Triple-Layer Porous Transport Layers with Ultra-High Porosity for Enhanced Oxygen Transport and Catalyst Utilization in Water Electrolysis
Corresponding Author: Kang Taek Lee
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 316
Abstract
The commercialization of proton exchange membrane water electrolysis (PEMWE) for green hydrogen production hinges on the development of low-cost, high-performance titanium porous transport layers (PTLs). This study introduces a triple-layer Ti-PTL with a graded porous structure and a 75% ultra-high porosity backing layer, fabricated through tape casting and roll calendering. This triple-layer PTL, composed of a microporous layer, an interlayer, and a highly porous backing layer, enhances catalyst utilization, mechanical integrity, and mass transport. Digital twin technology using X-ray revealed increased contact area and triple-phase boundary at the interface with the catalyst layer, significantly improving oxygen evolution reaction kinetics. Numerical simulations demonstrated that the strategically designed porous structure of the triple-layer PTL facilitates efficient oxygen transport, mitigates oxygen accumulation, and improves reactant accessibility. Electrochemical evaluations showed improved performance, achieving 127 mV reduction in voltage at 2 A cm−2 compared to a commercial PTL, highlighting its potential to enhance PEMWE efficiency and cost-effectiveness.
Highlights:
1 A novel triple-layer Ti-porous transport layer (PTL), fabricated using a practical and scalable tape casting and roll calendering process, enhances catalyst utilization by increasing interfacial contact area and the triple-phase boundary.
2 The ultra-high porosity (75%) backing layer and graded structure maximize oxygen transport, mitigate oxygen accumulation, and improve reactant accessibility.
3 Electrochemical evaluations demonstrate a 127 mV reduction in voltage at 2 A cm−2 compared to a commercial PTL, accelerating proton exchange membrane water electrolysis commercialization and supporting the transition to sustainable energy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334(6058), 935–939 (2011). https://doi.org/10.1126/science.1204090
- J.K. Lee, F. Babbe, G. Wang, A.W. Tricker, R. Mukundan et al., Nanochannel electrodes facilitating interfacial transport for PEM water electrolysis. Joule 8(8), 2357–2373 (2024). https://doi.org/10.1016/j.joule.2024.06.005
- S. Jang, Y. Kang, H. Kim, J. Park, K.T. Lee, Digital twin reveals the impact of carbon binder domain distribution on performance of lithium-ion battery cathodes. Small Struct. 6(4), 2400350 (2025). https://doi.org/10.1002/sstr.202400350
- D. Kim, I. Jeong, S. Ahn, S. Oh, H.-N. Im et al., On the role of bimetal-doped BaCoO3–δ perovskites as highly active oxygen electrodes of protonic ceramic electrochemical cells. Adv. Energy Mater. 14(14), 2304059 (2024). https://doi.org/10.1002/aenm.202304059
- H. Han, H. Choi, S. Mhin, Y.-R. Hong, K.M. Kim et al., Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 12(8), 2443–2454 (2019). https://doi.org/10.1039/c9ee00950g
- H. Yu, H.-N. Im, K.T. Lee, Exceptionally high-performance reversible solid oxide electrochemical cells with ultrathin and defect-free Sm0.075Nd0.075Ce0.85O2-δ interlayers. Adv. Funct. Mater. 32(49), 2207725 (2022). https://doi.org/10.1002/adfm.202207725
- X. Peng, P. Satjaritanun, Z. Taie, L. Wiles, A. Keane et al., Insights into interfacial and bulk transport phenomena affecting proton exchange membrane water electrolyzer performance at ultra-low iridium loadings. Adv. Sci. 8(21), 2102950 (2021). https://doi.org/10.1002/advs.202102950
- S.H. Park, J. Koo, Y.-J. Park, S. Jang, H.J. Ryu et al., Uniformly scalable and stackable porous transport layer manufactured by tape casting and calendering for efficient water electrolysis. Chem. Eng. J. 481, 148276 (2024). https://doi.org/10.1016/j.cej.2023.148276
- K. Zhu, H. Zhang, L. Zhu, T. Tian, H. Tang et al., Porous transport layers with laser micropatterning for enhanced mass transport in PEM water electrolyzers. Nano Lett. 24(34), 10656–10663 (2024). https://doi.org/10.1021/acs.nanolett.4c03112
- J.U. Jang, A. Gaur, S. Mhin, H. Han, Fabrication of self-supported catalysts via electrodeposition for proton exchange membrane water electrolysis: Emphasizing on the porous transport layers. EcoEnergy 2(3), 381–399 (2024). https://doi.org/10.1002/ece2.55
- T.L. Doan, H.E. Lee, S.S.H. Shah, M. Kim, C.-H. Kim et al., A review of the porous transport layer in polymer electrolyte membrane water electrolysis. Int. J. Energy Res. 45(10), 14207–14220 (2021). https://doi.org/10.1002/er.6739
- J.K. Lee, T. Schuler, G. Bender, M. Sabharwal, X. Peng et al., Interfacial engineering via laser ablation for high-performing PEM water electrolysis. Appl. Energy 336, 120853 (2023). https://doi.org/10.1016/j.apenergy.2023.120853
- X.-Z. Yuan, N. Shaigan, C. Song, M. Aujla, V. Neburchilov et al., The porous transport layer in proton exchange membrane water electrolysis: perspectives on a complex component. Sustain. Energy Fuels 6(8), 1824–1853 (2022). https://doi.org/10.1039/d2se00260d
- K.E. Ayers, E.B. Anderson, C. Capuano, B. Carter, L. Dalton et al., Research advances towards low cost, high efficiency PEM electrolysis. ECS Trans. 33(1), 3–15 (2010). https://doi.org/10.1149/1.3484496
- F. Razmjooei, T. Morawietz, E. Taghizadeh, E. Hadjixenophontos, L. Mues et al., Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer. Joule 5(7), 1776–1799 (2021). https://doi.org/10.1016/j.joule.2021.05.006
- J. Cho, D.H. Kim, M.W. Noh, H. Kim, H.-G. Oh et al., Dissolution of the Ti porous transport layer in proton exchange membrane water electrolyzers. J. Mater. Chem. A 12(35), 23688–23696 (2024). https://doi.org/10.1039/d4ta02755h
- T.L. Doan, H.E. Lee, M. Kim, W.C. Cho, H.S. Cho et al., Influence of IrO2/TiO2 coated titanium porous transport layer on the performance of PEM water electrolysis. J. Power. Sources 533, 231370 (2022). https://doi.org/10.1016/j.jpowsour.2022.231370
- J. Lee, S. Nam, H. Kim, P. Lee, S. Yoon et al., Accelerated degradation of Pt-coated Ti porous transport layers under dynamic potential pulses in PEMWEs. J. Mater. Chem. A 13(18), 13495–13502 (2025). https://doi.org/10.1039/D5TA00960J
- C.C. Weber, J.A. Wrubel, L. Gubler, G. Bender, S. De Angelis et al., How the porous transport layer interface affects catalyst utilization and performance in polymer electrolyte water electrolysis. ACS Appl. Mater. Interfaces 15(29), 34750–34763 (2023). https://doi.org/10.1021/acsami.3c04151
- C.C. Weber, S. De Angelis, R. Meinert, C. Appel, M. Holler et al., Microporous transport layers facilitating low iridium loadings in polymer electrolyte water electrolysis. EES Catal. 2(2), 585–602 (2024). https://doi.org/10.1039/d3ey00279a
- J. Mo, Z. Kang, G. Yang, S.T. Retterer, D.A. Cullen et al., Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting. Appl. Energy 177, 817–822 (2016). https://doi.org/10.1016/j.apenergy.2016.05.154
- S.A. Grigoriev, P. Millet, S.A. Volobuev, V.N. Fateev, Optimization of porous current collectors for PEM water electrolysers. Int. J. Hydrog. Energy 34(11), 4968–4973 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.056
- R. Omrani, B. Shabani, Review of gas diffusion layer for proton exchange membrane-based technologies with a focus on unitised regenerative fuel cells. Int. J. Hydrog. Energy 44(7), 3834–3860 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.120
- Y. Liu, D. Qiu, Z. Xu, P. Yi, L. Peng, Comprehensive analysis of the gradient porous transport layer for the proton-exchange membrane electrolyzer. ACS Appl. Mater. Interfaces 16(36), 47357–47367 (2024). https://doi.org/10.1021/acsami.4c00006
- D. Kulkarni, R. Ouimet, B. Erb, D.Y. Parkinson, H.-M. Chang et al., Influence of microporous layers on interfacial properties, oxygen flow distribution, and durability of proton exchange membrane water electrolyzers. ACS Appl. Mater. Interfaces 15(41), 48060–48071 (2023). https://doi.org/10.1021/acsami.3c06899
- P.J. Kim, J.K. Lee, C. Lee, K.F. Fahy, P. Shrestha et al., Tailoring catalyst layer interface with titanium mesh porous transport layers. Electrochim. Acta 373, 137879 (2021). https://doi.org/10.1016/j.electacta.2021.137879
- P. Lettenmeier, S. Kolb, N. Sata, A. Fallisch, L. Zielke et al., Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzers. Energy Environ. Sci. 10(12), 2521–2533 (2017). https://doi.org/10.1039/c7ee01240c
- T. Schuler, J.M. Ciccone, B. Krentscher, F. Marone, C. Peter et al., Hierarchically structured porous transport layers for polymer electrolyte water electrolysis. Adv. Energy Mater. 10(2), 1903216 (2020). https://doi.org/10.1002/aenm.201903216
- S. Stiber, H. Balzer, A. Wierhake, F.J. Wirkert, J. Roth et al., Porous transport layers for proton exchange membrane electrolysis under extreme conditions of current density, temperature, and pressure. Adv. Energy Mater. 11(33), 2100630 (2021). https://doi.org/10.1002/aenm.202100630
- F.J. Hackemüller, E. Borgardt, O. Panchenko, M. Müller, M. Bram, Manufacturing of large-scale titanium-based porous transport layers for polymer electrolyte membrane electrolysis by tape casting. Adv. Eng. Mater. 21(6), 1801201 (2019). https://doi.org/10.1002/adem.201801201
- D. Kim, K.T. Bae, K.J. Kim, H.-N. Im, S. Jang et al., High-performance protonic ceramic electrochemical cells. ACS Energy Lett. 7(7), 2393–2400 (2022). https://doi.org/10.1021/acsenergylett.2c01370
- Y.J. Park, W.Y. Choi, H. Choi, S.W. Choi, J.-L. Park et al., Deciphering the microstructural complexities of compacted carbon fiber paper through AI-enabled digital twin technology. Appl. Energy 377, 124689 (2025). https://doi.org/10.1016/j.apenergy.2024.124689
- S. Stiber, N. Sata, T. Morawietz, S.A. Ansar, T. Jahnke et al., A high-performance, durable and low-cost proton exchange membrane electrolyser with stainless steel components. Energy Environ. Sci. 15(1), 109–122 (2022). https://doi.org/10.1039/d1ee02112e
- E. Borgardt, O. Panchenko, F.J. Hackemüller, J. Giffin, M. Bram et al., Mechanical characterization and durability of sintered porous transport layers for polymer electrolyte membrane electrolysis. J. Power. Sour. 374, 84–91 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.027
- Z. Kang, J. Mo, G. Yang, S.T. Retterer, D.A. Cullen et al., Investigation of thin/well-tunable liquid/gas diffusion layers exhibiting superior multifunctional performance in low-temperature electrolytic water splitting. Energy Environ. Sci. 10(1), 166–175 (2017). https://doi.org/10.1039/c6ee02368a
- M. Kroschel, A. Bonakdarpour, J.T.H. Kwan, P. Strasser, D.P. Wilkinson, Analysis of oxygen evolving catalyst coated membranes with different current collectors using a new modified rotating disk electrode technique. Electrochim. Acta 317, 722–736 (2019). https://doi.org/10.1016/j.electacta.2019.05.011
- J.K. Lee, C. Lee, A. Bazylak, Pore network modelling to enhance liquid water transport through porous transport layers for polymer electrolyte membrane electrolyzers. J. Power. Sour. 437, 226910 (2019). https://doi.org/10.1016/j.jpowsour.2019.226910
- B. Hasa, U.R. Aryal, S. Higashi, N.E. Tolouei, J.T. Lang et al., Porous transport layer influence on overpotentials in PEM water electrolysis at low anode catalyst loadings. Appl. Catal. B Environ. Energy 361, 124616 (2025). https://doi.org/10.1016/j.apcatb.2024.124616
- N. Sezer, S. Bayhan, U. Fesli, A. Sanfilippo, A comprehensive review of the state-of-the-art of proton exchange membrane water electrolysis. Mater. Sci. Energy Technol. 8, 44–65 (2025). https://doi.org/10.1016/j.mset.2024.07.006
References
E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334(6058), 935–939 (2011). https://doi.org/10.1126/science.1204090
J.K. Lee, F. Babbe, G. Wang, A.W. Tricker, R. Mukundan et al., Nanochannel electrodes facilitating interfacial transport for PEM water electrolysis. Joule 8(8), 2357–2373 (2024). https://doi.org/10.1016/j.joule.2024.06.005
S. Jang, Y. Kang, H. Kim, J. Park, K.T. Lee, Digital twin reveals the impact of carbon binder domain distribution on performance of lithium-ion battery cathodes. Small Struct. 6(4), 2400350 (2025). https://doi.org/10.1002/sstr.202400350
D. Kim, I. Jeong, S. Ahn, S. Oh, H.-N. Im et al., On the role of bimetal-doped BaCoO3–δ perovskites as highly active oxygen electrodes of protonic ceramic electrochemical cells. Adv. Energy Mater. 14(14), 2304059 (2024). https://doi.org/10.1002/aenm.202304059
H. Han, H. Choi, S. Mhin, Y.-R. Hong, K.M. Kim et al., Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 12(8), 2443–2454 (2019). https://doi.org/10.1039/c9ee00950g
H. Yu, H.-N. Im, K.T. Lee, Exceptionally high-performance reversible solid oxide electrochemical cells with ultrathin and defect-free Sm0.075Nd0.075Ce0.85O2-δ interlayers. Adv. Funct. Mater. 32(49), 2207725 (2022). https://doi.org/10.1002/adfm.202207725
X. Peng, P. Satjaritanun, Z. Taie, L. Wiles, A. Keane et al., Insights into interfacial and bulk transport phenomena affecting proton exchange membrane water electrolyzer performance at ultra-low iridium loadings. Adv. Sci. 8(21), 2102950 (2021). https://doi.org/10.1002/advs.202102950
S.H. Park, J. Koo, Y.-J. Park, S. Jang, H.J. Ryu et al., Uniformly scalable and stackable porous transport layer manufactured by tape casting and calendering for efficient water electrolysis. Chem. Eng. J. 481, 148276 (2024). https://doi.org/10.1016/j.cej.2023.148276
K. Zhu, H. Zhang, L. Zhu, T. Tian, H. Tang et al., Porous transport layers with laser micropatterning for enhanced mass transport in PEM water electrolyzers. Nano Lett. 24(34), 10656–10663 (2024). https://doi.org/10.1021/acs.nanolett.4c03112
J.U. Jang, A. Gaur, S. Mhin, H. Han, Fabrication of self-supported catalysts via electrodeposition for proton exchange membrane water electrolysis: Emphasizing on the porous transport layers. EcoEnergy 2(3), 381–399 (2024). https://doi.org/10.1002/ece2.55
T.L. Doan, H.E. Lee, S.S.H. Shah, M. Kim, C.-H. Kim et al., A review of the porous transport layer in polymer electrolyte membrane water electrolysis. Int. J. Energy Res. 45(10), 14207–14220 (2021). https://doi.org/10.1002/er.6739
J.K. Lee, T. Schuler, G. Bender, M. Sabharwal, X. Peng et al., Interfacial engineering via laser ablation for high-performing PEM water electrolysis. Appl. Energy 336, 120853 (2023). https://doi.org/10.1016/j.apenergy.2023.120853
X.-Z. Yuan, N. Shaigan, C. Song, M. Aujla, V. Neburchilov et al., The porous transport layer in proton exchange membrane water electrolysis: perspectives on a complex component. Sustain. Energy Fuels 6(8), 1824–1853 (2022). https://doi.org/10.1039/d2se00260d
K.E. Ayers, E.B. Anderson, C. Capuano, B. Carter, L. Dalton et al., Research advances towards low cost, high efficiency PEM electrolysis. ECS Trans. 33(1), 3–15 (2010). https://doi.org/10.1149/1.3484496
F. Razmjooei, T. Morawietz, E. Taghizadeh, E. Hadjixenophontos, L. Mues et al., Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer. Joule 5(7), 1776–1799 (2021). https://doi.org/10.1016/j.joule.2021.05.006
J. Cho, D.H. Kim, M.W. Noh, H. Kim, H.-G. Oh et al., Dissolution of the Ti porous transport layer in proton exchange membrane water electrolyzers. J. Mater. Chem. A 12(35), 23688–23696 (2024). https://doi.org/10.1039/d4ta02755h
T.L. Doan, H.E. Lee, M. Kim, W.C. Cho, H.S. Cho et al., Influence of IrO2/TiO2 coated titanium porous transport layer on the performance of PEM water electrolysis. J. Power. Sources 533, 231370 (2022). https://doi.org/10.1016/j.jpowsour.2022.231370
J. Lee, S. Nam, H. Kim, P. Lee, S. Yoon et al., Accelerated degradation of Pt-coated Ti porous transport layers under dynamic potential pulses in PEMWEs. J. Mater. Chem. A 13(18), 13495–13502 (2025). https://doi.org/10.1039/D5TA00960J
C.C. Weber, J.A. Wrubel, L. Gubler, G. Bender, S. De Angelis et al., How the porous transport layer interface affects catalyst utilization and performance in polymer electrolyte water electrolysis. ACS Appl. Mater. Interfaces 15(29), 34750–34763 (2023). https://doi.org/10.1021/acsami.3c04151
C.C. Weber, S. De Angelis, R. Meinert, C. Appel, M. Holler et al., Microporous transport layers facilitating low iridium loadings in polymer electrolyte water electrolysis. EES Catal. 2(2), 585–602 (2024). https://doi.org/10.1039/d3ey00279a
J. Mo, Z. Kang, G. Yang, S.T. Retterer, D.A. Cullen et al., Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting. Appl. Energy 177, 817–822 (2016). https://doi.org/10.1016/j.apenergy.2016.05.154
S.A. Grigoriev, P. Millet, S.A. Volobuev, V.N. Fateev, Optimization of porous current collectors for PEM water electrolysers. Int. J. Hydrog. Energy 34(11), 4968–4973 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.056
R. Omrani, B. Shabani, Review of gas diffusion layer for proton exchange membrane-based technologies with a focus on unitised regenerative fuel cells. Int. J. Hydrog. Energy 44(7), 3834–3860 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.120
Y. Liu, D. Qiu, Z. Xu, P. Yi, L. Peng, Comprehensive analysis of the gradient porous transport layer for the proton-exchange membrane electrolyzer. ACS Appl. Mater. Interfaces 16(36), 47357–47367 (2024). https://doi.org/10.1021/acsami.4c00006
D. Kulkarni, R. Ouimet, B. Erb, D.Y. Parkinson, H.-M. Chang et al., Influence of microporous layers on interfacial properties, oxygen flow distribution, and durability of proton exchange membrane water electrolyzers. ACS Appl. Mater. Interfaces 15(41), 48060–48071 (2023). https://doi.org/10.1021/acsami.3c06899
P.J. Kim, J.K. Lee, C. Lee, K.F. Fahy, P. Shrestha et al., Tailoring catalyst layer interface with titanium mesh porous transport layers. Electrochim. Acta 373, 137879 (2021). https://doi.org/10.1016/j.electacta.2021.137879
P. Lettenmeier, S. Kolb, N. Sata, A. Fallisch, L. Zielke et al., Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzers. Energy Environ. Sci. 10(12), 2521–2533 (2017). https://doi.org/10.1039/c7ee01240c
T. Schuler, J.M. Ciccone, B. Krentscher, F. Marone, C. Peter et al., Hierarchically structured porous transport layers for polymer electrolyte water electrolysis. Adv. Energy Mater. 10(2), 1903216 (2020). https://doi.org/10.1002/aenm.201903216
S. Stiber, H. Balzer, A. Wierhake, F.J. Wirkert, J. Roth et al., Porous transport layers for proton exchange membrane electrolysis under extreme conditions of current density, temperature, and pressure. Adv. Energy Mater. 11(33), 2100630 (2021). https://doi.org/10.1002/aenm.202100630
F.J. Hackemüller, E. Borgardt, O. Panchenko, M. Müller, M. Bram, Manufacturing of large-scale titanium-based porous transport layers for polymer electrolyte membrane electrolysis by tape casting. Adv. Eng. Mater. 21(6), 1801201 (2019). https://doi.org/10.1002/adem.201801201
D. Kim, K.T. Bae, K.J. Kim, H.-N. Im, S. Jang et al., High-performance protonic ceramic electrochemical cells. ACS Energy Lett. 7(7), 2393–2400 (2022). https://doi.org/10.1021/acsenergylett.2c01370
Y.J. Park, W.Y. Choi, H. Choi, S.W. Choi, J.-L. Park et al., Deciphering the microstructural complexities of compacted carbon fiber paper through AI-enabled digital twin technology. Appl. Energy 377, 124689 (2025). https://doi.org/10.1016/j.apenergy.2024.124689
S. Stiber, N. Sata, T. Morawietz, S.A. Ansar, T. Jahnke et al., A high-performance, durable and low-cost proton exchange membrane electrolyser with stainless steel components. Energy Environ. Sci. 15(1), 109–122 (2022). https://doi.org/10.1039/d1ee02112e
E. Borgardt, O. Panchenko, F.J. Hackemüller, J. Giffin, M. Bram et al., Mechanical characterization and durability of sintered porous transport layers for polymer electrolyte membrane electrolysis. J. Power. Sour. 374, 84–91 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.027
Z. Kang, J. Mo, G. Yang, S.T. Retterer, D.A. Cullen et al., Investigation of thin/well-tunable liquid/gas diffusion layers exhibiting superior multifunctional performance in low-temperature electrolytic water splitting. Energy Environ. Sci. 10(1), 166–175 (2017). https://doi.org/10.1039/c6ee02368a
M. Kroschel, A. Bonakdarpour, J.T.H. Kwan, P. Strasser, D.P. Wilkinson, Analysis of oxygen evolving catalyst coated membranes with different current collectors using a new modified rotating disk electrode technique. Electrochim. Acta 317, 722–736 (2019). https://doi.org/10.1016/j.electacta.2019.05.011
J.K. Lee, C. Lee, A. Bazylak, Pore network modelling to enhance liquid water transport through porous transport layers for polymer electrolyte membrane electrolyzers. J. Power. Sour. 437, 226910 (2019). https://doi.org/10.1016/j.jpowsour.2019.226910
B. Hasa, U.R. Aryal, S. Higashi, N.E. Tolouei, J.T. Lang et al., Porous transport layer influence on overpotentials in PEM water electrolysis at low anode catalyst loadings. Appl. Catal. B Environ. Energy 361, 124616 (2025). https://doi.org/10.1016/j.apcatb.2024.124616
N. Sezer, S. Bayhan, U. Fesli, A. Sanfilippo, A comprehensive review of the state-of-the-art of proton exchange membrane water electrolysis. Mater. Sci. Energy Technol. 8, 44–65 (2025). https://doi.org/10.1016/j.mset.2024.07.006