A LiF-Pie-Structured Interphase for Silicon Anodes
Corresponding Author: Xuefeng Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 322
Abstract
Silicon (Si) is a promising anode material for rechargeable batteries due to its high theoretical capacity and abundance, but its practical application is hindered by the continuous growth of porous solid-electrolyte interphase (SEI), leading to capacity fade. Herein, a LiF-Pie structured SEI is proposed, with LiF nanodomains encapsulated in the inner layer of the organic cross-linking silane matrix. A series of advanced techniques such as cryogenic electron microscopy, time-of-flight secondary ion mass spectrometry, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry have provided detailed insights into the formation mechanism, nanostructure, and chemical composition of the interface. With such SEI, the capacity retention of LiCoO2||Si is significantly improved from 49.6% to 88.9% after 300 cycles at 100 mA g−1. These findings provide a desirable interfacial design principle with enhanced (electro) chemical and mechanical stability, which are crucial for sustaining Si anode functionality, thereby significantly advancing the reliability and practical application of Si-based anodes.
Article Highlights:
1 A novel hierarchical solid electrolyte interface (SEI) structure is developed, featuring a lithium fluoride (LiF)-rich inner layer and a silane-based cross-linked matrix.
2 A comprehensive suite of advanced characterization techniques provides multi-scale insights into the structural and chemical composition of the LiF-Pie SEI.
3 The proposed SEI design significantly enhances cycling stability, achieving a capacity retention of LiCoO2||Si increase from 49.6% to 88.9% after 300 cycles at a current density of 100 mA g−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
- D. Larcher, J.-M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015). https://doi.org/10.1038/nchem.2085
- S. Ko, X. Han, T. Shimada, N. Takenaka, Y. Yamada et al., Electrolyte design for lithium-ion batteries with a cobalt-free cathode and silicon oxide anode. Nat. Sustain. 6(12), 1705–1714 (2023). https://doi.org/10.1038/s41893-023-01237-y
- T. Liu, T. Dong, M. Wang, X. Du, Y. Sun et al., Recycled micro-sized silicon anode for high-voltage lithium-ion batteries. Nat. Sustain. 7(8), 1057–1066 (2024). https://doi.org/10.1038/s41893-024-01393-9
- G.G. Eshetu, H. Zhang, X. Judez, H. Adenusi, M. Armand et al., Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nat. Commun. 12(1), 5459 (2021). https://doi.org/10.1038/s41467-021-25334-8
- R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3(4), 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
- F. Duffner, N. Kronemeyer, J. Tübke, J. Leker, M. Winter et al., Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6(2), 123–134 (2021). https://doi.org/10.1038/s41560-020-00748-8
- M. Khan, S. Yan, M. Ali, F. Mahmood, Y. Zheng et al., Innovative solutions for high-performance silicon anodes in lithium-ion batteries: overcoming challenges and real-world applications. Nano-Micro Lett. 16(1), 179 (2024). https://doi.org/10.1007/s40820-024-01388-3
- S. Chae, M. Ko, K. Kim, K. Ahn, J. Cho, Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 1(1), 47–60 (2017). https://doi.org/10.1016/j.joule.2017.07.006
- Y. Cui, Silicon anodes. Nat. Energy 6(10), 995–996 (2021). https://doi.org/10.1038/s41560-021-00918-2
- R. Zhang, Z. Xiao, Z. Lin, X. Yan, Z. He et al., Unraveling the fundamental mechanism of interface conductive network influence on the fast-charging performance of SiO-based anode for lithium-ion batteries. Nano-Micro Lett. 16(1), 43 (2023). https://doi.org/10.1007/s40820-023-01267-3
- Y. Yang, Z. Yang, Z. Li, J. Wang, X. He et al., Rational electrolyte design for interfacial chemistry modulation to enable long-term cycling Si anode. Adv. Energy Mater. 13(41), 2302068 (2023). https://doi.org/10.1002/aenm.202302068
- Z. Cao, X. Zheng, Q. Qu, Y. Huang, H. Zheng, Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode–electrolyte interphase. Adv. Mater. 33(38), 2103178 (2021). https://doi.org/10.1002/adma.202103178
- Y. Zhang, B. Wu, J. Bi, X. Zhang, D. Mu et al., Facilitating prelithiation of silicon carbon anode by localized high-concentration electrolyte for high-rate and long-cycle lithium storage. Carbon Energy 6(6), e480 (2024). https://doi.org/10.1002/cey2.480
- Y. Li, Z. Cao, Y. Wang, L. Lv, J. Sun et al., New insight into the role of fluoro-ethylene carbonate in suppressing Li-trapping for Si anodes in lithium-ion batteries. ACS Energy Lett. 8(10), 4193–4203 (2023). https://doi.org/10.1021/acsenergylett.3c01328
- Q. Li, J. Ruan, S. Weng, X. Zhang, J. Hu et al., Interphasial pre-lithiation and reinforcement of micro-Si anode through fluorine-free electrolytes. Angew. Chem. Int. Ed. 62(44), e202310297 (2023). https://doi.org/10.1002/anie.202310297
- H. Yuan, F. Ma, X. Wei, J.-L. Lan, Y. Liu et al., Ionic-conducting and robust multilayered solid electrolyte interphases for greatly improved rate and cycling capabilities of sodium ion full cells. Adv. Energy Mater. 10(37), 2001418 (2020). https://doi.org/10.1002/aenm.202001418
- Y. Meng, D. Zhou, R. Liu, Y. Tian, Y. Gao et al., Designing phosphazene-derivative electrolyte matrices to enable high-voltage lithium metal batteries for extreme working conditions. Nat. Energy 8(9), 1023–1033 (2023). https://doi.org/10.1038/s41560-023-01339-z
- M. Tian, Z. Jin, Z. Song, R. Qiao, Y. Yan et al., Domino reactions enabling sulfur-mediated gradient interphases for high-energy lithium batteries. J. Am. Chem. Soc. 145(39), 21600–21611 (2023). https://doi.org/10.1021/jacs.3c07908
- L. Yang, T. Meng, W. Zheng, J. Zhong, H. Cheng et al., Advanced binder design for high-performance silicon anodes. Energy Storage Mater. 72, 103766 (2024). https://doi.org/10.1016/j.ensm.2024.103766
- L. Zhang, Y. Lin, X. Peng, M. Wu, T. Zhao, A high-capacity polyethylene oxide-based all-solid-state battery using a metal-organic framework hosted silicon anode. ACS Appl. Mater. Interfaces 14(21), 24798–24805 (2022). https://doi.org/10.1021/acsami.2c04487
- S. Pan, J. Han, Y. Wang, Z. Li, F. Chen et al., Integrating SEI into layered conductive polymer coatings for ultrastable silicon anodes. Adv. Mater. 34(31), 2203617 (2022). https://doi.org/10.1002/adma.202203617
- X. Liu, Z. Xu, A. Iqbal, M. Chen, N. Ali et al., Chemical coupled PEDOT: PSS/Si electrode: suppressed electrolyte consumption enables long-term stability. Nano-Micro Lett. 13(1), 54 (2021). https://doi.org/10.1007/s40820-020-00564-5
- Q. Fang, S. Xu, X. Sha, D. Liu, X. Zhang et al., Interfacial degradation of silicon anodes in pouch cells. Energy Environ. Sci. 17(17), 6368–6376 (2024). https://doi.org/10.1039/d4ee01755b
- Y. Zuo, X. Liang, J. Yin, Z. Gou, W. Lin, Understanding the significant role of SiOSi bonds: organosilicon materials as powerful platforms for bioimaging. Coord. Chem. Rev. 447, 214166 (2021). https://doi.org/10.1016/j.ccr.2021.214166
- F. Dankert, C. von Hänisch, Siloxane coordination revisited: Si−O bond character, reactivity and magnificent molecular shapes. Eur. J. Inorg. Chem. 2021(29), 2907–2927 (2021). https://doi.org/10.1002/ejic.202100275
- F. Weinhold, R. West, The nature of the silicon–oxygen bond. Organometallics 30(21), 5815–5824 (2011). https://doi.org/10.1021/om200675d
- P. Wu, X. Guo, Y. Zhong, C. Liu, S. Chen et al., How the Si–O–Si covalent bond interface affects the electrochemical performance of the silicon anode. ACS Appl. Energy Mater. 5(5), 6373–6382 (2022). https://doi.org/10.1021/acsaem.2c00747
- Y. Li, X. Li, L. Liu, C. Li, L. Xing et al., Multifunctional silane additive enhances inorganic–organic compatibility with F-rich nature of interphase to support high-voltage LiNi0.5Mn1.5O4// graphite pouch cells. Adv. Funct. Mater. 34(19), 2312921 (2024). https://doi.org/10.1002/adfm.202312921
- Z. Zhang, Z. Sun, X. Han, Y. Liu, S. Pei et al., An all-electrochem-active silicon anode enabled by spontaneous Li–Si alloying for ultra-high performance solid-state batteries. Energy Environ. Sci. 17(3), 1061–1072 (2024). https://doi.org/10.1039/d3ee03877g
- X. Zhang, S. Weng, G. Yang, Y. Li, H. Li et al., Interplay between solid-electrolyte interphase and (in)active LixSi in silicon anode. Cell Rep. Phys. Sci. 2(12), 100668 (2021). https://doi.org/10.1016/j.xcrp.2021.100668
- K. Feng, M. Li, W. Liu, A.G. Kashkooli, X. Xiao et al., Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14(8), 1702737 (2018)
- M. Ge, C. Cao, G.M. Biesold, C.D. Sewell, S.-M. Hao et al., Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Adv. Mater. 33(16), 2004577 (2021). https://doi.org/10.1002/adma.202004577
- A. Ait Salah, P. Jozwiak, K. Zaghib, J. Garbarczyk, F. Gendron et al., FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 65(5), 1007–1013 (2006). https://doi.org/10.1016/j.saa.2006.01.019
- L. Wei, Z. Jin, J. Lu, Y. Guo, Z. Wang et al., In-situ construction of hybrid artificial SEI with fluorinated siloxane to enable dendrite-free Li metal anodes. J. Materiomics 9(2), 318–327 (2023). https://doi.org/10.1016/j.jmat.2022.09.018
- K.N. Wood, G. Teeter, XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction. ACS Appl. Energy Mater. 1(9), 4493–4504 (2018). https://doi.org/10.1021/acsaem.8b00406
- C. Xu, B. Sun, T. Gustafsson, K. Edström, D. Brandell et al., Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. J. Mater. Chem. A 2(20), 7256–7264 (2014). https://doi.org/10.1039/C4TA00214H
- Y.-F. Tian, S.-J. Tan, C. Yang, Y.-M. Zhao, D.-X. Xu et al., Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode. Nat. Commun. 14(1), 7247 (2023). https://doi.org/10.1038/s41467-023-43093-6
- L.A. Huff, H. Tavassol, J.L. Esbenshade, W. Xing, Y.-M. Chiang et al., Identification of Li-ion battery SEI compounds through 7Li and 13C solid-state MAS NMR spectroscopy and MALDI-TOF mass spectrometry. ACS Appl. Mater. Interfaces 8(1), 371–380 (2016). https://doi.org/10.1021/acsami.5b08902
- L. Yu, M. Li, J. Wen, K. Amine, J. Lu, (S)TEM-EELS as an advanced characterization technique for lithium-ion batteries. Mater. Chem. Front. 5(14), 5186–5193 (2021). https://doi.org/10.1039/d1qm00275a
- K. Cheng, S. Tu, B. Zhang, W. Wang, X. Wang et al., Material–electrolyte interfacial interaction enabling the formation of an inorganic-rich solid electrolyte interphase for fast-charging Si-based lithium-ion batteries. Energy Environ. Sci. 17(7), 2631–2641 (2024). https://doi.org/10.1039/D4EE00407H
References
M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
D. Larcher, J.-M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015). https://doi.org/10.1038/nchem.2085
S. Ko, X. Han, T. Shimada, N. Takenaka, Y. Yamada et al., Electrolyte design for lithium-ion batteries with a cobalt-free cathode and silicon oxide anode. Nat. Sustain. 6(12), 1705–1714 (2023). https://doi.org/10.1038/s41893-023-01237-y
T. Liu, T. Dong, M. Wang, X. Du, Y. Sun et al., Recycled micro-sized silicon anode for high-voltage lithium-ion batteries. Nat. Sustain. 7(8), 1057–1066 (2024). https://doi.org/10.1038/s41893-024-01393-9
G.G. Eshetu, H. Zhang, X. Judez, H. Adenusi, M. Armand et al., Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nat. Commun. 12(1), 5459 (2021). https://doi.org/10.1038/s41467-021-25334-8
R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3(4), 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
F. Duffner, N. Kronemeyer, J. Tübke, J. Leker, M. Winter et al., Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6(2), 123–134 (2021). https://doi.org/10.1038/s41560-020-00748-8
M. Khan, S. Yan, M. Ali, F. Mahmood, Y. Zheng et al., Innovative solutions for high-performance silicon anodes in lithium-ion batteries: overcoming challenges and real-world applications. Nano-Micro Lett. 16(1), 179 (2024). https://doi.org/10.1007/s40820-024-01388-3
S. Chae, M. Ko, K. Kim, K. Ahn, J. Cho, Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 1(1), 47–60 (2017). https://doi.org/10.1016/j.joule.2017.07.006
Y. Cui, Silicon anodes. Nat. Energy 6(10), 995–996 (2021). https://doi.org/10.1038/s41560-021-00918-2
R. Zhang, Z. Xiao, Z. Lin, X. Yan, Z. He et al., Unraveling the fundamental mechanism of interface conductive network influence on the fast-charging performance of SiO-based anode for lithium-ion batteries. Nano-Micro Lett. 16(1), 43 (2023). https://doi.org/10.1007/s40820-023-01267-3
Y. Yang, Z. Yang, Z. Li, J. Wang, X. He et al., Rational electrolyte design for interfacial chemistry modulation to enable long-term cycling Si anode. Adv. Energy Mater. 13(41), 2302068 (2023). https://doi.org/10.1002/aenm.202302068
Z. Cao, X. Zheng, Q. Qu, Y. Huang, H. Zheng, Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode–electrolyte interphase. Adv. Mater. 33(38), 2103178 (2021). https://doi.org/10.1002/adma.202103178
Y. Zhang, B. Wu, J. Bi, X. Zhang, D. Mu et al., Facilitating prelithiation of silicon carbon anode by localized high-concentration electrolyte for high-rate and long-cycle lithium storage. Carbon Energy 6(6), e480 (2024). https://doi.org/10.1002/cey2.480
Y. Li, Z. Cao, Y. Wang, L. Lv, J. Sun et al., New insight into the role of fluoro-ethylene carbonate in suppressing Li-trapping for Si anodes in lithium-ion batteries. ACS Energy Lett. 8(10), 4193–4203 (2023). https://doi.org/10.1021/acsenergylett.3c01328
Q. Li, J. Ruan, S. Weng, X. Zhang, J. Hu et al., Interphasial pre-lithiation and reinforcement of micro-Si anode through fluorine-free electrolytes. Angew. Chem. Int. Ed. 62(44), e202310297 (2023). https://doi.org/10.1002/anie.202310297
H. Yuan, F. Ma, X. Wei, J.-L. Lan, Y. Liu et al., Ionic-conducting and robust multilayered solid electrolyte interphases for greatly improved rate and cycling capabilities of sodium ion full cells. Adv. Energy Mater. 10(37), 2001418 (2020). https://doi.org/10.1002/aenm.202001418
Y. Meng, D. Zhou, R. Liu, Y. Tian, Y. Gao et al., Designing phosphazene-derivative electrolyte matrices to enable high-voltage lithium metal batteries for extreme working conditions. Nat. Energy 8(9), 1023–1033 (2023). https://doi.org/10.1038/s41560-023-01339-z
M. Tian, Z. Jin, Z. Song, R. Qiao, Y. Yan et al., Domino reactions enabling sulfur-mediated gradient interphases for high-energy lithium batteries. J. Am. Chem. Soc. 145(39), 21600–21611 (2023). https://doi.org/10.1021/jacs.3c07908
L. Yang, T. Meng, W. Zheng, J. Zhong, H. Cheng et al., Advanced binder design for high-performance silicon anodes. Energy Storage Mater. 72, 103766 (2024). https://doi.org/10.1016/j.ensm.2024.103766
L. Zhang, Y. Lin, X. Peng, M. Wu, T. Zhao, A high-capacity polyethylene oxide-based all-solid-state battery using a metal-organic framework hosted silicon anode. ACS Appl. Mater. Interfaces 14(21), 24798–24805 (2022). https://doi.org/10.1021/acsami.2c04487
S. Pan, J. Han, Y. Wang, Z. Li, F. Chen et al., Integrating SEI into layered conductive polymer coatings for ultrastable silicon anodes. Adv. Mater. 34(31), 2203617 (2022). https://doi.org/10.1002/adma.202203617
X. Liu, Z. Xu, A. Iqbal, M. Chen, N. Ali et al., Chemical coupled PEDOT: PSS/Si electrode: suppressed electrolyte consumption enables long-term stability. Nano-Micro Lett. 13(1), 54 (2021). https://doi.org/10.1007/s40820-020-00564-5
Q. Fang, S. Xu, X. Sha, D. Liu, X. Zhang et al., Interfacial degradation of silicon anodes in pouch cells. Energy Environ. Sci. 17(17), 6368–6376 (2024). https://doi.org/10.1039/d4ee01755b
Y. Zuo, X. Liang, J. Yin, Z. Gou, W. Lin, Understanding the significant role of SiOSi bonds: organosilicon materials as powerful platforms for bioimaging. Coord. Chem. Rev. 447, 214166 (2021). https://doi.org/10.1016/j.ccr.2021.214166
F. Dankert, C. von Hänisch, Siloxane coordination revisited: Si−O bond character, reactivity and magnificent molecular shapes. Eur. J. Inorg. Chem. 2021(29), 2907–2927 (2021). https://doi.org/10.1002/ejic.202100275
F. Weinhold, R. West, The nature of the silicon–oxygen bond. Organometallics 30(21), 5815–5824 (2011). https://doi.org/10.1021/om200675d
P. Wu, X. Guo, Y. Zhong, C. Liu, S. Chen et al., How the Si–O–Si covalent bond interface affects the electrochemical performance of the silicon anode. ACS Appl. Energy Mater. 5(5), 6373–6382 (2022). https://doi.org/10.1021/acsaem.2c00747
Y. Li, X. Li, L. Liu, C. Li, L. Xing et al., Multifunctional silane additive enhances inorganic–organic compatibility with F-rich nature of interphase to support high-voltage LiNi0.5Mn1.5O4// graphite pouch cells. Adv. Funct. Mater. 34(19), 2312921 (2024). https://doi.org/10.1002/adfm.202312921
Z. Zhang, Z. Sun, X. Han, Y. Liu, S. Pei et al., An all-electrochem-active silicon anode enabled by spontaneous Li–Si alloying for ultra-high performance solid-state batteries. Energy Environ. Sci. 17(3), 1061–1072 (2024). https://doi.org/10.1039/d3ee03877g
X. Zhang, S. Weng, G. Yang, Y. Li, H. Li et al., Interplay between solid-electrolyte interphase and (in)active LixSi in silicon anode. Cell Rep. Phys. Sci. 2(12), 100668 (2021). https://doi.org/10.1016/j.xcrp.2021.100668
K. Feng, M. Li, W. Liu, A.G. Kashkooli, X. Xiao et al., Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14(8), 1702737 (2018)
M. Ge, C. Cao, G.M. Biesold, C.D. Sewell, S.-M. Hao et al., Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Adv. Mater. 33(16), 2004577 (2021). https://doi.org/10.1002/adma.202004577
A. Ait Salah, P. Jozwiak, K. Zaghib, J. Garbarczyk, F. Gendron et al., FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 65(5), 1007–1013 (2006). https://doi.org/10.1016/j.saa.2006.01.019
L. Wei, Z. Jin, J. Lu, Y. Guo, Z. Wang et al., In-situ construction of hybrid artificial SEI with fluorinated siloxane to enable dendrite-free Li metal anodes. J. Materiomics 9(2), 318–327 (2023). https://doi.org/10.1016/j.jmat.2022.09.018
K.N. Wood, G. Teeter, XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction. ACS Appl. Energy Mater. 1(9), 4493–4504 (2018). https://doi.org/10.1021/acsaem.8b00406
C. Xu, B. Sun, T. Gustafsson, K. Edström, D. Brandell et al., Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. J. Mater. Chem. A 2(20), 7256–7264 (2014). https://doi.org/10.1039/C4TA00214H
Y.-F. Tian, S.-J. Tan, C. Yang, Y.-M. Zhao, D.-X. Xu et al., Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode. Nat. Commun. 14(1), 7247 (2023). https://doi.org/10.1038/s41467-023-43093-6
L.A. Huff, H. Tavassol, J.L. Esbenshade, W. Xing, Y.-M. Chiang et al., Identification of Li-ion battery SEI compounds through 7Li and 13C solid-state MAS NMR spectroscopy and MALDI-TOF mass spectrometry. ACS Appl. Mater. Interfaces 8(1), 371–380 (2016). https://doi.org/10.1021/acsami.5b08902
L. Yu, M. Li, J. Wen, K. Amine, J. Lu, (S)TEM-EELS as an advanced characterization technique for lithium-ion batteries. Mater. Chem. Front. 5(14), 5186–5193 (2021). https://doi.org/10.1039/d1qm00275a
K. Cheng, S. Tu, B. Zhang, W. Wang, X. Wang et al., Material–electrolyte interfacial interaction enabling the formation of an inorganic-rich solid electrolyte interphase for fast-charging Si-based lithium-ion batteries. Energy Environ. Sci. 17(7), 2631–2641 (2024). https://doi.org/10.1039/D4EE00407H