Reproducible Fabrication of Perovskite Photovoltaics via Supramolecule Confinement Growth
Corresponding Author: Yu Hou
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 67
Abstract
The solution processibility of perovskites provides a cost-effective and high-throughput route for fabricating state-of-the-art solar cells. However, the fast kinetics of precursor-to-perovskite transformation is susceptible to processing conditions, resulting in an uncontrollable variance in device performance. Here, we demonstrate a supramolecule confined approach to reproducibly fabricate perovskite films with an ultrasmooth, electronically homogeneous surface. The assembly of a calixarene capping layer on precursor surface can induce host–guest interactions with solvent molecules to tailor the desolvation kinetics, and initiate the perovskite crystallization from the sharp molecule–precursor interface. These combined effects significantly reduced the spatial variance and extended the processing window of perovskite films. As a result, the standard efficiency deviations of device-to-device and batch-to-batch devices were reduced from 0.64–0.26% to 0.67–0.23%, respectively. In addition, the perovskite films with ultrasmooth top surfaces exhibited photoluminescence quantum yield > 10% and surface recombination velocities < 100 cm s−1 for both interfaces that yielded p-i-n structured solar cells with power conversion efficiency over 25%.
Highlights:
1 Demonstrating a new concept of “supermolecule confined growth” of perovskite thin films by constructing a compact, ultraflat 4-tert-butylthiacalix[4]arene capping layer atop perovskite precursor film to engineer the perovskite formation dynamics.
2 The supramolecule confined approach enabled the highly reproducible fabrication of perovskite films with a root mean square < 10 nm and electronic homogeneity, which significantly minimized the power conversion efficiency variations for both device-to-device and batch-to-batch solar cell devices.
3 The obtained perovskite films exhibited photoluminescence quantum yield > 10% and surface recombination velocities < 100 cm s−1 for both interfaces.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.T. Moore, H. Sai, K.W. Tan, D.-M. Smilgies, W. Zhang et al., Crystallization kinetics of organic–inorganic trihalide perovskites and the role of the lead anion in crystal growth. J. Am. Chem. Soc. 137(6), 2350–2358 (2015). https://doi.org/10.1021/ja512117e
- C.M.M. Soe, G.P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie et al., Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl. Acad. Sci. U.S.A. 116(1), 58–66 (2019). https://doi.org/10.1073/pnas.1811006115
- D. He, P. Chen, J.A. Steele, Z. Wang, H. Xu et al., Homogeneous 2D/3D heterostructured tin halide perovskite photovoltaics. Nat. Nanotechnol. 20(6), 779–786 (2025). https://doi.org/10.1038/s41565-025-01905-4
- Z. Wu, S. Sang, J. Zheng, Q. Gao, B. Huang et al., Crystallization kinetics of hybrid perovskite solar cells. Angew. Chem. Int. Ed. 63(17), e202319170 (2024). https://doi.org/10.1002/anie.202319170
- S. Li, Y. Xiao, R. Su, W. Xu, D. Luo et al., Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature 635, 874–881 (2024). https://doi.org/10.1038/s41586-024-08159-5
- N. Li, X. Niu, L. Li, H. Wang, Z. Huang et al., Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373(6554), 561–567 (2021). https://doi.org/10.1126/science.abh3884
- D. Liu, Y. Zheng, X.Y. Sui, X.F. Wu, C. Zou et al., Universal growth of perovskite thin monocrystals from high solute flux for sensitive self-driven X-ray detection. Nat. Commun. 15(1), 2390 (2024). https://doi.org/10.1038/s41467-024-46712-y
- Y. Huang, W. Zhang, Y. Xiong, Z. Yi, C. Huang et al., Recent advancements in ambient-air fabrication of perovskite solar cells. Exploration 5(3), 20240121 (2025). https://doi.org/10.1002/exp.20240121
- Q. Chang, P. He, H. Huang, Y. Peng, X. Han et al., Modified near-infrared annealing enabled rapid and homogeneous crystallization of perovskite films for efficient solar modules. Nano-Micro Lett. 17(1), 272 (2025). https://doi.org/10.1007/s40820-025-01792-3
- P. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye et al., Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 9(1), 2225 (2018). https://doi.org/10.1038/s41467-018-04636-4
- S. Wang, W. Tian, Z. Cheng, X. Shi, W. Fan et al., Fluorinated isopropanol for improved defect passivation and reproducibility in perovskite solar cells. Nat. Energy (2025). https://doi.org/10.1038/s41560-025-01791-z
- J. Xiu, B. Han, H. Gao, X. Chen, Z. Chen et al., A sustainable approach using nanocrystals functionalized green alkanes as efficient antisolvents to fabricate high-quality perovskite films. Adv. Energy Mater. 13(28), 2300566 (2023). https://doi.org/10.1002/aenm.202300566
- Q. Li, Y. Zheng, H. Wang, X. Liu, M. Lin et al., Graphene-polymer reinforcement of perovskite lattices for durable solar cells. Science 387(6738), 1069–1077 (2025). https://doi.org/10.1126/science.adu5563
- P. You, G. Li, G. Tang, J. Cao, F. Yan, Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy Environ. Sci. 13(4), 1187–1196 (2020). https://doi.org/10.1039/c9ee02324k
- W. Feng, X. Liu, G. Liu, G. Yang, Y. Fang et al., Blade-coating (100)-oriented α-FAPbI(3) perovskite films via crystal surface energy regulation for efficient and stable inverted perovskite photovoltaics. Angew. Chem. Int. Ed. 63(39), e202403196 (2024). https://doi.org/10.1002/anie.202403196
- H. Liu, H. Wu, Z. Zhou, L. Ren, Y. Yang et al., Simultaneous mechanical and chemical synthesis of long-range-ordered perovskites. Nat. Synth. 4(2), 196–208 (2025). https://doi.org/10.1038/s44160-024-00687-2
- Z. Yi, X. Li, Y. Xiong, G. Shen, W. Zhang et al., Self-assembled monolayers (SAMs) in inverted perovskite solar cells and their tandem photovoltaics application. Interdiscip. Mater. 3, 203–244 (2024). https://doi.org/10.1002/idm2.12145
- L.E. Lehner, S. Demchyshyn, K. Frank, A. Minenkov, D.J. Kubicki et al., Elucidating the origins of high preferential crystal orientation in quasi-2D perovskite solar cells. Adv. Mater. 35(5), e2208061 (2023). https://doi.org/10.1002/adma.202208061
- D. Cui, X. Liu, T. Wu, X. Lin, X. Luo et al., Making room for growing oriented FASnI3 with large grains via cold precursor solution. Adv. Funct. Mater. 31(25), 2100931 (2021). https://doi.org/10.1002/adfm.202100931
- J. Wang, J. Huang, M. Abdel-Shakour, T. Liu, X. Wang et al., Colloidal zeta potential modulation as a handle to control the crystallization kinetics of tin halide perovskites for photovoltaic applications. Angew. Chem. Int. Ed. 63(17), e202317794 (2024). https://doi.org/10.1002/anie.202317794
- Z. Fang, B. Deng, Y. Jin, L. Yang, L. Chen et al., Surface reconstruction of wide-bandgap perovskites enables efficient perovskite/silicon tandem solar cells. Nat. Commun. 15(1), 10554 (2024). https://doi.org/10.1038/s41467-024-54925-4
- Y. Xiong, Z. Yi, W. Zhang, Y. Huang, Z. Zhang et al., Recent advances in perovskite/Cu(In,Ga)Se2 tandem solar cells. Mater. Today Electron. 7, 100086 (2024). https://doi.org/10.1016/j.mtelec.2023.100086
- B. Ge, H.W. Qiao, Z.Q. Lin, Z.R. Zhou, A.P. Chen et al., Deepening the valance band edges of NiOx contacts by alkaline earth metal doping for efficient perovskite photovoltaics with high open-circuit voltage. Sol. RRL 3(8), 1900192 (2019). https://doi.org/10.1002/solr.201900192
- D. Koo, Y. Cho, U. Kim, G. Jeong, J. Lee et al., High-performance inverted perovskite solar cells with operational stability via n-type small molecule additive-assisted defect passivation. Adv. Energy Mater. 10(46), 2001920 (2020). https://doi.org/10.1002/aenm.202001920
- G. Kresse, J. Hafner, Ab initiomolecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993). https://doi.org/10.1103/physrevb.47.558
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- P.C. Rusu, G. Giovannetti, G. Brocks, Dipole formation at interfaces of alkanethiolate self-assembled monolayers and Ag(111). J. Phys. Chem. C 111(39), 14448–14456 (2007). https://doi.org/10.1021/jp073420k
- M.J. Frisch et al., Gaussian 09, Revision B. 01. Gaussian, Inc., Wallingford (2010).
- C. Lee, W. Yang, R. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785–789 (1988). https://doi.org/10.1103/physrevb.37.785
- R. Ditchfield, W.J. Hehre, J.A. Pople, Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54(2), 724–728 (1971). https://doi.org/10.1063/1.1674902
- B. Xu, T.M. Swager, Rigid bowlic liquid crystals based on tungsten-oxo Calix [4] arenes: host-guest effects and head-to-tail organization. J. Am. Chem. Soc. 115(3), 1159–1160 (1993). https://doi.org/10.1021/ja00056a056
- J. Rebek Jr., Host–guest chemistry of calixarene capsules. Chem. Commun. 8, 637–643 (2000). https://doi.org/10.1039/a910339m
- M.O. Vysotsky, V. Böhmer, I. Thondorf, Hydrogen bonded calixarene capsules kinetically stable in DMSO. Chem. Commun. 18, 1890–1891 (2001). https://doi.org/10.1039/b105613c
- N. Mozhzhukhina, L.P. Méndez De Leo, E.J. Calvo, Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li–air battery. J. Phys. Chem. C 117(36), 18375–18380 (2013). https://doi.org/10.1021/jp407221c
- J. Xu, A. Buin, A.H. Ip, W. Li, O. Voznyy et al., Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081 (2015). https://doi.org/10.1038/ncomms8081
- C.-H. Chiang, C.-G. Wu, Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nat. Photonics 10(3), 196–200 (2016). https://doi.org/10.1038/nphoton.2016.3
- Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai et al., Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 1(11), 16148 (2016). https://doi.org/10.1038/nenergy.2016.148
- A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari et al., Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano Lett. 14(6), 3608–3616 (2014). https://doi.org/10.1021/nl5012992
- S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
- P. Ferdowsi, U. Steiner, J.V. Milić, Host-guest complexation in hybrid perovskite optoelectronics. J. Phys. Mater. 4(4), 042011 (2021). https://doi.org/10.1088/2515-7639/ac299f
- H. Zhang, F.T. Eickemeyer, Z. Zhou, M. Mladenović, F. Jahanbakhshi et al., Multimodal host-guest complexation for efficient and stable perovskite photovoltaics. Nat. Commun. 12(1), 3383 (2021). https://doi.org/10.1038/s41467-021-23566-2
- Y. Zhu, X. Liu, X. Sui, G. Chen, Q. Li et al., Intermediate-phase homogenization through intermolecular interactions toward reproducible fabrication of perovskite solar cells. Adv. Energy Mater. 15(29), 2500536 (2025). https://doi.org/10.1002/aenm.202500536
- J. Zhang, R. Dai, J. Yang, Y. Liu, J. Yu et al., Regulation of crystallization by introducing a multistage growth template affords efficient and stable inverted perovskite solar cells. Energy Environ. Sci. 18(7), 3235–3247 (2025). https://doi.org/10.1039/D4EE06199C
- S. Chen, X. Xiao, B. Chen, L.L. Kelly, J. Zhao et al., Crystallization in one-step solution deposition of perovskite films: upward or downward? Sci. Adv. 7(4), eabb2412 (2021). https://doi.org/10.1126/sciadv.abb2412
- X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan et al., Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5(2), 131–140 (2020). https://doi.org/10.1038/s41560-019-0538-4
- J. Wang, L. Bi, X. Huang, Q. Feng, M. Liu et al., Bilayer interface engineering through 2D/3D perovskite and surface dipole for inverted perovskite solar modules. eScience 4(6), 100308 (2024). https://doi.org/10.1016/j.esci.2024.100308
- Y. Wang, B. Li, H. Wang, Z. Zhang, Z. Dang et al., A soft nonpolar-soluble two-dimensional perovskite for general construction of mixed-dimensional heterojunctions. Adv. Mater. 37(14), e2419750 (2025). https://doi.org/10.1002/adma.202419750
- J. Wang, W. Fu, S. Jariwala, I. Sinha, A.K.Y. Jen et al., Reducing surface recombination velocities at the electrical contacts will improve perovskite photovoltaics. ACS Energy Lett. 4(1), 222–227 (2019). https://doi.org/10.1021/acsenergylett.8b02058
- B. Chen, H. Chen, Y. Hou, J. Xu, S. Teale et al., Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers. Adv. Mater. 33(41), e2103394 (2021). https://doi.org/10.1002/adma.202103394
- Y. Yang, M. Yang, D.T. Moore, Y. Yan, E.M. Miller et al., Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nat. Energy 2(2), 16207 (2017). https://doi.org/10.1038/nenergy.2016.207
- J. Wu, R. Zhu, G. Li, Z. Zhang, J. Pascual et al., Inhibiting interfacial nonradiative recombination in inverted perovskite solar cells with a multifunctional molecule. Adv. Mater. 36(35), e2407433 (2024). https://doi.org/10.1002/adma.202407433
- X. Zhang, F. Liu, Y. Guan, Y. Zou, C. Wu et al., Reducing the Voc loss of hole transport layer-free carbon-based perovskite solar cells via dual interfacial passivation. Nano-Micro Lett. 17(1), 258 (2025). https://doi.org/10.1007/s40820-025-01775-4
- H. Kanda, N. Shibayama, A.J. Huckaba, Y. Lee, S. Paek et al., Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor. Energy Environ. Sci. 13(4), 1222–1230 (2020). https://doi.org/10.1039/C9EE02028D
- M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann et al., The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12(9), 2778–2788 (2019). https://doi.org/10.1039/C9EE02020A
- F. Ye, S. Zhang, J. Warby, J. Wu, E. Gutierrez-Partida et al., Overcoming C(60)-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane. Nat. Commun. 13(1), 7454 (2022). https://doi.org/10.1038/s41467-022-34203-x
References
D.T. Moore, H. Sai, K.W. Tan, D.-M. Smilgies, W. Zhang et al., Crystallization kinetics of organic–inorganic trihalide perovskites and the role of the lead anion in crystal growth. J. Am. Chem. Soc. 137(6), 2350–2358 (2015). https://doi.org/10.1021/ja512117e
C.M.M. Soe, G.P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie et al., Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl. Acad. Sci. U.S.A. 116(1), 58–66 (2019). https://doi.org/10.1073/pnas.1811006115
D. He, P. Chen, J.A. Steele, Z. Wang, H. Xu et al., Homogeneous 2D/3D heterostructured tin halide perovskite photovoltaics. Nat. Nanotechnol. 20(6), 779–786 (2025). https://doi.org/10.1038/s41565-025-01905-4
Z. Wu, S. Sang, J. Zheng, Q. Gao, B. Huang et al., Crystallization kinetics of hybrid perovskite solar cells. Angew. Chem. Int. Ed. 63(17), e202319170 (2024). https://doi.org/10.1002/anie.202319170
S. Li, Y. Xiao, R. Su, W. Xu, D. Luo et al., Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature 635, 874–881 (2024). https://doi.org/10.1038/s41586-024-08159-5
N. Li, X. Niu, L. Li, H. Wang, Z. Huang et al., Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373(6554), 561–567 (2021). https://doi.org/10.1126/science.abh3884
D. Liu, Y. Zheng, X.Y. Sui, X.F. Wu, C. Zou et al., Universal growth of perovskite thin monocrystals from high solute flux for sensitive self-driven X-ray detection. Nat. Commun. 15(1), 2390 (2024). https://doi.org/10.1038/s41467-024-46712-y
Y. Huang, W. Zhang, Y. Xiong, Z. Yi, C. Huang et al., Recent advancements in ambient-air fabrication of perovskite solar cells. Exploration 5(3), 20240121 (2025). https://doi.org/10.1002/exp.20240121
Q. Chang, P. He, H. Huang, Y. Peng, X. Han et al., Modified near-infrared annealing enabled rapid and homogeneous crystallization of perovskite films for efficient solar modules. Nano-Micro Lett. 17(1), 272 (2025). https://doi.org/10.1007/s40820-025-01792-3
P. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye et al., Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 9(1), 2225 (2018). https://doi.org/10.1038/s41467-018-04636-4
S. Wang, W. Tian, Z. Cheng, X. Shi, W. Fan et al., Fluorinated isopropanol for improved defect passivation and reproducibility in perovskite solar cells. Nat. Energy (2025). https://doi.org/10.1038/s41560-025-01791-z
J. Xiu, B. Han, H. Gao, X. Chen, Z. Chen et al., A sustainable approach using nanocrystals functionalized green alkanes as efficient antisolvents to fabricate high-quality perovskite films. Adv. Energy Mater. 13(28), 2300566 (2023). https://doi.org/10.1002/aenm.202300566
Q. Li, Y. Zheng, H. Wang, X. Liu, M. Lin et al., Graphene-polymer reinforcement of perovskite lattices for durable solar cells. Science 387(6738), 1069–1077 (2025). https://doi.org/10.1126/science.adu5563
P. You, G. Li, G. Tang, J. Cao, F. Yan, Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy Environ. Sci. 13(4), 1187–1196 (2020). https://doi.org/10.1039/c9ee02324k
W. Feng, X. Liu, G. Liu, G. Yang, Y. Fang et al., Blade-coating (100)-oriented α-FAPbI(3) perovskite films via crystal surface energy regulation for efficient and stable inverted perovskite photovoltaics. Angew. Chem. Int. Ed. 63(39), e202403196 (2024). https://doi.org/10.1002/anie.202403196
H. Liu, H. Wu, Z. Zhou, L. Ren, Y. Yang et al., Simultaneous mechanical and chemical synthesis of long-range-ordered perovskites. Nat. Synth. 4(2), 196–208 (2025). https://doi.org/10.1038/s44160-024-00687-2
Z. Yi, X. Li, Y. Xiong, G. Shen, W. Zhang et al., Self-assembled monolayers (SAMs) in inverted perovskite solar cells and their tandem photovoltaics application. Interdiscip. Mater. 3, 203–244 (2024). https://doi.org/10.1002/idm2.12145
L.E. Lehner, S. Demchyshyn, K. Frank, A. Minenkov, D.J. Kubicki et al., Elucidating the origins of high preferential crystal orientation in quasi-2D perovskite solar cells. Adv. Mater. 35(5), e2208061 (2023). https://doi.org/10.1002/adma.202208061
D. Cui, X. Liu, T. Wu, X. Lin, X. Luo et al., Making room for growing oriented FASnI3 with large grains via cold precursor solution. Adv. Funct. Mater. 31(25), 2100931 (2021). https://doi.org/10.1002/adfm.202100931
J. Wang, J. Huang, M. Abdel-Shakour, T. Liu, X. Wang et al., Colloidal zeta potential modulation as a handle to control the crystallization kinetics of tin halide perovskites for photovoltaic applications. Angew. Chem. Int. Ed. 63(17), e202317794 (2024). https://doi.org/10.1002/anie.202317794
Z. Fang, B. Deng, Y. Jin, L. Yang, L. Chen et al., Surface reconstruction of wide-bandgap perovskites enables efficient perovskite/silicon tandem solar cells. Nat. Commun. 15(1), 10554 (2024). https://doi.org/10.1038/s41467-024-54925-4
Y. Xiong, Z. Yi, W. Zhang, Y. Huang, Z. Zhang et al., Recent advances in perovskite/Cu(In,Ga)Se2 tandem solar cells. Mater. Today Electron. 7, 100086 (2024). https://doi.org/10.1016/j.mtelec.2023.100086
B. Ge, H.W. Qiao, Z.Q. Lin, Z.R. Zhou, A.P. Chen et al., Deepening the valance band edges of NiOx contacts by alkaline earth metal doping for efficient perovskite photovoltaics with high open-circuit voltage. Sol. RRL 3(8), 1900192 (2019). https://doi.org/10.1002/solr.201900192
D. Koo, Y. Cho, U. Kim, G. Jeong, J. Lee et al., High-performance inverted perovskite solar cells with operational stability via n-type small molecule additive-assisted defect passivation. Adv. Energy Mater. 10(46), 2001920 (2020). https://doi.org/10.1002/aenm.202001920
G. Kresse, J. Hafner, Ab initiomolecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993). https://doi.org/10.1103/physrevb.47.558
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
P.C. Rusu, G. Giovannetti, G. Brocks, Dipole formation at interfaces of alkanethiolate self-assembled monolayers and Ag(111). J. Phys. Chem. C 111(39), 14448–14456 (2007). https://doi.org/10.1021/jp073420k
M.J. Frisch et al., Gaussian 09, Revision B. 01. Gaussian, Inc., Wallingford (2010).
C. Lee, W. Yang, R. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785–789 (1988). https://doi.org/10.1103/physrevb.37.785
R. Ditchfield, W.J. Hehre, J.A. Pople, Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54(2), 724–728 (1971). https://doi.org/10.1063/1.1674902
B. Xu, T.M. Swager, Rigid bowlic liquid crystals based on tungsten-oxo Calix [4] arenes: host-guest effects and head-to-tail organization. J. Am. Chem. Soc. 115(3), 1159–1160 (1993). https://doi.org/10.1021/ja00056a056
J. Rebek Jr., Host–guest chemistry of calixarene capsules. Chem. Commun. 8, 637–643 (2000). https://doi.org/10.1039/a910339m
M.O. Vysotsky, V. Böhmer, I. Thondorf, Hydrogen bonded calixarene capsules kinetically stable in DMSO. Chem. Commun. 18, 1890–1891 (2001). https://doi.org/10.1039/b105613c
N. Mozhzhukhina, L.P. Méndez De Leo, E.J. Calvo, Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li–air battery. J. Phys. Chem. C 117(36), 18375–18380 (2013). https://doi.org/10.1021/jp407221c
J. Xu, A. Buin, A.H. Ip, W. Li, O. Voznyy et al., Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081 (2015). https://doi.org/10.1038/ncomms8081
C.-H. Chiang, C.-G. Wu, Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nat. Photonics 10(3), 196–200 (2016). https://doi.org/10.1038/nphoton.2016.3
Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai et al., Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 1(11), 16148 (2016). https://doi.org/10.1038/nenergy.2016.148
A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari et al., Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano Lett. 14(6), 3608–3616 (2014). https://doi.org/10.1021/nl5012992
S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
P. Ferdowsi, U. Steiner, J.V. Milić, Host-guest complexation in hybrid perovskite optoelectronics. J. Phys. Mater. 4(4), 042011 (2021). https://doi.org/10.1088/2515-7639/ac299f
H. Zhang, F.T. Eickemeyer, Z. Zhou, M. Mladenović, F. Jahanbakhshi et al., Multimodal host-guest complexation for efficient and stable perovskite photovoltaics. Nat. Commun. 12(1), 3383 (2021). https://doi.org/10.1038/s41467-021-23566-2
Y. Zhu, X. Liu, X. Sui, G. Chen, Q. Li et al., Intermediate-phase homogenization through intermolecular interactions toward reproducible fabrication of perovskite solar cells. Adv. Energy Mater. 15(29), 2500536 (2025). https://doi.org/10.1002/aenm.202500536
J. Zhang, R. Dai, J. Yang, Y. Liu, J. Yu et al., Regulation of crystallization by introducing a multistage growth template affords efficient and stable inverted perovskite solar cells. Energy Environ. Sci. 18(7), 3235–3247 (2025). https://doi.org/10.1039/D4EE06199C
S. Chen, X. Xiao, B. Chen, L.L. Kelly, J. Zhao et al., Crystallization in one-step solution deposition of perovskite films: upward or downward? Sci. Adv. 7(4), eabb2412 (2021). https://doi.org/10.1126/sciadv.abb2412
X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan et al., Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5(2), 131–140 (2020). https://doi.org/10.1038/s41560-019-0538-4
J. Wang, L. Bi, X. Huang, Q. Feng, M. Liu et al., Bilayer interface engineering through 2D/3D perovskite and surface dipole for inverted perovskite solar modules. eScience 4(6), 100308 (2024). https://doi.org/10.1016/j.esci.2024.100308
Y. Wang, B. Li, H. Wang, Z. Zhang, Z. Dang et al., A soft nonpolar-soluble two-dimensional perovskite for general construction of mixed-dimensional heterojunctions. Adv. Mater. 37(14), e2419750 (2025). https://doi.org/10.1002/adma.202419750
J. Wang, W. Fu, S. Jariwala, I. Sinha, A.K.Y. Jen et al., Reducing surface recombination velocities at the electrical contacts will improve perovskite photovoltaics. ACS Energy Lett. 4(1), 222–227 (2019). https://doi.org/10.1021/acsenergylett.8b02058
B. Chen, H. Chen, Y. Hou, J. Xu, S. Teale et al., Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers. Adv. Mater. 33(41), e2103394 (2021). https://doi.org/10.1002/adma.202103394
Y. Yang, M. Yang, D.T. Moore, Y. Yan, E.M. Miller et al., Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nat. Energy 2(2), 16207 (2017). https://doi.org/10.1038/nenergy.2016.207
J. Wu, R. Zhu, G. Li, Z. Zhang, J. Pascual et al., Inhibiting interfacial nonradiative recombination in inverted perovskite solar cells with a multifunctional molecule. Adv. Mater. 36(35), e2407433 (2024). https://doi.org/10.1002/adma.202407433
X. Zhang, F. Liu, Y. Guan, Y. Zou, C. Wu et al., Reducing the Voc loss of hole transport layer-free carbon-based perovskite solar cells via dual interfacial passivation. Nano-Micro Lett. 17(1), 258 (2025). https://doi.org/10.1007/s40820-025-01775-4
H. Kanda, N. Shibayama, A.J. Huckaba, Y. Lee, S. Paek et al., Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor. Energy Environ. Sci. 13(4), 1222–1230 (2020). https://doi.org/10.1039/C9EE02028D
M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann et al., The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12(9), 2778–2788 (2019). https://doi.org/10.1039/C9EE02020A
F. Ye, S. Zhang, J. Warby, J. Wu, E. Gutierrez-Partida et al., Overcoming C(60)-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane. Nat. Commun. 13(1), 7454 (2022). https://doi.org/10.1038/s41467-022-34203-x