Enhancing Hydrophilicity of Thick Electrodes for High Energy Density Aqueous Batteries
Corresponding Author: Chanhoon Kim
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 97
Abstract
Thick electrodes can substantially enhance the overall energy density of batteries. However, insufficient wettability of aqueous electrolytes toward electrodes with conventional hydrophobic binders severely limits utilization of active materials with increasing the thickness of electrodes for aqueous batteries, resulting in battery performance deterioration with a reduced capacity. Here, we demonstrate that controlling the hydrophilicity of the thicker electrodes is critical to enhancing the overall energy density of batteries. Hydrophilic binders are synthesized via a simple sulfonation process of conventional polyvinylidene fluoride binders, considering physicochemical properties such as mechanical properties and adhesion. The introduction of abundant sulfonate groups of binders (i) allows fast and sufficient electrolyte wetting, and (ii) improves ionic conduction in thick electrodes, enabling a significant increase in reversible capacities under various current densities. Further, the sulfonated binder effectively inhibits the dissolution of cathode materials in reactive aqueous electrolytes. Overall, our findings significantly enhance the energy density and contribute to the development of practical zinc-ion batteries.
Highlights:
1 Sulfonated polyvinylidene fluoride (S-PVdF) binders with improved hydrophilicity were synthesized via a simple sulfonation process of conventional hydrophobic PVdF binders.
2 The abundant sulfonate groups of S-PVdF binders significantly improved ionic conduction in thick electrodes (~ 6 mg cm−2), enabling improved reversible capacities under various current densities.
3 The S-PVdF binders effectively suppressed cathode dissolution, resulting in enhanced capacity retention at higher temperature operations (45 °C).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.-H. Park, S.H. Park, D. Joung, C. Kim, Sustainable biopolymeric hydrogel interphase for dendrite-free aqueous zinc-ion batteries. Chem. Eng. J. 433, 133532 (2022). https://doi.org/10.1016/j.cej.2021.133532
- S.H. Park, S.Y. Byeon, J.H. Park, C. Kim, Insight into the critical role of surface hydrophilicity for dendrite-free zinc metal anodes. ACS Energy Lett. 6(9), 3078–3085 (2021). https://doi.org/10.1021/acsenergylett.1c01521
- Q. Li, X. Rui, D. Chen, Y. Feng, N. Xiao et al., A high-capacity ammonium vanadate cathode for zinc-ion battery. Nano-Micro Lett. 12(1), 67 (2020). https://doi.org/10.1007/s40820-020-0401-y
- Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous zn-vanadium oxide battery. Nano-Micro Lett. 14(1), 154 (2022). https://doi.org/10.1007/s40820-022-00907-4
- C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14(1), 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
- T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13(1), 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
- S. Ding, M. Zhang, R. Qin, J. Fang, H. Ren et al., Oxygen-deficient β-mno2@graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nano-Micro Lett. 13(1), 173 (2021). https://doi.org/10.1007/s40820-021-00691-7
- C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13(1), 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
- H. Yu, C. Deng, H. Yan, M. Xia, X. Zhang et al., Cu3(PO4)2: novel anion convertor for aqueous dual-ion battery. Nano-Micro Lett. 13(1), 41 (2021). https://doi.org/10.1007/s40820-020-00576-1
- W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330–3360 (2020). https://doi.org/10.1039/d0ee02079f
- B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12(11), 3288–3304 (2019). https://doi.org/10.1039/c9ee02526j
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5, 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
- D. Selvakumaran, A. Pan, S. Liang, G. Cao, A review on recent developments and challenges of cathode materials for rechargeable aqueous zn-ion batteries. J. Mater. Chem. A 7(31), 18209–18236 (2019). https://doi.org/10.1039/c9ta05053a
- M. Singh, J. Kaiser, H. Hahn, Thick electrodes for high energy lithium ion batteries. J. Electrochem. Soc. 162(7), A1196–A1201 (2015). https://doi.org/10.1149/2.0401507jes
- B.-S. Lee, Z. Wu, V. Petrova, X. Xing, H.-D. Lim et al., Analysis of rate-limiting factors in thick electrodes for electric vehicle applications. J. Electrochem. Soc. 165(3), A525–A533 (2018). https://doi.org/10.1149/2.0571803jes
- K.-Y. Park, J.-W. Park, W.M. Seong, K. Yoon, T.-H. Hwang et al., Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries. J. Power Sources 468, 228369 (2020). https://doi.org/10.1016/j.jpowsour.2020.228369
- Y. Kuang, C. Chen, D. Kirsch, L. Hu, Thick electrode batteries: Principles, opportunities, and challenges. Adv. Energy Mater. 9(33), 1901457 (2019). https://doi.org/10.1002/aenm.201901457
- J. Li, J. Ren, C. Li, P. Li, T. Wu et al., High-adhesion anionic copolymer as solid-state electrolyte for dendrite-free zn-ion battery. Nano Res. 15(8), 7190–7198 (2022). https://doi.org/10.1007/s12274-022-4370-y
- S. Liu, L. Wang, Y. Ding, B. Liu, X. Han et al., Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications. Electrochim. Acta 130, 90–96 (2014). https://doi.org/10.1016/j.electacta.2014.02.144
- R. Gan, Y. Ma, S. Li, F. Zhang, G. He, Facile fabrication of amphoteric semi-interpenetrating network membranes for vanadium flow battery applications. J. Energy Chem. 27(4), 1189–1197 (2018). https://doi.org/10.1016/j.jechem.2017.09.017
- W. Xia, Z. Zhang, Pvdf-based dielectric polymers and their applications in electronic materials. IET Nanodielectr. 1(1), 17–31 (2018). https://doi.org/10.1049/iet-nde.2018.0001
- H. Farrokhzad, T. Kikhavani, F. Monnaie, S. Ashrafizadeh, G. Koeckelberghs et al., Novel composite cation exchange films based on sulfonated pvdf for electromembrane separations. J. Membr. Sci. 474, 167–174 (2015). https://doi.org/10.1016/j.memsci.2014.10.002
- S. Trivedi, V. Pamidi, M. Fichtner, M.A. Reddy, Ionically conducting inorganic binders: a paradigm shift in electrochemical energy storage. Green Chem. 24(14), 5620–5631 (2022). https://doi.org/10.1039/d2gc01389d
- D.T. Ngo, H.T.T. Le, C. Kim, J.-Y. Lee, J.G. Fisher et al., Mass-scalable synthesis of 3d porous germanium–carbon composite ps as an ultra-high rate anode for lithium ion batteries. Energy Environ. Sci. 8(12), 3577–3588 (2015). https://doi.org/10.1039/c5ee02183a
- Z. Li, G. Wu, Y. Yang, Z. Wan, X. Zeng et al., An ion-conductive grafted polymeric binder with practical loading for silicon anode with high interfacial stability in lithium-ion batteries. Adv. Energy Mater. 12(29), 2201197 (2022). https://doi.org/10.1002/aenm.202201197
- A. Davoodabadi, J. Li, H. Zhou, D.L. Wood III., T.J. Singler et al., Effect of calendering and temperature on electrolyte wetting in lithium-ion battery electrodes. J. Energy Storage 26, 101034 (2019). https://doi.org/10.1016/j.est.2019.101034
- A.M. Boyce, D.J. Cumming, C. Huang, S.P. Zankowski, P.S. Grant et al., Design of scalable, next-generation thick electrodes: opportunities and challenges. ACS Nano 15(12), 18624–18632 (2021). https://doi.org/10.1021/acsnano.1c09687
- J. Kumberg, M. Müller, R. Diehm, S. Spiegel, C. Wachsmann et al., Drying of lithium-ion battery anodes for use in high-energy cells: influence of electrode thickness on drying time, adhesion, and crack formation. Energy Technol. 7(11), 1900722 (2019). https://doi.org/10.1002/ente.201900722
- T. Gao, A. Kim, W. Lu, Modeling electrode-level crack and quantifying its effect on battery performance and impedance. Electrochim. Acta 363, 137197 (2020). https://doi.org/10.1016/j.electacta.2020.137197
- K. Kim, S. Byun, J. Choi, S. Hong, M.-H. Ryou et al., Elucidating the polymeric binder distribution within lithium-ion battery electrodes using saicas. Chem Phys Chem 19(13), 1627–1634 (2018). https://doi.org/10.1002/cphc.201800072
- B. Jin, D. Wang, J. Zhu, H. Guo, Y. Hou et al., A self-healable polyelectrolyte binder for highly stabilized sulfur, silicon, and silicon oxides electrodes. Adv. Funct. Mater. 31(41), 2104433 (2021). https://doi.org/10.1002/adfm.202104433
- P.K. Leung, C. Ponce-de-Leon, C.T.J. Low, F.C. Walsh, Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery. Electrochim. Acta 56(18), 6536–6546 (2011). https://doi.org/10.1016/j.electacta.2011.04.111
- V. Srinivasan, J. Newman, Discharge model for the lithium iron-phosphate electrode. J. Electrochem. Soc. 151(10), A1517 (2004). https://doi.org/10.1149/1.1785012
- D. Bin, Y. Liu, B. Yang, J. Huang, X. Dong et al., Engineering a high-energy-density and long lifespan aqueous zinc battery via ammonium vanadium bronze. ACS Appl. Mater. Interfaces 11(23), 20796–20803 (2019). https://doi.org/10.1021/acsami.9b03159
- S. Li, M. Chen, G. Fang, L. Shan, X. Cao et al., Synthesis of polycrystalline K0.25V2O5 nanops as cathode for aqueous zinc-ion battery. J. Alloys Compd. 801, 82–89 (2019). https://doi.org/10.1016/j.jallcom.2019.06.084
- Y. Liu, Q. Li, K. Ma, G. Yang, C. Wang, Graphene oxide wrapped CuV2O6 nanobelts as high-capacity and long-life cathode materials of aqueous zinc-ion batteries. ACS Nano 13(10), 12081–12089 (2019). https://doi.org/10.1021/acsnano.9b06484
- H. Qin, L. Chen, L. Wang, X. Chen, Z. Yang, V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim. Acta 306, 307–316 (2019). https://doi.org/10.1016/j.electacta.2019.03.087
- X. Wang, Y. Li, S. Wang, F. Zhou, P. Das et al., 2D amorphous V2O5/graphene heterostructures for high-safety aqueous zn-ion batteries with unprecedented capacity and ultrahigh rate capability. Adv. Energy Mater. 10(22), 2000081 (2020). https://doi.org/10.1002/aenm.202000081
- D. Wang, L. Wang, G. Liang, H. Li, Z. Liu et al., A superior δ-MnO2 cathode and a self-healing zn-δ-MnO2 battery. ACS Nano 13(9), 10643–10652 (2019). https://doi.org/10.1021/acsnano.9b04916
- S. Boyd, V. Augustyn, Transition metal oxides for aqueous sodium-ion electrochemical energy storage. Inorg. Chem. Front. 5(5), 999–1015 (2018). https://doi.org/10.1039/c8qi00148k
- L. Zhang, J. Hu, B. Zhang, J. Liu, H. Wan et al., Suppressing cathode dissolution via guest engineering for durable aqueous zinc-ion batteries. J. Mater. Chem. A 9(12), 7631–7639 (2021). https://doi.org/10.1039/d1ta00263e
- J. Ding, H. Gao, D. Ji, K. Zhao, S. Wang et al., Vanadium-based cathodes for aqueous zinc-ion batteries: from crystal structures, diffusion channels to storage mechanisms. J. Mater. Chem. A 9(9), 5258–5275 (2021). https://doi.org/10.1039/d0ta10336e
- E. Fourest, B. Volesky, Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of sargassum fluitans. Environ. Sci. Technol. 30(1), 277–282 (1996). https://doi.org/10.1021/es950315s
References
J.-H. Park, S.H. Park, D. Joung, C. Kim, Sustainable biopolymeric hydrogel interphase for dendrite-free aqueous zinc-ion batteries. Chem. Eng. J. 433, 133532 (2022). https://doi.org/10.1016/j.cej.2021.133532
S.H. Park, S.Y. Byeon, J.H. Park, C. Kim, Insight into the critical role of surface hydrophilicity for dendrite-free zinc metal anodes. ACS Energy Lett. 6(9), 3078–3085 (2021). https://doi.org/10.1021/acsenergylett.1c01521
Q. Li, X. Rui, D. Chen, Y. Feng, N. Xiao et al., A high-capacity ammonium vanadate cathode for zinc-ion battery. Nano-Micro Lett. 12(1), 67 (2020). https://doi.org/10.1007/s40820-020-0401-y
Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous zn-vanadium oxide battery. Nano-Micro Lett. 14(1), 154 (2022). https://doi.org/10.1007/s40820-022-00907-4
C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14(1), 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13(1), 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
S. Ding, M. Zhang, R. Qin, J. Fang, H. Ren et al., Oxygen-deficient β-mno2@graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nano-Micro Lett. 13(1), 173 (2021). https://doi.org/10.1007/s40820-021-00691-7
C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13(1), 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
H. Yu, C. Deng, H. Yan, M. Xia, X. Zhang et al., Cu3(PO4)2: novel anion convertor for aqueous dual-ion battery. Nano-Micro Lett. 13(1), 41 (2021). https://doi.org/10.1007/s40820-020-00576-1
W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330–3360 (2020). https://doi.org/10.1039/d0ee02079f
B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12(11), 3288–3304 (2019). https://doi.org/10.1039/c9ee02526j
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5, 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
D. Selvakumaran, A. Pan, S. Liang, G. Cao, A review on recent developments and challenges of cathode materials for rechargeable aqueous zn-ion batteries. J. Mater. Chem. A 7(31), 18209–18236 (2019). https://doi.org/10.1039/c9ta05053a
M. Singh, J. Kaiser, H. Hahn, Thick electrodes for high energy lithium ion batteries. J. Electrochem. Soc. 162(7), A1196–A1201 (2015). https://doi.org/10.1149/2.0401507jes
B.-S. Lee, Z. Wu, V. Petrova, X. Xing, H.-D. Lim et al., Analysis of rate-limiting factors in thick electrodes for electric vehicle applications. J. Electrochem. Soc. 165(3), A525–A533 (2018). https://doi.org/10.1149/2.0571803jes
K.-Y. Park, J.-W. Park, W.M. Seong, K. Yoon, T.-H. Hwang et al., Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries. J. Power Sources 468, 228369 (2020). https://doi.org/10.1016/j.jpowsour.2020.228369
Y. Kuang, C. Chen, D. Kirsch, L. Hu, Thick electrode batteries: Principles, opportunities, and challenges. Adv. Energy Mater. 9(33), 1901457 (2019). https://doi.org/10.1002/aenm.201901457
J. Li, J. Ren, C. Li, P. Li, T. Wu et al., High-adhesion anionic copolymer as solid-state electrolyte for dendrite-free zn-ion battery. Nano Res. 15(8), 7190–7198 (2022). https://doi.org/10.1007/s12274-022-4370-y
S. Liu, L. Wang, Y. Ding, B. Liu, X. Han et al., Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications. Electrochim. Acta 130, 90–96 (2014). https://doi.org/10.1016/j.electacta.2014.02.144
R. Gan, Y. Ma, S. Li, F. Zhang, G. He, Facile fabrication of amphoteric semi-interpenetrating network membranes for vanadium flow battery applications. J. Energy Chem. 27(4), 1189–1197 (2018). https://doi.org/10.1016/j.jechem.2017.09.017
W. Xia, Z. Zhang, Pvdf-based dielectric polymers and their applications in electronic materials. IET Nanodielectr. 1(1), 17–31 (2018). https://doi.org/10.1049/iet-nde.2018.0001
H. Farrokhzad, T. Kikhavani, F. Monnaie, S. Ashrafizadeh, G. Koeckelberghs et al., Novel composite cation exchange films based on sulfonated pvdf for electromembrane separations. J. Membr. Sci. 474, 167–174 (2015). https://doi.org/10.1016/j.memsci.2014.10.002
S. Trivedi, V. Pamidi, M. Fichtner, M.A. Reddy, Ionically conducting inorganic binders: a paradigm shift in electrochemical energy storage. Green Chem. 24(14), 5620–5631 (2022). https://doi.org/10.1039/d2gc01389d
D.T. Ngo, H.T.T. Le, C. Kim, J.-Y. Lee, J.G. Fisher et al., Mass-scalable synthesis of 3d porous germanium–carbon composite ps as an ultra-high rate anode for lithium ion batteries. Energy Environ. Sci. 8(12), 3577–3588 (2015). https://doi.org/10.1039/c5ee02183a
Z. Li, G. Wu, Y. Yang, Z. Wan, X. Zeng et al., An ion-conductive grafted polymeric binder with practical loading for silicon anode with high interfacial stability in lithium-ion batteries. Adv. Energy Mater. 12(29), 2201197 (2022). https://doi.org/10.1002/aenm.202201197
A. Davoodabadi, J. Li, H. Zhou, D.L. Wood III., T.J. Singler et al., Effect of calendering and temperature on electrolyte wetting in lithium-ion battery electrodes. J. Energy Storage 26, 101034 (2019). https://doi.org/10.1016/j.est.2019.101034
A.M. Boyce, D.J. Cumming, C. Huang, S.P. Zankowski, P.S. Grant et al., Design of scalable, next-generation thick electrodes: opportunities and challenges. ACS Nano 15(12), 18624–18632 (2021). https://doi.org/10.1021/acsnano.1c09687
J. Kumberg, M. Müller, R. Diehm, S. Spiegel, C. Wachsmann et al., Drying of lithium-ion battery anodes for use in high-energy cells: influence of electrode thickness on drying time, adhesion, and crack formation. Energy Technol. 7(11), 1900722 (2019). https://doi.org/10.1002/ente.201900722
T. Gao, A. Kim, W. Lu, Modeling electrode-level crack and quantifying its effect on battery performance and impedance. Electrochim. Acta 363, 137197 (2020). https://doi.org/10.1016/j.electacta.2020.137197
K. Kim, S. Byun, J. Choi, S. Hong, M.-H. Ryou et al., Elucidating the polymeric binder distribution within lithium-ion battery electrodes using saicas. Chem Phys Chem 19(13), 1627–1634 (2018). https://doi.org/10.1002/cphc.201800072
B. Jin, D. Wang, J. Zhu, H. Guo, Y. Hou et al., A self-healable polyelectrolyte binder for highly stabilized sulfur, silicon, and silicon oxides electrodes. Adv. Funct. Mater. 31(41), 2104433 (2021). https://doi.org/10.1002/adfm.202104433
P.K. Leung, C. Ponce-de-Leon, C.T.J. Low, F.C. Walsh, Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery. Electrochim. Acta 56(18), 6536–6546 (2011). https://doi.org/10.1016/j.electacta.2011.04.111
V. Srinivasan, J. Newman, Discharge model for the lithium iron-phosphate electrode. J. Electrochem. Soc. 151(10), A1517 (2004). https://doi.org/10.1149/1.1785012
D. Bin, Y. Liu, B. Yang, J. Huang, X. Dong et al., Engineering a high-energy-density and long lifespan aqueous zinc battery via ammonium vanadium bronze. ACS Appl. Mater. Interfaces 11(23), 20796–20803 (2019). https://doi.org/10.1021/acsami.9b03159
S. Li, M. Chen, G. Fang, L. Shan, X. Cao et al., Synthesis of polycrystalline K0.25V2O5 nanops as cathode for aqueous zinc-ion battery. J. Alloys Compd. 801, 82–89 (2019). https://doi.org/10.1016/j.jallcom.2019.06.084
Y. Liu, Q. Li, K. Ma, G. Yang, C. Wang, Graphene oxide wrapped CuV2O6 nanobelts as high-capacity and long-life cathode materials of aqueous zinc-ion batteries. ACS Nano 13(10), 12081–12089 (2019). https://doi.org/10.1021/acsnano.9b06484
H. Qin, L. Chen, L. Wang, X. Chen, Z. Yang, V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim. Acta 306, 307–316 (2019). https://doi.org/10.1016/j.electacta.2019.03.087
X. Wang, Y. Li, S. Wang, F. Zhou, P. Das et al., 2D amorphous V2O5/graphene heterostructures for high-safety aqueous zn-ion batteries with unprecedented capacity and ultrahigh rate capability. Adv. Energy Mater. 10(22), 2000081 (2020). https://doi.org/10.1002/aenm.202000081
D. Wang, L. Wang, G. Liang, H. Li, Z. Liu et al., A superior δ-MnO2 cathode and a self-healing zn-δ-MnO2 battery. ACS Nano 13(9), 10643–10652 (2019). https://doi.org/10.1021/acsnano.9b04916
S. Boyd, V. Augustyn, Transition metal oxides for aqueous sodium-ion electrochemical energy storage. Inorg. Chem. Front. 5(5), 999–1015 (2018). https://doi.org/10.1039/c8qi00148k
L. Zhang, J. Hu, B. Zhang, J. Liu, H. Wan et al., Suppressing cathode dissolution via guest engineering for durable aqueous zinc-ion batteries. J. Mater. Chem. A 9(12), 7631–7639 (2021). https://doi.org/10.1039/d1ta00263e
J. Ding, H. Gao, D. Ji, K. Zhao, S. Wang et al., Vanadium-based cathodes for aqueous zinc-ion batteries: from crystal structures, diffusion channels to storage mechanisms. J. Mater. Chem. A 9(9), 5258–5275 (2021). https://doi.org/10.1039/d0ta10336e
E. Fourest, B. Volesky, Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of sargassum fluitans. Environ. Sci. Technol. 30(1), 277–282 (1996). https://doi.org/10.1021/es950315s