Synthesis and Characterization of a Silica-Based Drug Delivery System for Spinal Cord Injury Therapy
Corresponding Author: Tao Yu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 23
Abstract
Acute inflammation is a central component in the progression of spinal cord injury (SCI). Anti-inflammatory drugs used in the clinic are often administered systemically at high doses, which can paradoxically increase inflammation and result in drug toxicity. A cluster-like mesoporous silica/arctigenin/CAQK composite (MSN-FC@ARC-G) drug delivery system was designed to avoid systemic side effects of high-dose therapy by enabling site-specific drug delivery to the spinal cord. In this nanosystem, mesoporous silica was modified with the FITC fluorescent molecule and CAQK peptides that target brain injury and SCI sites. The size of the nanocarrier was kept at approximately 100 nm to enable penetration of the blood–brain barrier. Arctigenin, a Chinese herbal medicine, was loaded into the nanosystem to reduce inflammation. The in vivo results showed that MSN-FC@ARC-G could attenuate inflammation at the injury site. Behavior and morphology experiments suggested that MSN-FC@ARC-G could diminish local microenvironment damage, especially reducing the expression of interleukin-17 (IL-17) and IL-17-related inflammatory factors, inhibiting the activation of astrocytes, thus protecting neurons and accelerating the recovery of SCI. Our study demonstrated that this novel, silica-based drug delivery system has promising potential for clinical application in SCI therapy.
Highlights:
1 With good biocompatibility, a silica-based drug delivery system was prepared and used effectively in vivo to prolong the duration of drug treatment.
2 The prepared system can target spinal cord injury directly. Additionally, due to its small size (approximately 100 nm), it can penetrate the blood-spinal cord barrier.
3 This system reduced the expression of interleukin-17 (IL-17) and IL-17-related inflammatory factors and can protect neurons and promote the recovery of spinal cord injury.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.M. Rubiano, N. Carney, R. Chesnut, J.C. Puyana, Global neurotrauma research challenges and opportunities. Nature 527(7578), S193–S197 (2015). https://doi.org/10.1038/nature16035
- R. Rust, J. Kaiser, Insights into the dual role of inflammation after spinal cord injury. J. Neurosci. 37(18), 4658–4660 (2017). https://doi.org/10.1523/JNEUROSCI.0498-17.2017
- G. Sun, S. Yang, G. Cao, Q. Wang, J. Hao et al., Γδ t cells provide the early source of IFN-γ to aggravate lesions in spinal cord injury. J. Exp. Med. 215(2), 521–535 (2018). https://doi.org/10.1084/jem.20170686
- G. Sun, G. Li, D. Li, W. Huang, R. Zhang, H. Zhang, Y. Duan, B. Wang, HucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Mater. Sci. Eng., C 89, 194–204 (2018). https://doi.org/10.1016/j.msec.2018.04.006
- J. Li, J. Deng, J. Yuan, J. Fu, X. Li et al., Zonisamide-loaded triblock copolymer nanomicelles as a novel drug delivery system for the treatment of acute spinal cord injury. Int. J. Nanomed. 12, 2443–2456 (2017). https://doi.org/10.2147/IJN.S128705
- P.L. Singh, N. Agarwal, J.C. Barrese, R.F. Heary, Current therapeutic strategies for inflammation following traumatic spinal cord injury. Neural Regen. Res. 7(23), 1812–1821 (2012). https://doi.org/10.3969/j.issn.1673-5374.2012.23.008
- M. Bydon, J. Lin, M. Macki, Z.L. Gokaslan, A. Bydon, The current role of steroids in acute spinal cord injury. World Neurosurg. 82(5), 848–854 (2014). https://doi.org/10.1016/j.wneu.2013.02.062
- X. Tang, J. Zhuang, J. Chen, L. Yu, L. Hu, H. Jiang, X. Shen, Arctigenin efficiently enhanced sedentary mice treadmill endurance. PLoS ONE (2011). https://doi.org/10.1371/journal.pone.0024224
- K. Hayashi, K. Narutaki, Y. Nagaoka, T. Hayashi, S. Uesato, Therapeutic effect of arctiin and arctigenin in immunocompetent and immunocompromised mice infected with influenza a virus. Biol. Pharm. Bull. 33(7), 1199–1205 (2010). https://doi.org/10.1248/bpb.33.1199
- F.B. Machado, R.E. Yamamoto, K. Zanoli, S.R. Nocchi, C.R. Novello et al., Evaluation of the antiproliferative activity of the leaves from arctium lappa by a bioassay-guided fractionation. Molecules 17(2), 1852–1859 (2012). https://doi.org/10.3390/molecules17021852
- S.P. Gadani, J.T. Walsh, I. Smirnov, J. Zheng, J. Kipnis, The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron 85(4), 703–709 (2015). https://doi.org/10.1016/j.neuron.2015.01.013
- S. Papa, I. Caron, E. Erba, N. Panini, M. De Paola et al., Early modulation of pro-inflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury. Biomaterials 75, 13–24 (2016). https://doi.org/10.1016/j.biomaterials.2015.10.015
- Y. Pomeshchik, I. Kidin, P. Korhonen, E. Savchenko, M. Jaronen et al., Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury. Brain Behav. Immun. 44, 68–81 (2015). https://doi.org/10.1016/j.bbi.2014.08.002
- W. Li, Z. Zhang, K. Zhang, Z. Xue, Y. Li et al., Arctigenin suppress TH17 cells and ameliorates experimental autoimmune encephalomyelitis through AMPK and PPAR-γ/ROR-γt signaling. Mol. Neurobiol. 53(8), 5356–5366 (2016). https://doi.org/10.1007/s12035-015-9462-1
- S. Zong, G. Zeng, Y. Fang, J. Peng, Y. Tao, K. Li, J. Zhao, The role of IL-17 promotes spinal cord neuroinflammation via activation of the transcription factor STAT3 after spinal cord injury in the rat. Mediators Inflamm. (2014). https://doi.org/10.1155/2014/786947
- G. Sun, X. Hu, G. Zhang, C. Sun, R. Zhang, S. Tang, Y. Lin, Z. Li, Arctigenin suppresses inflammation and plays a neuroprotective effect in mice with spinal cord injury. Int. J. Clin. Exp. Med. 11(3), 2100–2106 (2018)
- S. Kabu, Y. Gao, B.K. Kwon, V. Labhasetwar, Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J. Control. Release 219, 141–154 (2015). https://doi.org/10.1016/j.jconrel.2015.08.060
- T. Limongi, L. Tirinato, F. Pagliari, A. Giugni, M. Allione, G. Perozziello, P. Candeloro, E. Di Fabrizio, Fabrication and applications of micro/nanostructured devices for tissue engineering. Nano-Micro Lett. 9(1), 1 (2016). https://doi.org/10.1007/s40820-016-0103-7
- M. Liu, X. Zeng, C. Ma, H. Yi, Z. Ali et al., Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 5, 17014 (2017). https://doi.org/10.1038/boneres.2017.14
- C. Cheng, S. Li, A. Thomas, N.A. Kotov, R. Haag, Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem. Rev. 117(3), 1826–1914 (2017). https://doi.org/10.1021/acs.chemrev.6b00520
- Y. Yang, L. Ma, C. Cheng, Y. Deng, J. Huang et al., Nonchemotherapic and robust dual-responsive nanoagents with on-demand bacterial trapping, ablation, and release for efficient wound disinfection. Adv. Funct. Mater. 28(21), 1705708 (2018). https://doi.org/10.1002/adfm.201705708
- M. Mathiyazhakan, C. Wiraja, C. Xu, A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery. Nano-Micro Lett. 10(1), 10 (2017). https://doi.org/10.1007/s40820-017-0166-0
- G. Li, Y. Chen, L. Zhang, M. Zhang, S. Li, L. Li, T. Wang, C. Wang, Facile approach to synthesize gold nanorod@polyacrylic acid/calcium phosphate yolk–shell nanoparticles for dual-mode imaging and pH/NIR-responsive drug delivery. Nano-Micro Lett. 10(1), 7 (2017). https://doi.org/10.1007/s40820-017-0155-3
- S. Papa, I. Vismara, A. Mariani, M. Barilani, S. Rimondo, Mesenchymal stem cells encapsulated into biomimetic hydrogel scaffold gradually release CCl2 chemokine in situ preserving cytoarchitecture and promoting functional recovery in spinal cord injury. J. Control. Release 278, 49–56 (2018). https://doi.org/10.1016/j.jconrel.2018.03.034
- I. Caron, F. Rossi, S. Papa, R. Aloe, M. Sculco, A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Biomaterials 75, 135–147 (2016). https://doi.org/10.1016/j.biomaterials.2015.10.024
- S.R. Cerqueira, J.M. Oliveira, N.A. Silva, H. Leite-Almeida, S. Ribeiro-Samy et al., Microglia response and in vivo therapeutic potential of methylprednisolone-loaded dendrimer nanoparticles in spinal cord injury. Small 12(8), 972 (2016). https://doi.org/10.1002/smll.201503492
- N. Naderi, D. Karponis, A. Mosahebi, A.M. Seifalian, Nanoparticles in wound healing; from hope to promise, from promise to routine. Front. Biosci. 23, 1038–1059 (2018). https://doi.org/10.2741/46321
- X. Wang, X. Li, A. Ito, Y. Watanabe, Y. Sogo, N.M. Tsuji, T. Ohno, Stimulation of in vivo antitumor immunity with hollow mesoporous silica nanospheres. Angew. Chem. Int. Ed. 55(5), 1899–1903 (2016). https://doi.org/10.1002/anie.201506179
- B. Song, C. Wu, J. Chang, Controllable delivery of hydrophilic and hydrophobic drugs from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats. J. Biomed. Mater. Res., Part B 100B(8), 2178–2186 (2012). https://doi.org/10.1002/jbm.b.32785
- H. Mekaru, J. Lu, F. Tamanoi, Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv. Drug Del. Rev. 95, 40–49 (2015). https://doi.org/10.1016/j.addr.2015.09.009
- Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed. Nanotechnol. Biol. 11(2), 313–327 (2015). https://doi.org/10.1016/j.nano.2014.09.014
- C. Bharti, U. Nagaich, A.K. Pal, N. Gulati, Mesoporous silica nanoparticles in target drug delivery system: a review. Int. J. Pharma. Investig. 5(3), 124–133 (2015). https://doi.org/10.4103/2230-973X.160844
- A.P. Mann, P. Scodeller, S. Hussain, J. Joo, E. Kwon et al., A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat. Commun. 7, 11980 (2016). https://doi.org/10.1038/ncomms11980
- Q. Wang, H. Zhang, H. Xu, Y. Zhao, Z. Li et al., Novel multi-drug delivery hydrogel using scar-homing liposomes improves spinal cord injury repair. Theranostics 8(16), 4429–4446 (2018). https://doi.org/10.7150/thno.26717
- K. Zhang, L.-L. Xu, J.-G. Jiang, N. Calin, K.-F. Lam et al., Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure. J. Am. Chem. Soc. 135(7), 2427–2430 (2013). https://doi.org/10.1021/ja3116873
- Q. He, J. Shi, F. Chen, M. Zhu, L. Zhang, An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles. Biomaterials 31(12), 3335–3346 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.015
- S.J. Liu, S.Y. Liu, Study on acute toxicity of arctigenin injection in SD rats. Chinese J. Pharmacovigilance 12(8), 462–463 (2015)
- S.F. Ma, Y.-J. Chen, J.-X. Zhang, L. Shen, R. Wang, J.-S. Zhou, J.-G. Hu, H.-Z. Lu, Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury. Brain Behav. Immun. 45, 157–170 (2015). https://doi.org/10.1016/j.bbi.2014.11.007
- D.M. Basso, L.C. Fisher, A.J. Anderson, L.B. Jakeman, D.M. McTigue, P.G. Popovich, Basso mouse scale for locomotion detects differences in recovery after spinal cord in injury in five common mouse strains. J. Neurotrauma 23(5), 635–659 (2006). https://doi.org/10.1089/neu.2006.23.635
- J. Rao, Y. Yang, S. Lin, J. Shen, Y. Yan et al., Repair of spinal cord injury by chitosan scaffold with glioma ECM and SB216763 implantation in adult rats. J. Biomed. Mater. Res., Part A 103(10), 3259–3272 (2015). https://doi.org/10.1002/jbm.a.35466
- A. Waisman, J. Hauptmann, T. Regen, The role of IL-17 in CNS diseases. Acta Neuropathol. 129(5), 625–637 (2015). https://doi.org/10.1007/s00401-015-1402-7
- P. Assinck, G.J. Duncan, B.J. Hilton, J.R. Plemel, W. Tetzlaff, Cell transplantation therapy for spinal cord injury. Nat. Neurosci. 20(5), 637–647 (2017). https://doi.org/10.1038/nn.4541
- W.M. Pardridge, Non-invasive drug delivery to the human brain using endogenous blood–brain barrier transport systems. Pharm. Sci. Technol. Today 2(2), 49–59 (1999). https://doi.org/10.1016/S1461-5347(98)00117-5
- Q. Sun, M. Radosz, Y. Shen, Challenges in design of translational nanocarriers. J. Control. Release 164(2), 156–169 (2012). https://doi.org/10.1016/j.jconrel.2012.05.042
- T. Saxena, K.H. Loomis, S.B. Pai, L. Karumbaiah, E. Gaupp, K. Patil, R. Patkar, R.V. Bellamkonda, Nanocarrier-mediated inhibition of macrophage migration inhibitory factor attenuates secondary injury after spinal cord injury. ACS Nano 9(2), 1492–1505 (2015). https://doi.org/10.1021/nn505980z
- D.R. Pillai, M.S. Dittmar, D. Baldaranov, R.M. Heidemann, E.C. Henning, G. Schuierer, U. Bogdahn, F. Schlachetzki, Cerebral ischemia-reperfusion injury in rats-A 3 T MRI study on biphasic blood-brain barrier opening and the dynamics of edema formation. J. Cereb. Blood Flow Metab. 29(11), 1846–1855 (2009). https://doi.org/10.1038/jcbfm.2009.106
- P.A. Stewart, C.R. Farrell, C.L. Farrell, E. Hayakawa, Horseradish peroxidase retention and washout in blood–brain barrier lesions. J. Neurosci. Methods 41(1), 75–84 (1992). https://doi.org/10.1016/0165-0270(92)90125-W
- A. Gaudin, M. Yemisci, H. Eroglu, S. Lepetre-Mouelhi, O.F. Turkoglu et al., Erratum: Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat. Nanotechnol. 10(1), 99 (2015). https://doi.org/10.1038/nnano.2014.312
- D.J. Donnelly, P.G. Popovich, Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp. Neurol. 209(2), 378–388 (2008). https://doi.org/10.1016/j.expneurol.2007.06.009
- C. Profyris, S.S. Cheema, D.W. Zang, M.F. Azari, K. Boyle, S. Petratos, Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol. Dis. 15(3), 415–436 (2004). https://doi.org/10.1016/j.nbd.2003.11.015
- J. Song, N. Li, Y. Xia, Z. Gao, S.-F. Zou et al., Arctigenin confers neuroprotection against mechanical trauma injury in human neuroblastoma SH-SY5Y cells by regulating miRNA-16 and miRNA-199a expression to alleviate inflammation. J. Mol. Neurosci. 60(1), 115–129 (2016). https://doi.org/10.1007/s12031-016-0784-x
- X. Wu, Y. Yang, Y. Dou, J. Ye, D. Bian et al., Arctigenin but not arctiin acts as the major effective constituent of Arctium lappa L. Fruit for attenuating colonic inflammatory response induced by dextran sulfate sodium in mice. Int. Immunopharmacol. 23(2), 505–515 (2014). https://doi.org/10.1016/j.intimp.2014.09.026
- T. Shichita, Y. Sugiyama, H. Ooboshi, H. Sugimori, R. Nakagawa et al., Pivotal role of cerebral interleukin-17-producing gamma γδT cells in the delayed phase of ischemic brain injury. Nat. Med. 15(8), 946–950 (2009). https://doi.org/10.1038/nm.1999
- F. Hill, C.F. Kim, C.A. Gorrie, G. Moalem-Taylor, Interleukin-17 deficiency improves locomotor recovery and tissue sparing after spinal cord contusion injury in mice. Neurosci. Lett. 487(3), 363–367 (2011). https://doi.org/10.1016/j.neulet.2010.10.057
- A.T. Stammers, J. Liu, B.K. Kwon, Expression of inflammatory cytokines following acute spinal cord injury in a rodent model. J. Neurosci. Res. 90(4), 782–790 (2012). https://doi.org/10.1002/jnr.22820
- K.W. Kelley, D.H. Rowitch, Astrocytes: the final frontier. Neuron 89(1), 1–2 (2016). https://doi.org/10.1016/j.neuron.2015.12.030
- M. Pekny, M. Pekna, A. Messing, C. Steinhaeuser, J.-M. Lee et al., Astrocytes: a central element in neurological diseases. Acta Neuropathol. 131(3), 323–345 (2016). https://doi.org/10.1007/s00401-015-1513-1
- M.A. Anderson, J.E. Burda, Y. Ren, Y. Ao, T.M. O’Shea et al., Astrocyte scar formation aids central nervous system axon regeneration. Nature 532(7598), 195–200 (2016). https://doi.org/10.1038/nature17623
- M.V. Sofroniew, Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 16(5), 249–263 (2015). https://doi.org/10.1038/nrn3898
- M. Hara, K. Kobayakawa, Y. Ohkawa, H. Kumamaru, K. Yokota et al., Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. Nat. Med. 23(7), 818–828 (2017). https://doi.org/10.1038/nm.4354
- P.R. Taylor, S. Roy, S.M. Leal, Y. Sun, S.J. Howell, B.A. Cobb, X. Li, E. Pearlman, Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2. Nat. Immunol. 15(2), 143–151 (2014). https://doi.org/10.1038/ni.2797
- E. Colombo, C. Farina, Astrocytes: key regulators of neuroinflammation. Trends Immunol. 37(9), 608–620 (2016). https://doi.org/10.1016/j.it.2016.06.006
- R. Brambilla, P.D. Morton, J.J. Ashbaugh, S. Karmally, K.L. Lambertsen, J.R. Bethea, Astrocytes play a key role in eae pathophysiology by orchestrating in the CNS the inflammatory response of resident and peripheral immune cells and by suppressing remyelination. Glia 62(3), 452–467 (2014). https://doi.org/10.1002/glia.22616
References
A.M. Rubiano, N. Carney, R. Chesnut, J.C. Puyana, Global neurotrauma research challenges and opportunities. Nature 527(7578), S193–S197 (2015). https://doi.org/10.1038/nature16035
R. Rust, J. Kaiser, Insights into the dual role of inflammation after spinal cord injury. J. Neurosci. 37(18), 4658–4660 (2017). https://doi.org/10.1523/JNEUROSCI.0498-17.2017
G. Sun, S. Yang, G. Cao, Q. Wang, J. Hao et al., Γδ t cells provide the early source of IFN-γ to aggravate lesions in spinal cord injury. J. Exp. Med. 215(2), 521–535 (2018). https://doi.org/10.1084/jem.20170686
G. Sun, G. Li, D. Li, W. Huang, R. Zhang, H. Zhang, Y. Duan, B. Wang, HucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Mater. Sci. Eng., C 89, 194–204 (2018). https://doi.org/10.1016/j.msec.2018.04.006
J. Li, J. Deng, J. Yuan, J. Fu, X. Li et al., Zonisamide-loaded triblock copolymer nanomicelles as a novel drug delivery system for the treatment of acute spinal cord injury. Int. J. Nanomed. 12, 2443–2456 (2017). https://doi.org/10.2147/IJN.S128705
P.L. Singh, N. Agarwal, J.C. Barrese, R.F. Heary, Current therapeutic strategies for inflammation following traumatic spinal cord injury. Neural Regen. Res. 7(23), 1812–1821 (2012). https://doi.org/10.3969/j.issn.1673-5374.2012.23.008
M. Bydon, J. Lin, M. Macki, Z.L. Gokaslan, A. Bydon, The current role of steroids in acute spinal cord injury. World Neurosurg. 82(5), 848–854 (2014). https://doi.org/10.1016/j.wneu.2013.02.062
X. Tang, J. Zhuang, J. Chen, L. Yu, L. Hu, H. Jiang, X. Shen, Arctigenin efficiently enhanced sedentary mice treadmill endurance. PLoS ONE (2011). https://doi.org/10.1371/journal.pone.0024224
K. Hayashi, K. Narutaki, Y. Nagaoka, T. Hayashi, S. Uesato, Therapeutic effect of arctiin and arctigenin in immunocompetent and immunocompromised mice infected with influenza a virus. Biol. Pharm. Bull. 33(7), 1199–1205 (2010). https://doi.org/10.1248/bpb.33.1199
F.B. Machado, R.E. Yamamoto, K. Zanoli, S.R. Nocchi, C.R. Novello et al., Evaluation of the antiproliferative activity of the leaves from arctium lappa by a bioassay-guided fractionation. Molecules 17(2), 1852–1859 (2012). https://doi.org/10.3390/molecules17021852
S.P. Gadani, J.T. Walsh, I. Smirnov, J. Zheng, J. Kipnis, The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron 85(4), 703–709 (2015). https://doi.org/10.1016/j.neuron.2015.01.013
S. Papa, I. Caron, E. Erba, N. Panini, M. De Paola et al., Early modulation of pro-inflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury. Biomaterials 75, 13–24 (2016). https://doi.org/10.1016/j.biomaterials.2015.10.015
Y. Pomeshchik, I. Kidin, P. Korhonen, E. Savchenko, M. Jaronen et al., Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury. Brain Behav. Immun. 44, 68–81 (2015). https://doi.org/10.1016/j.bbi.2014.08.002
W. Li, Z. Zhang, K. Zhang, Z. Xue, Y. Li et al., Arctigenin suppress TH17 cells and ameliorates experimental autoimmune encephalomyelitis through AMPK and PPAR-γ/ROR-γt signaling. Mol. Neurobiol. 53(8), 5356–5366 (2016). https://doi.org/10.1007/s12035-015-9462-1
S. Zong, G. Zeng, Y. Fang, J. Peng, Y. Tao, K. Li, J. Zhao, The role of IL-17 promotes spinal cord neuroinflammation via activation of the transcription factor STAT3 after spinal cord injury in the rat. Mediators Inflamm. (2014). https://doi.org/10.1155/2014/786947
G. Sun, X. Hu, G. Zhang, C. Sun, R. Zhang, S. Tang, Y. Lin, Z. Li, Arctigenin suppresses inflammation and plays a neuroprotective effect in mice with spinal cord injury. Int. J. Clin. Exp. Med. 11(3), 2100–2106 (2018)
S. Kabu, Y. Gao, B.K. Kwon, V. Labhasetwar, Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J. Control. Release 219, 141–154 (2015). https://doi.org/10.1016/j.jconrel.2015.08.060
T. Limongi, L. Tirinato, F. Pagliari, A. Giugni, M. Allione, G. Perozziello, P. Candeloro, E. Di Fabrizio, Fabrication and applications of micro/nanostructured devices for tissue engineering. Nano-Micro Lett. 9(1), 1 (2016). https://doi.org/10.1007/s40820-016-0103-7
M. Liu, X. Zeng, C. Ma, H. Yi, Z. Ali et al., Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 5, 17014 (2017). https://doi.org/10.1038/boneres.2017.14
C. Cheng, S. Li, A. Thomas, N.A. Kotov, R. Haag, Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem. Rev. 117(3), 1826–1914 (2017). https://doi.org/10.1021/acs.chemrev.6b00520
Y. Yang, L. Ma, C. Cheng, Y. Deng, J. Huang et al., Nonchemotherapic and robust dual-responsive nanoagents with on-demand bacterial trapping, ablation, and release for efficient wound disinfection. Adv. Funct. Mater. 28(21), 1705708 (2018). https://doi.org/10.1002/adfm.201705708
M. Mathiyazhakan, C. Wiraja, C. Xu, A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery. Nano-Micro Lett. 10(1), 10 (2017). https://doi.org/10.1007/s40820-017-0166-0
G. Li, Y. Chen, L. Zhang, M. Zhang, S. Li, L. Li, T. Wang, C. Wang, Facile approach to synthesize gold nanorod@polyacrylic acid/calcium phosphate yolk–shell nanoparticles for dual-mode imaging and pH/NIR-responsive drug delivery. Nano-Micro Lett. 10(1), 7 (2017). https://doi.org/10.1007/s40820-017-0155-3
S. Papa, I. Vismara, A. Mariani, M. Barilani, S. Rimondo, Mesenchymal stem cells encapsulated into biomimetic hydrogel scaffold gradually release CCl2 chemokine in situ preserving cytoarchitecture and promoting functional recovery in spinal cord injury. J. Control. Release 278, 49–56 (2018). https://doi.org/10.1016/j.jconrel.2018.03.034
I. Caron, F. Rossi, S. Papa, R. Aloe, M. Sculco, A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Biomaterials 75, 135–147 (2016). https://doi.org/10.1016/j.biomaterials.2015.10.024
S.R. Cerqueira, J.M. Oliveira, N.A. Silva, H. Leite-Almeida, S. Ribeiro-Samy et al., Microglia response and in vivo therapeutic potential of methylprednisolone-loaded dendrimer nanoparticles in spinal cord injury. Small 12(8), 972 (2016). https://doi.org/10.1002/smll.201503492
N. Naderi, D. Karponis, A. Mosahebi, A.M. Seifalian, Nanoparticles in wound healing; from hope to promise, from promise to routine. Front. Biosci. 23, 1038–1059 (2018). https://doi.org/10.2741/46321
X. Wang, X. Li, A. Ito, Y. Watanabe, Y. Sogo, N.M. Tsuji, T. Ohno, Stimulation of in vivo antitumor immunity with hollow mesoporous silica nanospheres. Angew. Chem. Int. Ed. 55(5), 1899–1903 (2016). https://doi.org/10.1002/anie.201506179
B. Song, C. Wu, J. Chang, Controllable delivery of hydrophilic and hydrophobic drugs from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats. J. Biomed. Mater. Res., Part B 100B(8), 2178–2186 (2012). https://doi.org/10.1002/jbm.b.32785
H. Mekaru, J. Lu, F. Tamanoi, Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv. Drug Del. Rev. 95, 40–49 (2015). https://doi.org/10.1016/j.addr.2015.09.009
Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed. Nanotechnol. Biol. 11(2), 313–327 (2015). https://doi.org/10.1016/j.nano.2014.09.014
C. Bharti, U. Nagaich, A.K. Pal, N. Gulati, Mesoporous silica nanoparticles in target drug delivery system: a review. Int. J. Pharma. Investig. 5(3), 124–133 (2015). https://doi.org/10.4103/2230-973X.160844
A.P. Mann, P. Scodeller, S. Hussain, J. Joo, E. Kwon et al., A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat. Commun. 7, 11980 (2016). https://doi.org/10.1038/ncomms11980
Q. Wang, H. Zhang, H. Xu, Y. Zhao, Z. Li et al., Novel multi-drug delivery hydrogel using scar-homing liposomes improves spinal cord injury repair. Theranostics 8(16), 4429–4446 (2018). https://doi.org/10.7150/thno.26717
K. Zhang, L.-L. Xu, J.-G. Jiang, N. Calin, K.-F. Lam et al., Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure. J. Am. Chem. Soc. 135(7), 2427–2430 (2013). https://doi.org/10.1021/ja3116873
Q. He, J. Shi, F. Chen, M. Zhu, L. Zhang, An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles. Biomaterials 31(12), 3335–3346 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.015
S.J. Liu, S.Y. Liu, Study on acute toxicity of arctigenin injection in SD rats. Chinese J. Pharmacovigilance 12(8), 462–463 (2015)
S.F. Ma, Y.-J. Chen, J.-X. Zhang, L. Shen, R. Wang, J.-S. Zhou, J.-G. Hu, H.-Z. Lu, Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury. Brain Behav. Immun. 45, 157–170 (2015). https://doi.org/10.1016/j.bbi.2014.11.007
D.M. Basso, L.C. Fisher, A.J. Anderson, L.B. Jakeman, D.M. McTigue, P.G. Popovich, Basso mouse scale for locomotion detects differences in recovery after spinal cord in injury in five common mouse strains. J. Neurotrauma 23(5), 635–659 (2006). https://doi.org/10.1089/neu.2006.23.635
J. Rao, Y. Yang, S. Lin, J. Shen, Y. Yan et al., Repair of spinal cord injury by chitosan scaffold with glioma ECM and SB216763 implantation in adult rats. J. Biomed. Mater. Res., Part A 103(10), 3259–3272 (2015). https://doi.org/10.1002/jbm.a.35466
A. Waisman, J. Hauptmann, T. Regen, The role of IL-17 in CNS diseases. Acta Neuropathol. 129(5), 625–637 (2015). https://doi.org/10.1007/s00401-015-1402-7
P. Assinck, G.J. Duncan, B.J. Hilton, J.R. Plemel, W. Tetzlaff, Cell transplantation therapy for spinal cord injury. Nat. Neurosci. 20(5), 637–647 (2017). https://doi.org/10.1038/nn.4541
W.M. Pardridge, Non-invasive drug delivery to the human brain using endogenous blood–brain barrier transport systems. Pharm. Sci. Technol. Today 2(2), 49–59 (1999). https://doi.org/10.1016/S1461-5347(98)00117-5
Q. Sun, M. Radosz, Y. Shen, Challenges in design of translational nanocarriers. J. Control. Release 164(2), 156–169 (2012). https://doi.org/10.1016/j.jconrel.2012.05.042
T. Saxena, K.H. Loomis, S.B. Pai, L. Karumbaiah, E. Gaupp, K. Patil, R. Patkar, R.V. Bellamkonda, Nanocarrier-mediated inhibition of macrophage migration inhibitory factor attenuates secondary injury after spinal cord injury. ACS Nano 9(2), 1492–1505 (2015). https://doi.org/10.1021/nn505980z
D.R. Pillai, M.S. Dittmar, D. Baldaranov, R.M. Heidemann, E.C. Henning, G. Schuierer, U. Bogdahn, F. Schlachetzki, Cerebral ischemia-reperfusion injury in rats-A 3 T MRI study on biphasic blood-brain barrier opening and the dynamics of edema formation. J. Cereb. Blood Flow Metab. 29(11), 1846–1855 (2009). https://doi.org/10.1038/jcbfm.2009.106
P.A. Stewart, C.R. Farrell, C.L. Farrell, E. Hayakawa, Horseradish peroxidase retention and washout in blood–brain barrier lesions. J. Neurosci. Methods 41(1), 75–84 (1992). https://doi.org/10.1016/0165-0270(92)90125-W
A. Gaudin, M. Yemisci, H. Eroglu, S. Lepetre-Mouelhi, O.F. Turkoglu et al., Erratum: Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat. Nanotechnol. 10(1), 99 (2015). https://doi.org/10.1038/nnano.2014.312
D.J. Donnelly, P.G. Popovich, Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp. Neurol. 209(2), 378–388 (2008). https://doi.org/10.1016/j.expneurol.2007.06.009
C. Profyris, S.S. Cheema, D.W. Zang, M.F. Azari, K. Boyle, S. Petratos, Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol. Dis. 15(3), 415–436 (2004). https://doi.org/10.1016/j.nbd.2003.11.015
J. Song, N. Li, Y. Xia, Z. Gao, S.-F. Zou et al., Arctigenin confers neuroprotection against mechanical trauma injury in human neuroblastoma SH-SY5Y cells by regulating miRNA-16 and miRNA-199a expression to alleviate inflammation. J. Mol. Neurosci. 60(1), 115–129 (2016). https://doi.org/10.1007/s12031-016-0784-x
X. Wu, Y. Yang, Y. Dou, J. Ye, D. Bian et al., Arctigenin but not arctiin acts as the major effective constituent of Arctium lappa L. Fruit for attenuating colonic inflammatory response induced by dextran sulfate sodium in mice. Int. Immunopharmacol. 23(2), 505–515 (2014). https://doi.org/10.1016/j.intimp.2014.09.026
T. Shichita, Y. Sugiyama, H. Ooboshi, H. Sugimori, R. Nakagawa et al., Pivotal role of cerebral interleukin-17-producing gamma γδT cells in the delayed phase of ischemic brain injury. Nat. Med. 15(8), 946–950 (2009). https://doi.org/10.1038/nm.1999
F. Hill, C.F. Kim, C.A. Gorrie, G. Moalem-Taylor, Interleukin-17 deficiency improves locomotor recovery and tissue sparing after spinal cord contusion injury in mice. Neurosci. Lett. 487(3), 363–367 (2011). https://doi.org/10.1016/j.neulet.2010.10.057
A.T. Stammers, J. Liu, B.K. Kwon, Expression of inflammatory cytokines following acute spinal cord injury in a rodent model. J. Neurosci. Res. 90(4), 782–790 (2012). https://doi.org/10.1002/jnr.22820
K.W. Kelley, D.H. Rowitch, Astrocytes: the final frontier. Neuron 89(1), 1–2 (2016). https://doi.org/10.1016/j.neuron.2015.12.030
M. Pekny, M. Pekna, A. Messing, C. Steinhaeuser, J.-M. Lee et al., Astrocytes: a central element in neurological diseases. Acta Neuropathol. 131(3), 323–345 (2016). https://doi.org/10.1007/s00401-015-1513-1
M.A. Anderson, J.E. Burda, Y. Ren, Y. Ao, T.M. O’Shea et al., Astrocyte scar formation aids central nervous system axon regeneration. Nature 532(7598), 195–200 (2016). https://doi.org/10.1038/nature17623
M.V. Sofroniew, Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 16(5), 249–263 (2015). https://doi.org/10.1038/nrn3898
M. Hara, K. Kobayakawa, Y. Ohkawa, H. Kumamaru, K. Yokota et al., Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. Nat. Med. 23(7), 818–828 (2017). https://doi.org/10.1038/nm.4354
P.R. Taylor, S. Roy, S.M. Leal, Y. Sun, S.J. Howell, B.A. Cobb, X. Li, E. Pearlman, Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2. Nat. Immunol. 15(2), 143–151 (2014). https://doi.org/10.1038/ni.2797
E. Colombo, C. Farina, Astrocytes: key regulators of neuroinflammation. Trends Immunol. 37(9), 608–620 (2016). https://doi.org/10.1016/j.it.2016.06.006
R. Brambilla, P.D. Morton, J.J. Ashbaugh, S. Karmally, K.L. Lambertsen, J.R. Bethea, Astrocytes play a key role in eae pathophysiology by orchestrating in the CNS the inflammatory response of resident and peripheral immune cells and by suppressing remyelination. Glia 62(3), 452–467 (2014). https://doi.org/10.1002/glia.22616