A. Ran, J.-H. Lee, S.M. Hwang, Y.-J. Kim, Self-adaptive anode design with graphene-coated SiOx/graphite for high-energy Li-ion batteries. Chem. Eng. J. 442, 136166 (2022). https://doi.org/10.1016/j.cej.2022.136166
- X. Jiao, J. Yin, X. Xu, J. Wang, Y. Liu et al., Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries. Adv. Funct. Mater. 31(3), 2005699 (2021). https://doi.org/10.1002/adfm.202005699
- Z. Zhang, X. Li, H. Yang, K. Fu, Y. Chen et al., Extending the cycling life of lithium–ion batteries with silicon/graphite composite anodes by automatic external stress regulation. Energy Fuels 38(9), 8317–8325 (2024). https://doi.org/10.1021/acs.energyfuels.4c00880
- K.G. Gallagher, S.E. Trask, C. Bauer, T. Woehrle, S.F. Lux et al., Optimizing areal capacities through understanding the limitations of lithium-ion electrodes. J. Electrochem. Soc. 163(2), A138–A149 (2016). https://doi.org/10.1149/2.0321602jes
- Y. Kim, A. Drews, R. Chandrasekaran, T. Miller, J. Sakamoto, Improving li-ion battery charge rate acceptance through highly ordered hierarchical electrode design. Ionics 24(10), 2935–2943 (2018). https://doi.org/10.1007/s11581-018-2502-x
- L. Li, R.M. Erb, J. Wang, J. Wang, Y.-M. Chiang, Fabrication of low-tortuosity ultrahigh-area-capacity battery electrodes through magnetic alignment of emulsion-based slurries. Adv. Energy Mater. 9(2), 1802472 (2019). https://doi.org/10.1002/aenm.201802472
- C. Heubner, M. Schneider, A. Michaelis, Diffusion-limited C-rate: a fundamental principle quantifying the intrinsic limits of Li-ion batteries. Adv. Energy Mater. 10(2), 1902523 (2020). https://doi.org/10.1002/aenm.201902523
- D.-H. Kim, S. Hwang, J.-J. Cho, S. Yu, S. Kim et al., Toward fast operation of lithium batteries: ion activity as the factor to determine the concentration polarization. ACS Energy Lett. 4(6), 1265–1270 (2019). https://doi.org/10.1021/acsenergylett.9b00724
- Z. Han, P. Maitarad, N. Yodsin, B. Zhao, H. Ma et al., Catalysis-induced highly-stable interface on porous silicon for high-rate lithium-ion batteries. Nano-Micro Lett. 17(1), 200 (2025). https://doi.org/10.1007/s40820-025-01701-8
- K.-H. Chen, M.J. Namkoong, V. Goel, C. Yang, S. Kazemiabnavi et al., Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures. J. Power. Sources 471, 228475 (2020). https://doi.org/10.1016/j.jpowsour.2020.228475
- J.S. Sander, R.M. Erb, L. Li, A. Gurijala, Y.-M. Chiang, High-performance battery electrodes via magnetic templating. Nat. Energy 1(8), 16099 (2016). https://doi.org/10.1038/nenergy.2016.99
- D. Dang, Y. Wang, S. Gao, Y.-T. Cheng, Freeze-dried low-tortuous graphite electrodes with enhanced capacity utilization and rate capability. Carbon 159, 133–139 (2020). https://doi.org/10.1016/j.carbon.2019.12.036
- S. Choi, N. Kim, D. Jin, Y. Roh, D. Kang et al., Systematic study on Li dendrite growth and suppression in pouch-type lithium-ion batteries with misaligned electrode pairs. J. Power. Sources 579, 233265 (2023). https://doi.org/10.1016/j.jpowsour.2023.233265
- A. Rabbani, S. Jamshidi, S. Salehi, An automated simple algorithm for realistic pore network extraction from micro-tomography images. J. Petrol. Sci. Eng. 123, 164–171 (2014). https://doi.org/10.1016/j.petrol.2014.08.020
- M. Doyle, J. Newman, A.S. Gozdz, C.N. Schmutz, J.-M. Tarascon, Comparison of modeling predictions with experimental data from plastic lithium ion cells. J. Electrochem. Soc. 143(6), 1890–1903 (1996). https://doi.org/10.1149/1.1836921
- M. Lee, Y. Shin, H. Chang, D. Jin, H. Lee et al., Diagnosis of current flow patterns inside fault-simulated Li-ion batteries via non-invasive, in operando magnetic field imaging. Small Methods 7(11), 2300748 (2023). https://doi.org/10.1002/smtd.202300748
- J. Lim, J. Song, K.-G. Kim, J.K. Koo, H. Lee et al., Validating the virtual calendering process with 3D-reconstructed composite electrode: an optimization framework for electrode design. Small 21(27), 2410485 (2025). https://doi.org/10.1002/smll.202410485
- J. Kang, J. Lim, H. Lee, S. Park, C. Bak et al., Sequential effect of dual-layered hybrid graphite anodes on electrode utilization during fast-charging Li-ion batteries. Adv. Sci. 11(31), 2470182 (2024). https://doi.org/10.1002/advs.202470182
- G. Li, J.-Y. Li, F.-S. Yue, Q. Xu, T.-T. Zuo et al., Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries. Nano Energy 60, 485–492 (2019). https://doi.org/10.1016/j.nanoen.2019.03.077
- K. Zhang, W. Du, Z. Qian, L. Lin, X. Gu et al., SiOx embedded in N-doped carbon nanoslices: a scalable synthesis of high-performance anode material for lithium-ion batteries. Carbon 178, 202–210 (2021). https://doi.org/10.1016/j.carbon.2021.03.011
- Y. Cho, J. Kim, A. Elabd, S. Choi, K. Park et al., A pyrene-poly(acrylic acid)-polyrotaxane supramolecular binder network for high-performance silicon negative electrodes. Adv. Mater. 31(51), e1905048 (2019). https://doi.org/10.1002/adma.201905048
- M.-Y. Yan, G. Li, J. Zhang, Y.-F. Tian, Y.-X. Yin et al., Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 12(24), 27202–27209 (2020). https://doi.org/10.1021/acsami.0c05153
- H.J. Kim, S. Choi, S.J. Lee, M.W. Seo, J.G. Lee et al., Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett. 16(1), 282–288 (2016). https://doi.org/10.1021/acs.nanolett.5b03776
- S. Fang, N. Li, T. Zheng, Y. Fu, X. Song et al., Highly graphitized carbon coating on SiO with a π⁻π stacking precursor polymer for high performance lithium-ion batteries. Polymers 10(6), 610 (2018). https://doi.org/10.3390/polym10060610
- B. Huang, T. Huang, L. Wan, A. Yu, Pre-lithiating SiO anodes for lithium-ion batteries by a simple, effective, and controllable strategy using stabilized lithium metal powder. ACS Sustain. Chem. Eng. 9(2), 648–657 (2021). https://doi.org/10.1021/acssuschemeng.0c05851
- Y. Zhang, B. Li, B. Tang, Z. Yao, X. Zhang et al., Mechanical constraining double-shell protected Si-based anode material for lithium-ion batteries with long-term cycling stability. J. Alloys Compd. 846, 156437 (2020). https://doi.org/10.1016/j.jallcom.2020.156437
- H. Wu, L. Zheng, J. Zhan, N. Du, W. Liu et al., Recycling silicon-based industrial waste as sustainable sources of Si/SiO2 composites for high-performance Li-ion battery anodes. J. Power. Sources 449, 227513 (2020). https://doi.org/10.1016/j.jpowsour.2019.227513
- J. Liang, X. Li, Z. Hou, W. Zhang, Y. Zhu et al., A deep reduction and partial oxidation strategy for fabrication of mesoporous Si anode for lithium ion batteries. ACS Nano 10(2), 2295–2304 (2016). https://doi.org/10.1021/acsnano.5b06995
- Q. Sun, J. Li, C. Hao, L. Ci, Focusing on the subsequent coulombic efficiencies of SiOx: initial high-temperature charge after over-capacity prelithiation for high-efficiency SiOx-based full-cell battery. ACS Appl. Mater. Interfaces 14(12), 14284–14292 (2022). https://doi.org/10.1021/acsami.2c01392
- A. Shodiev, M. Chouchane, M. Gaberscek, O. Arcelus, J. Xu et al., Deconvoluting the benefits of porosity distribution in layered electrodes on the electrochemical performance of Li-ion batteries. Energy Storage Mater. 47, 462–471 (2022). https://doi.org/10.1016/j.ensm.2022.01.058
- N. Ogihara, Y. Itou, T. Sasaki, Y. Takeuchi, Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries. J. Phys. Chem. C 119(9), 4612–4619 (2015). https://doi.org/10.1021/jp512564f
- A. Nekahi, E. Feyzi, M. Srivastava, F. Yeganehdoust, A.K.M.R. Reddy et al., Advanced lithium-ion battery process manufacturing equipment for gigafactories: past, present, and future perspectives. iScience 28(7), 112691 (2025). https://doi.org/10.1016/j.isci.2025.112691
- D. Feng, N. Morrison, C. Armstrong, K. Moyers, A. Raman et al., Measurement of web tension using ambient vibrations in roll-to-roll manufacturing of flexible and printed electronics. Flex. Print. Electron. 8(4), 042001 (2023). https://doi.org/10.1088/2058-8585/ad0658
- C. Lee, H. Kang, H. Kim, K. Shin, Effect of taper tension profile on the telescoping in a winding process of high speed roll to roll printing systems. J. Mech. Sci. Technol. 23(11), 3036–3048 (2009). https://doi.org/10.1007/s12206-009-0906-2
References
M.A. Hannan, M.S.H. Lipu, A. Hussain, A. Mohamed, A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew. Sustain. Energy Rev. 78, 834–854 (2017). https://doi.org/10.1016/j.rser.2017.05.001
C. Sun, X. Zhang, C. Li, K. Wang, X. Sun et al., High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Mater. 24, 160–166 (2020). https://doi.org/10.1016/j.ensm.2019.08.023
K. Naoi, S. Ishimoto, J.-I. Miyamoto, W. Naoi, Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ. Sci. 5(11), 9363 (2012). https://doi.org/10.1039/c2ee21675b
M. Yang, Y. Zhong, J. Ren, X. Zhou, J. Wei et al., Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage. Adv. Energy Mater. 5(17), 1500550 (2015). https://doi.org/10.1002/aenm.201500550
Y. Ding, Z.P. Cano, A. Yu, J. Lu, Z. Chen, Automotive Li-ion batteries: current status and future perspectives. Electrochem. Energy Rev. 2(1), 1–28 (2019). https://doi.org/10.1007/s41918-018-0022-z
R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3(4), 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
X. Zeng, M. Li, D. Abd El-Hady, W. Alshitari, A.S. Al-Bogami et al., Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 9(27), 1900161 (2019). https://doi.org/10.1002/aenm.201900161
H.-W. Lee, Y.-M. Lee, Principles and comparative studies of various power measurement methods for lithium secondary batteries. J. Korean Electrochem. Soc. 15(3), 115–123 (2012). https://doi.org/10.5229/jkes.2012.15.3.115
N. Nitta, G. Yushin, High-capacity anode materials for lithium-ion batteries: choice of elements and structures for active ps. Part. Part. Syst. Charact. 31(3), 317–336 (2014). https://doi.org/10.1002/ppsc.201300231
S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria et al., Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power. Sources 257, 421–443 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.103
N. Mahmood, T. Tang, Y. Hou, Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv. Energy Mater. 6(17), 1600374 (2016). https://doi.org/10.1002/aenm.201600374
Z. Yang, S.E. Trask, J.A. Gilbert, X. Li, Y. Tsai et al., Exploring the promise of multifunctional “zintl-phase-forming” electrolytes for Si-based full cells. ACS Appl. Mater. Interfaces 14(48), 53860–53871 (2022). https://doi.org/10.1021/acsami.2c16420
M. Khan, S. Yan, M. Ali, F. Mahmood, Y. Zheng et al., Innovative solutions for high-performance silicon anodes in lithium-ion batteries: overcoming challenges and real-world applications. Nano-Micro Lett. 16(1), 179 (2024). https://doi.org/10.1007/s40820-024-01388-3
J. Park, C. Jeon, W. Kim, S.-J. Bong, S. Jeong et al., Challenges, laser processing and electrochemical characteristics on application of ultra-thick electrode for high-energy lithium-ion battery. J. Power. Sources 482, 228948 (2021). https://doi.org/10.1016/j.jpowsour.2020.228948
L.S. Kremer, A. Hoffmann, T. Danner, S. Hein, B. Prifling et al., Manufacturing process for improved ultra-thick cathodes in high-energy lithium-ion batteries. Energy Technol. 8(2), 1900167 (2020). https://doi.org/10.1002/ente.201900167
C.-C. Zhou, Z. Su, X.-L. Gao, R. Cao, S.-C. Yang et al., Ultra-high-energy lithium-ion batteries enabled by aligned structured thick electrode design. Rare Met. 41(1), 14–20 (2022). https://doi.org/10.1007/s12598-021-01785-2
L. Gottschalk, C. Oertel, N. Strzelczyk, J. Müller, J. Krüger et al., Improving the performance of lithium-ion batteries using a two-layer, hard carbon-containing silicon anode for use in high-energy electrodes. Energy Technol. 11(5), 2200858 (2023). https://doi.org/10.1002/ente.202200858
J. Ni, Y. Huang, L. Gao, A high-performance hard carbon for Li-ion batteries and supercapacitors application. J. Power. Sources 223, 306–311 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.047
S.C. Jung, J.W. Choi, Y.-K. Han, Anisotropic volume expansion of crystalline silicon during electrochemical lithium insertion: an atomic level rationale. Nano Lett. 12(10), 5342–5347 (2012). https://doi.org/10.1021/nl3027197
M.N. Obrovac, L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7(5), A93 (2004). https://doi.org/10.1149/1.1652421
X. Liu, Z. Xu, A. Iqbal, M. Chen, N. Ali et al., Chemical coupled PEDOT: PSS/Si electrode: suppressed electrolyte consumption enables long-term stability. Nano-Micro Lett. 13(1), 54 (2021). https://doi.org/10.1007/s40820-020-00564-5
W. Yang, H. Liu, Z. Ren, N. Jian, M. Gao et al., A novel multielement, multiphase, and B-containing SiOx composite as a stable anode material for Li-ion batteries. Adv. Mater. Interfaces 6(5), 1801631 (2019). https://doi.org/10.1002/admi.201801631
B.-C. Yu, Y. Hwa, C.-M. Park, H.-J. Sohn, Reaction mechanism and enhancement of cyclability of SiO anodes by surface etching with NaOH for Li-ion batteries. J. Mater. Chem. A 1(15), 4820 (2013). https://doi.org/10.1039/c3ta00045a
C.-M. Park, W. Choi, Y. Hwa, J.-H. Kim, G. Jeong et al., Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries. J. Mater. Chem. 20(23), 4854–4860 (2010). https://doi.org/10.1039/B923926J
Z. Wang, N. Yang, L. Ren, X. Wang, X. Zhang, Core-shell structured SiOx@C with controllable mesopores as anode materials for lithium-ion batteries. Microporous Mesoporous Mater. 307, 110480 (2020). https://doi.org/10.1016/j.micromeso.2020.110480
R. Zhang, Z. Xiao, Z. Lin, X. Yan, Z. He et al., Unraveling the fundamental mechanism of interface conductive network influence on the fast-charging performance of SiO-based anode for lithium-ion batteries. Nano-Micro Lett. 16(1), 43 (2023). https://doi.org/10.1007/s40820-023-01267-3
J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14(1), 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
M. Liu, J. Liu, Y. Jia, C. Li, A. Zhang et al., Hydrolysis-engineered robust porous micron silicon anode for high-energy lithium-ion batteries. Nano-Micro Lett. 17(1), 297 (2025). https://doi.org/10.1007/s40820-025-01808-y
C. Luo, H. Zhang, C. Sun, X. Chen, W. Zhang et al., A mechanically robust in situ solidified polymer electrolyte for SiO(x)-based anodes toward high-energy lithium batteries. Nano-Micro Lett. 17(1), 250 (2025). https://doi.org/10.1007/s40820-025-01759-4
A. Veluchamy, C.-H. Doh, D.-H. Kim, J.-H. Lee, D.-J. Lee et al., Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4SiO4 inert phase for lithium batteries. J. Power. Sources 188(2), 574–577 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.137
J.-H. Kim, H.-J. Sohn, H. Kim, G. Jeong, W. Choi, Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries. J. Power. Sources 170(2), 456–459 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.081
J. Wang, H. Zhao, J. He, C. Wang, J. Wang, Nano-sized SiOx/C composite anode for lithium ion batteries. J. Power. Sources 196(10), 4811–4815 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.053
L. Lee, W.T.A. Ran, J.-H. Lee, S.M. Hwang, Y.-J. Kim, Self-adaptive anode design with graphene-coated SiOx/graphite for high-energy Li-ion batteries. Chem. Eng. J. 442, 136166 (2022). https://doi.org/10.1016/j.cej.2022.136166
X. Jiao, J. Yin, X. Xu, J. Wang, Y. Liu et al., Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries. Adv. Funct. Mater. 31(3), 2005699 (2021). https://doi.org/10.1002/adfm.202005699
Z. Zhang, X. Li, H. Yang, K. Fu, Y. Chen et al., Extending the cycling life of lithium–ion batteries with silicon/graphite composite anodes by automatic external stress regulation. Energy Fuels 38(9), 8317–8325 (2024). https://doi.org/10.1021/acs.energyfuels.4c00880
K.G. Gallagher, S.E. Trask, C. Bauer, T. Woehrle, S.F. Lux et al., Optimizing areal capacities through understanding the limitations of lithium-ion electrodes. J. Electrochem. Soc. 163(2), A138–A149 (2016). https://doi.org/10.1149/2.0321602jes
Y. Kim, A. Drews, R. Chandrasekaran, T. Miller, J. Sakamoto, Improving li-ion battery charge rate acceptance through highly ordered hierarchical electrode design. Ionics 24(10), 2935–2943 (2018). https://doi.org/10.1007/s11581-018-2502-x
L. Li, R.M. Erb, J. Wang, J. Wang, Y.-M. Chiang, Fabrication of low-tortuosity ultrahigh-area-capacity battery electrodes through magnetic alignment of emulsion-based slurries. Adv. Energy Mater. 9(2), 1802472 (2019). https://doi.org/10.1002/aenm.201802472
C. Heubner, M. Schneider, A. Michaelis, Diffusion-limited C-rate: a fundamental principle quantifying the intrinsic limits of Li-ion batteries. Adv. Energy Mater. 10(2), 1902523 (2020). https://doi.org/10.1002/aenm.201902523
D.-H. Kim, S. Hwang, J.-J. Cho, S. Yu, S. Kim et al., Toward fast operation of lithium batteries: ion activity as the factor to determine the concentration polarization. ACS Energy Lett. 4(6), 1265–1270 (2019). https://doi.org/10.1021/acsenergylett.9b00724
Z. Han, P. Maitarad, N. Yodsin, B. Zhao, H. Ma et al., Catalysis-induced highly-stable interface on porous silicon for high-rate lithium-ion batteries. Nano-Micro Lett. 17(1), 200 (2025). https://doi.org/10.1007/s40820-025-01701-8
K.-H. Chen, M.J. Namkoong, V. Goel, C. Yang, S. Kazemiabnavi et al., Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures. J. Power. Sources 471, 228475 (2020). https://doi.org/10.1016/j.jpowsour.2020.228475
J.S. Sander, R.M. Erb, L. Li, A. Gurijala, Y.-M. Chiang, High-performance battery electrodes via magnetic templating. Nat. Energy 1(8), 16099 (2016). https://doi.org/10.1038/nenergy.2016.99
D. Dang, Y. Wang, S. Gao, Y.-T. Cheng, Freeze-dried low-tortuous graphite electrodes with enhanced capacity utilization and rate capability. Carbon 159, 133–139 (2020). https://doi.org/10.1016/j.carbon.2019.12.036
S. Choi, N. Kim, D. Jin, Y. Roh, D. Kang et al., Systematic study on Li dendrite growth and suppression in pouch-type lithium-ion batteries with misaligned electrode pairs. J. Power. Sources 579, 233265 (2023). https://doi.org/10.1016/j.jpowsour.2023.233265
A. Rabbani, S. Jamshidi, S. Salehi, An automated simple algorithm for realistic pore network extraction from micro-tomography images. J. Petrol. Sci. Eng. 123, 164–171 (2014). https://doi.org/10.1016/j.petrol.2014.08.020
M. Doyle, J. Newman, A.S. Gozdz, C.N. Schmutz, J.-M. Tarascon, Comparison of modeling predictions with experimental data from plastic lithium ion cells. J. Electrochem. Soc. 143(6), 1890–1903 (1996). https://doi.org/10.1149/1.1836921
M. Lee, Y. Shin, H. Chang, D. Jin, H. Lee et al., Diagnosis of current flow patterns inside fault-simulated Li-ion batteries via non-invasive, in operando magnetic field imaging. Small Methods 7(11), 2300748 (2023). https://doi.org/10.1002/smtd.202300748
J. Lim, J. Song, K.-G. Kim, J.K. Koo, H. Lee et al., Validating the virtual calendering process with 3D-reconstructed composite electrode: an optimization framework for electrode design. Small 21(27), 2410485 (2025). https://doi.org/10.1002/smll.202410485
J. Kang, J. Lim, H. Lee, S. Park, C. Bak et al., Sequential effect of dual-layered hybrid graphite anodes on electrode utilization during fast-charging Li-ion batteries. Adv. Sci. 11(31), 2470182 (2024). https://doi.org/10.1002/advs.202470182
G. Li, J.-Y. Li, F.-S. Yue, Q. Xu, T.-T. Zuo et al., Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries. Nano Energy 60, 485–492 (2019). https://doi.org/10.1016/j.nanoen.2019.03.077
K. Zhang, W. Du, Z. Qian, L. Lin, X. Gu et al., SiOx embedded in N-doped carbon nanoslices: a scalable synthesis of high-performance anode material for lithium-ion batteries. Carbon 178, 202–210 (2021). https://doi.org/10.1016/j.carbon.2021.03.011
Y. Cho, J. Kim, A. Elabd, S. Choi, K. Park et al., A pyrene-poly(acrylic acid)-polyrotaxane supramolecular binder network for high-performance silicon negative electrodes. Adv. Mater. 31(51), e1905048 (2019). https://doi.org/10.1002/adma.201905048
M.-Y. Yan, G. Li, J. Zhang, Y.-F. Tian, Y.-X. Yin et al., Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 12(24), 27202–27209 (2020). https://doi.org/10.1021/acsami.0c05153
H.J. Kim, S. Choi, S.J. Lee, M.W. Seo, J.G. Lee et al., Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett. 16(1), 282–288 (2016). https://doi.org/10.1021/acs.nanolett.5b03776
S. Fang, N. Li, T. Zheng, Y. Fu, X. Song et al., Highly graphitized carbon coating on SiO with a π⁻π stacking precursor polymer for high performance lithium-ion batteries. Polymers 10(6), 610 (2018). https://doi.org/10.3390/polym10060610
B. Huang, T. Huang, L. Wan, A. Yu, Pre-lithiating SiO anodes for lithium-ion batteries by a simple, effective, and controllable strategy using stabilized lithium metal powder. ACS Sustain. Chem. Eng. 9(2), 648–657 (2021). https://doi.org/10.1021/acssuschemeng.0c05851
Y. Zhang, B. Li, B. Tang, Z. Yao, X. Zhang et al., Mechanical constraining double-shell protected Si-based anode material for lithium-ion batteries with long-term cycling stability. J. Alloys Compd. 846, 156437 (2020). https://doi.org/10.1016/j.jallcom.2020.156437
H. Wu, L. Zheng, J. Zhan, N. Du, W. Liu et al., Recycling silicon-based industrial waste as sustainable sources of Si/SiO2 composites for high-performance Li-ion battery anodes. J. Power. Sources 449, 227513 (2020). https://doi.org/10.1016/j.jpowsour.2019.227513
J. Liang, X. Li, Z. Hou, W. Zhang, Y. Zhu et al., A deep reduction and partial oxidation strategy for fabrication of mesoporous Si anode for lithium ion batteries. ACS Nano 10(2), 2295–2304 (2016). https://doi.org/10.1021/acsnano.5b06995
Q. Sun, J. Li, C. Hao, L. Ci, Focusing on the subsequent coulombic efficiencies of SiOx: initial high-temperature charge after over-capacity prelithiation for high-efficiency SiOx-based full-cell battery. ACS Appl. Mater. Interfaces 14(12), 14284–14292 (2022). https://doi.org/10.1021/acsami.2c01392
A. Shodiev, M. Chouchane, M. Gaberscek, O. Arcelus, J. Xu et al., Deconvoluting the benefits of porosity distribution in layered electrodes on the electrochemical performance of Li-ion batteries. Energy Storage Mater. 47, 462–471 (2022). https://doi.org/10.1016/j.ensm.2022.01.058
N. Ogihara, Y. Itou, T. Sasaki, Y. Takeuchi, Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries. J. Phys. Chem. C 119(9), 4612–4619 (2015). https://doi.org/10.1021/jp512564f
A. Nekahi, E. Feyzi, M. Srivastava, F. Yeganehdoust, A.K.M.R. Reddy et al., Advanced lithium-ion battery process manufacturing equipment for gigafactories: past, present, and future perspectives. iScience 28(7), 112691 (2025). https://doi.org/10.1016/j.isci.2025.112691
D. Feng, N. Morrison, C. Armstrong, K. Moyers, A. Raman et al., Measurement of web tension using ambient vibrations in roll-to-roll manufacturing of flexible and printed electronics. Flex. Print. Electron. 8(4), 042001 (2023). https://doi.org/10.1088/2058-8585/ad0658
C. Lee, H. Kang, H. Kim, K. Shin, Effect of taper tension profile on the telescoping in a winding process of high speed roll to roll printing systems. J. Mech. Sci. Technol. 23(11), 3036–3048 (2009). https://doi.org/10.1007/s12206-009-0906-2