Scalable Fabrication of Methylammonium-Free Wide-Bandgap Perovskite Solar Cells by Blade Coating in Ambient Air
Corresponding Author: Xiaojing Hao
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 318
Abstract
Scalable fabrication of efficient wide-bandgap (WBG) perovskite solar cells (PSCs) is crucial to realize the full commercial potential of tandem solar cells. However, there are challenges in fabricating efficient methylammonium-free (MA-free) WBG PSCs by blade coating, especially its phase separation and films stability. In this work, an MA-free WBG perovskite ink is developed for preparing FA0.8Cs0.2Pb(I0.75Br0.25)3 films by blade coating in ambient air. Among various A-site iodides, RbI is found to be the most effective in suppressing the precipitation of PbI2 induced by Pb(SCN)2 while keeping the enlarged grains. The distribution of Rb suggested that the Rb ions are kept isolated with the perovskite grains during the crystallization and Ostwald ripening processes, which contributes to the formation of the large-grain WBG perovskite film with minimum non-radiative recombination. As a result, a power conversion efficiency (PCE) of 23.0% was achieved on small-area WBG PSCs, while mini-modules with an aperture area of 10.5 cm2 exhibited a PCE of 20.2%, among the highest reported for solar cells prepared with WBG perovskites via blade coating. This work presents a scalable and reproducible fabrication strategy for stable MA-free WBG PSCs under ambient conditions, advancing their path toward commercialization.
Highlights:
1 RbI is the most effective in mitigate PbI2 precipitation caused by Pb(SCN)2 while maintaining large grains.
2 Rb is kept at the grain boundaries during crystallization and Ostwald ripening, contributes to a slow growth of the grains.
3 Wide-bandgap perovskite solar cells with blade-coated perovskite in air achieved a certified power conversion efficiency of 23%, among the highest values reported.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). https://doi.org/10.1038/nature12509
- H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. García de Arquer et al., Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355(6326), 722–726 (2017). https://doi.org/10.1126/science.aai9081
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
- S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380(6643), 404–409 (2023). https://doi.org/10.1126/science.adg3755
- K. Zhao, Q. Liu, L. Yao, C. Değer, J. Shen et al., Peri-Fused polyaromatic molecular contacts for perovskite solar cells. Nature 632(8024), 301–306 (2024). https://doi.org/10.1038/s41586-024-07712-6
- J. Park, J. Kim, H.S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616(7958), 724–730 (2023). https://doi.org/10.1038/s41586-023-05825-y
- Q. Han, Y.-T. Hsieh, L. Meng, J.-L. Wu, P. Sun et al., High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells. Science 361(6405), 904–908 (2018). https://doi.org/10.1126/science.aat5055
- A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
- Z. Zhang, W. Chen, X. Jiang, J. Cao, H. Yang et al., Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency. Nat. Energy 9(5), 592–601 (2024). https://doi.org/10.1038/s41560-024-01491-0
- B. Abdollahi Nejand, D.B. Ritzer, H. Hu, F. Schackmar, S. Moghadamzadeh et al., Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency. Nat. Energy 7(7), 620–630 (2022). https://doi.org/10.1038/s41560-022-01059-w
- J. Liu, Y. He, L. Ding, H. Zhang, Q. Li et al., Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 635(8039), 596–603 (2024). https://doi.org/10.1038/s41586-024-07997-7
- T. Nie, Z. Fang, X. Ren, Y. Duan, S.F. Liu, Recent advances in wide-bandgap organic-inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett. 15(1), 70 (2023). https://doi.org/10.1007/s40820-023-01040-6
- A.J. Ramadan, R.D.J. Oliver, M.B. Johnston, H.J. Snaith, Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nat. Rev. Mater. 8(12), 822–838 (2023). https://doi.org/10.1038/s41578-023-00610-9
- J. Yang, E.L. Lim, L. Tan, Z. Wei, Ink engineering in blade-coating large-area perovskite solar cells. Adv. Energy Mater. 12(28), 2200975 (2022). https://doi.org/10.1002/aenm.202200975
- M. Ma, C. Zhang, Y. Ma, W. Li, Y. Wang et al., Efficient and stable perovskite solar cells and modules enabled by tailoring additive distribution according to the film growth dynamics. Nano-Micro Lett. 17(1), 39 (2024). https://doi.org/10.1007/s40820-024-01538-7
- G.S. Jang, Y. Kim, Y.Y. Kim, J.J. Yoo, G. Kim et al., Ambient air-processed wide-bandgap perovskite solar cells with well-controlled film morphology for four-terminal tandem application. Sol. RRL 6(8), 2200252 (2022). https://doi.org/10.1002/solr.202200252
- P. Jia, G. Chen, G. Li, J. Liang, H. Guan et al., Intermediate phase suppression with long chain diammonium alkane for high performance wide-bandgap and tandem perovskite solar cells. Adv. Mater. 36(25), 2400105 (2024). https://doi.org/10.1002/adma.202400105
- A.S. Subbiah, S. Mannar, V. Hnapovskyi, A.R. Pininti, B. Vishal et al., Efficient blade-coated perovskite/silicon tandems via interface engineering. Joule 9(1), 101767 (2025). https://doi.org/10.1016/j.joule.2024.09.014
- X. Liu, D. Luo, Z.-H. Lu, J.S. Yun, M. Saliba et al., Stabilization of photoactive phases for perovskite photovoltaics. Nat. Rev. Chem. 7(7), 462–479 (2023). https://doi.org/10.1038/s41570-023-00492-z
- T. Hou, M. Zhang, W. Yu, X. Wang, Z. Gu et al., Low-pressure accessible gas-quenching for absolute methylammonium-free perovskite solar cells. J. Mater. Chem. A 10(4), 2105–2112 (2022). https://doi.org/10.1039/d1ta08402j
- D.R. Ceratti, A. Zohar, R. Kozlov, H. Dong, G. Uraltsev et al., Eppur si muove: proton diffusion in halide perovskite single crystals. Adv. Mater. 32(46), 2002467 (2020). https://doi.org/10.1002/adma.202002467
- S. Sadhu, T. Buffeteau, S. Sandrez, L. Hirsch, D.M. Bassani, Observing the migration of hydrogen species in hybrid perovskite materials through D/H isotope exchange. J. Am. Chem. Soc. 142(23), 10431–10437 (2020). https://doi.org/10.1021/jacs.0c02597
- H. Meng, K. Mao, F. Cai, K. Zhang, S. Yuan et al., Inhibition of halide oxidation and deprotonation of organic cations with dimethylammonium formate for air-processed p–i–n perovskite solar cells. Nat. Energy 9(5), 536–547 (2024). https://doi.org/10.1038/s41560-024-01471-4
- K. Sveinbjörnsson, K. Aitola, J. Zhang, M.B. Johansson, X. Zhang et al., Ambient air-processed mixed-ion perovskites for high-efficiency solar cells. J. Mater. Chem. A 4(42), 16536–16545 (2016). https://doi.org/10.1039/c6ta06912f
- B.G. Krishna, D. Sundar Ghosh, S. Tiwari, Progress in ambient air-processed perovskite solar cells: insights into processing techniques and stability assessment. Sol. Energy 224, 1369–1395 (2021). https://doi.org/10.1016/j.solener.2021.07.002
- S. Guo, B. Fan, S. Yao, L. Rao, S. Zhang et al., The effect of interfacial humidity on the printing of highly reproducible perovskite solar cells in the air. Adv. Funct. Mater. 34(21), 2313715 (2024). https://doi.org/10.1002/adfm.202313715
- B.-W. Park, J. Kim, T.J. Shin, Y.S. Kim, M.G. Kim et al., Stabilization of the alkylammonium cations in halide perovskite thin films by water-mediated proton transfer. Adv. Mater. 35(13), 2211386 (2023). https://doi.org/10.1002/adma.202211386
- L. Chen, M. Hu, A.M. Risqi, E. Noh, Y. Lee et al., Unraveling the influence of solvent on side reactions between formamidinium lead triiodide and methylammonium cations. J. Am. Chem. Soc. 146(14), 10159–10166 (2024). https://doi.org/10.1021/jacs.4c01779
- J. Liu, J. Cao, M. Zhang, X. Sun, T. Hou et al., Methylammonium-free ink for blade-coating of pure-phase α-FAPbI3 perovskite films in air. Adv. Sci. 11(46), 2410266 (2024). https://doi.org/10.1002/advs.202410266
- Z. Fang, T. Nie, S. Liu, J. Ding, Overcoming phase segregation in wide-bandgap perovskites: from progress to perspective. Adv. Funct. Mater. 34(42), 2404402 (2024). https://doi.org/10.1002/adfm.202404402
- S. Li, Z. Zheng, J. Ju, S. Cheng, F. Chen et al., A generic strategy to stabilize wide bandgap perovskites for efficient tandem solar cells. Adv. Mater. 36(9), e2307701 (2024). https://doi.org/10.1002/adma.202307701
- Z. Ahmad, R.A. Scheidt, M.P. Hautzinger, K. Zhu, M.C. Beard et al., Understanding the effect of lead iodide excess on the performance of methylammonium lead iodide perovskite solar cells. ACS Energy Lett. 7(6), 1912–1919 (2022). https://doi.org/10.1021/acsenergylett.2c00850
- J. Liang, X. Hu, C. Wang, C. Liang, C. Chen et al., Origins and influences of metallic lead in perovskite solar cells. Joule 6(4), 816–833 (2022). https://doi.org/10.1016/j.joule.2022.03.005
- Q. Jiang, J. Tong, R.A. Scheidt, X. Wang, A.E. Louks et al., Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378(6626), 1295–1300 (2022). https://doi.org/10.1126/science.adf0194
- Y. Chen, N. Yang, G. Zheng, F. Pei, W. Zhou et al., Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells. Science 385(6708), 554–560 (2024). https://doi.org/10.1126/science.ado9104
- M. Zhang, J.S. Yun, Q. Ma, J. Zheng, C.F.J. Lau et al., High-efficiency rubidium-incorporated perovskite solar cells by gas quenching. ACS Energy Lett. 2(2), 438–444 (2017). https://doi.org/10.1021/acsenergylett.6b00697
- T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu et al., Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7(14), 1700228 (2017). https://doi.org/10.1002/aenm.201700228
- T. Matsui, T. Yokoyama, T. Negami, T. Sekiguchi, M. Saliba et al., Effect of rubidium for thermal stability of triple-cation perovskite solar cells. Chem. Lett. 47(6), 814–816 (2018). https://doi.org/10.1246/cl.180211
- W. Wu, Y. Liu, J. Yao, X. Ouyang, Mixed-cation halide perovskite doped with Rb+ for highly efficient photodetector. Materials 16(10), 3796 (2023). https://doi.org/10.3390/ma16103796
- N. Mussakhanuly, A.M. Soufiani, S. Bernardi, J. Gan, S.K. Bhattacharyya et al., Thermal disorder-induced strain and carrier localization activate reverse halide segregation. Adv. Mater. 36(11), e2311458 (2024). https://doi.org/10.1002/adma.202311458
- Y. Hou, X. Du, S. Scheiner, D.P. McMeekin, Z. Wang et al., A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358(6367), 1192–1197 (2017). https://doi.org/10.1126/science.aao5561
- X. Ge, Z. Huang, B. Shi, P. Wang, Z. Liu et al., Crystallization control of blade-coated wide bandgap FACs-based perovskite. Adv. Funct. Mater. 35(12), 2417493 (2025). https://doi.org/10.1002/adfm.202417493
References
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). https://doi.org/10.1038/nature12509
H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. García de Arquer et al., Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355(6326), 722–726 (2017). https://doi.org/10.1126/science.aai9081
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380(6643), 404–409 (2023). https://doi.org/10.1126/science.adg3755
K. Zhao, Q. Liu, L. Yao, C. Değer, J. Shen et al., Peri-Fused polyaromatic molecular contacts for perovskite solar cells. Nature 632(8024), 301–306 (2024). https://doi.org/10.1038/s41586-024-07712-6
J. Park, J. Kim, H.S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616(7958), 724–730 (2023). https://doi.org/10.1038/s41586-023-05825-y
Q. Han, Y.-T. Hsieh, L. Meng, J.-L. Wu, P. Sun et al., High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells. Science 361(6405), 904–908 (2018). https://doi.org/10.1126/science.aat5055
A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
Z. Zhang, W. Chen, X. Jiang, J. Cao, H. Yang et al., Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency. Nat. Energy 9(5), 592–601 (2024). https://doi.org/10.1038/s41560-024-01491-0
B. Abdollahi Nejand, D.B. Ritzer, H. Hu, F. Schackmar, S. Moghadamzadeh et al., Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency. Nat. Energy 7(7), 620–630 (2022). https://doi.org/10.1038/s41560-022-01059-w
J. Liu, Y. He, L. Ding, H. Zhang, Q. Li et al., Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 635(8039), 596–603 (2024). https://doi.org/10.1038/s41586-024-07997-7
T. Nie, Z. Fang, X. Ren, Y. Duan, S.F. Liu, Recent advances in wide-bandgap organic-inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett. 15(1), 70 (2023). https://doi.org/10.1007/s40820-023-01040-6
A.J. Ramadan, R.D.J. Oliver, M.B. Johnston, H.J. Snaith, Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nat. Rev. Mater. 8(12), 822–838 (2023). https://doi.org/10.1038/s41578-023-00610-9
J. Yang, E.L. Lim, L. Tan, Z. Wei, Ink engineering in blade-coating large-area perovskite solar cells. Adv. Energy Mater. 12(28), 2200975 (2022). https://doi.org/10.1002/aenm.202200975
M. Ma, C. Zhang, Y. Ma, W. Li, Y. Wang et al., Efficient and stable perovskite solar cells and modules enabled by tailoring additive distribution according to the film growth dynamics. Nano-Micro Lett. 17(1), 39 (2024). https://doi.org/10.1007/s40820-024-01538-7
G.S. Jang, Y. Kim, Y.Y. Kim, J.J. Yoo, G. Kim et al., Ambient air-processed wide-bandgap perovskite solar cells with well-controlled film morphology for four-terminal tandem application. Sol. RRL 6(8), 2200252 (2022). https://doi.org/10.1002/solr.202200252
P. Jia, G. Chen, G. Li, J. Liang, H. Guan et al., Intermediate phase suppression with long chain diammonium alkane for high performance wide-bandgap and tandem perovskite solar cells. Adv. Mater. 36(25), 2400105 (2024). https://doi.org/10.1002/adma.202400105
A.S. Subbiah, S. Mannar, V. Hnapovskyi, A.R. Pininti, B. Vishal et al., Efficient blade-coated perovskite/silicon tandems via interface engineering. Joule 9(1), 101767 (2025). https://doi.org/10.1016/j.joule.2024.09.014
X. Liu, D. Luo, Z.-H. Lu, J.S. Yun, M. Saliba et al., Stabilization of photoactive phases for perovskite photovoltaics. Nat. Rev. Chem. 7(7), 462–479 (2023). https://doi.org/10.1038/s41570-023-00492-z
T. Hou, M. Zhang, W. Yu, X. Wang, Z. Gu et al., Low-pressure accessible gas-quenching for absolute methylammonium-free perovskite solar cells. J. Mater. Chem. A 10(4), 2105–2112 (2022). https://doi.org/10.1039/d1ta08402j
D.R. Ceratti, A. Zohar, R. Kozlov, H. Dong, G. Uraltsev et al., Eppur si muove: proton diffusion in halide perovskite single crystals. Adv. Mater. 32(46), 2002467 (2020). https://doi.org/10.1002/adma.202002467
S. Sadhu, T. Buffeteau, S. Sandrez, L. Hirsch, D.M. Bassani, Observing the migration of hydrogen species in hybrid perovskite materials through D/H isotope exchange. J. Am. Chem. Soc. 142(23), 10431–10437 (2020). https://doi.org/10.1021/jacs.0c02597
H. Meng, K. Mao, F. Cai, K. Zhang, S. Yuan et al., Inhibition of halide oxidation and deprotonation of organic cations with dimethylammonium formate for air-processed p–i–n perovskite solar cells. Nat. Energy 9(5), 536–547 (2024). https://doi.org/10.1038/s41560-024-01471-4
K. Sveinbjörnsson, K. Aitola, J. Zhang, M.B. Johansson, X. Zhang et al., Ambient air-processed mixed-ion perovskites for high-efficiency solar cells. J. Mater. Chem. A 4(42), 16536–16545 (2016). https://doi.org/10.1039/c6ta06912f
B.G. Krishna, D. Sundar Ghosh, S. Tiwari, Progress in ambient air-processed perovskite solar cells: insights into processing techniques and stability assessment. Sol. Energy 224, 1369–1395 (2021). https://doi.org/10.1016/j.solener.2021.07.002
S. Guo, B. Fan, S. Yao, L. Rao, S. Zhang et al., The effect of interfacial humidity on the printing of highly reproducible perovskite solar cells in the air. Adv. Funct. Mater. 34(21), 2313715 (2024). https://doi.org/10.1002/adfm.202313715
B.-W. Park, J. Kim, T.J. Shin, Y.S. Kim, M.G. Kim et al., Stabilization of the alkylammonium cations in halide perovskite thin films by water-mediated proton transfer. Adv. Mater. 35(13), 2211386 (2023). https://doi.org/10.1002/adma.202211386
L. Chen, M. Hu, A.M. Risqi, E. Noh, Y. Lee et al., Unraveling the influence of solvent on side reactions between formamidinium lead triiodide and methylammonium cations. J. Am. Chem. Soc. 146(14), 10159–10166 (2024). https://doi.org/10.1021/jacs.4c01779
J. Liu, J. Cao, M. Zhang, X. Sun, T. Hou et al., Methylammonium-free ink for blade-coating of pure-phase α-FAPbI3 perovskite films in air. Adv. Sci. 11(46), 2410266 (2024). https://doi.org/10.1002/advs.202410266
Z. Fang, T. Nie, S. Liu, J. Ding, Overcoming phase segregation in wide-bandgap perovskites: from progress to perspective. Adv. Funct. Mater. 34(42), 2404402 (2024). https://doi.org/10.1002/adfm.202404402
S. Li, Z. Zheng, J. Ju, S. Cheng, F. Chen et al., A generic strategy to stabilize wide bandgap perovskites for efficient tandem solar cells. Adv. Mater. 36(9), e2307701 (2024). https://doi.org/10.1002/adma.202307701
Z. Ahmad, R.A. Scheidt, M.P. Hautzinger, K. Zhu, M.C. Beard et al., Understanding the effect of lead iodide excess on the performance of methylammonium lead iodide perovskite solar cells. ACS Energy Lett. 7(6), 1912–1919 (2022). https://doi.org/10.1021/acsenergylett.2c00850
J. Liang, X. Hu, C. Wang, C. Liang, C. Chen et al., Origins and influences of metallic lead in perovskite solar cells. Joule 6(4), 816–833 (2022). https://doi.org/10.1016/j.joule.2022.03.005
Q. Jiang, J. Tong, R.A. Scheidt, X. Wang, A.E. Louks et al., Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378(6626), 1295–1300 (2022). https://doi.org/10.1126/science.adf0194
Y. Chen, N. Yang, G. Zheng, F. Pei, W. Zhou et al., Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells. Science 385(6708), 554–560 (2024). https://doi.org/10.1126/science.ado9104
M. Zhang, J.S. Yun, Q. Ma, J. Zheng, C.F.J. Lau et al., High-efficiency rubidium-incorporated perovskite solar cells by gas quenching. ACS Energy Lett. 2(2), 438–444 (2017). https://doi.org/10.1021/acsenergylett.6b00697
T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu et al., Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7(14), 1700228 (2017). https://doi.org/10.1002/aenm.201700228
T. Matsui, T. Yokoyama, T. Negami, T. Sekiguchi, M. Saliba et al., Effect of rubidium for thermal stability of triple-cation perovskite solar cells. Chem. Lett. 47(6), 814–816 (2018). https://doi.org/10.1246/cl.180211
W. Wu, Y. Liu, J. Yao, X. Ouyang, Mixed-cation halide perovskite doped with Rb+ for highly efficient photodetector. Materials 16(10), 3796 (2023). https://doi.org/10.3390/ma16103796
N. Mussakhanuly, A.M. Soufiani, S. Bernardi, J. Gan, S.K. Bhattacharyya et al., Thermal disorder-induced strain and carrier localization activate reverse halide segregation. Adv. Mater. 36(11), e2311458 (2024). https://doi.org/10.1002/adma.202311458
Y. Hou, X. Du, S. Scheiner, D.P. McMeekin, Z. Wang et al., A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358(6367), 1192–1197 (2017). https://doi.org/10.1126/science.aao5561
X. Ge, Z. Huang, B. Shi, P. Wang, Z. Liu et al., Crystallization control of blade-coated wide bandgap FACs-based perovskite. Adv. Funct. Mater. 35(12), 2417493 (2025). https://doi.org/10.1002/adfm.202417493