Novel Perovskite Oxide Hybrid Nanofibers Embedded with Nanocatalysts for Highly Efficient and Durable Electrodes in Direct CO2 Electrolysis
Corresponding Author: Kang Taek Lee
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 93
Abstract
The unique characteristics of nanofibers in rational electrode design enable effective utilization and maximizing material properties for achieving highly efficient and sustainable CO2 reduction reactions (CO2RRs) in solid oxide electrolysis cells (SOECs). However, practical application of nanofiber-based electrodes faces challenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte. To tackle this challenge, a novel hybrid nanofiber electrode, La0.6Sr0.4Co0.15Fe0.8Pd0.05O3−δ (H-LSCFP), is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique. After consecutive treatment in 100% H2 and CO2 at 700 °C, LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface, enhancing CO2 adsorption. The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm−2 in CO2 at 800 °C and 1.5 V, setting a new benchmark among reported nanofiber-based electrodes. Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO2RR. The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure, paving the way for further advancements and nanofiber applications in CO2-SOECs.
Highlights:
1 The novel hybrid structured nanofiber electrode, incorporating crushed nanofibers into the nanofiber network, is designed to effectively resolve the issue of insufficient interfacial bonding of porous nanofiber electrodes on solid electrolyte interfaces.
2 The hybrid nanofibers are covered with in situ exsolved metal nanocatalysts to enhance CO2 reduction reaction rate.
3 Electrochemical and microstructure 3D reconstruction analyses confirmed the hybrid structure’s efficiency in improving the contact area at the porous-solid interface, leading to an increase in reaction sites.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Lee, M. Kim, K.T. Lee, J.T.S. Irvine, T.H. Shin, Enhancing electrochemical CO2 reduction using Ce(Mn, Fe)O2 with La(Sr)Cr(Mn)O3 cathode for high-temperature solid oxide electrolysis cells. Adv. Energy Mater. 11, 2100339 (2021). https://doi.org/10.1002/aenm.202100339
- O.S. Bushuyev, P. De Luna, C.T. Dinh, L. Tao, G. Saur et al., What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
- X. Xi, J. Liu, W. Luo, Y. Fan, J. Zhang et al., Unravelingthe enhanced kinetics of Sr2Fe1+xMo1−xO6−δ electrocatalysts for high-performance solid oxide cells. Adv. Energy Mater. 11, 2170187 (2021). https://doi.org/10.1002/aenm.202170187
- K. Zhang, Y. Zhao, W. He, P. Zhao, D. Zhang et al., Pr and Mo Co-doped SrFeO3−δ as an efficient cathode for pure CO2 reduction reaction in a solid oxide electrolysis cell. Energy Technol. 8, 2070101 (2020). https://doi.org/10.1002/ente.202070101
- Y. Jiang, F. Chen, C. Xia, A review on cathode processes and materials for electro-reduction of carbon dioxide in solid oxide electrolysis cells. J. Power. Sour. 493, 229713 (2021). https://doi.org/10.1016/j.jpowsour.2021.229713
- Y. Li, Y. Li, Y. Wan, Y. Xie, J. Zhu et al., Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent electrochemical performances. Adv. Energy Mater. 9, 1803156 (2019). https://doi.org/10.1002/aenm.201803156
- F. He, M. Hou, F. Zhu, D. Liu, H. Zhang et al., Building efficient and durable hetero-interfaces on a perovskite-based electrode for electrochemical CO2 reduction. Adv. Energy Mater. 12, 2202175 (2022). https://doi.org/10.1002/aenm.202202175
- E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999). https://doi.org/10.1038/23220
- W. Yue, Y. Li, Y. Zheng, T. Wu, C. Zhao et al., Enhancing coking resistance of Ni/YSZ electrodes: in situ characterization, mechanism research, and surface engineering. Nano Energy 62, 64–78 (2019). https://doi.org/10.1016/j.nanoen.2019.05.006
- J. Lee, S. Hwang, M. Ahn, M. Choi, S. Han et al., Enhanced interface reactivity by a nanowrinkled functional layer for intermediate-temperature solid oxide fuel cells. J. Mater. Chem. A. 7, 21120–21127 (2019). https://doi.org/10.1039/c9ta04818a
- S. Lee, S.H. Woo, T.H. Shin, J.T.S. Irvine, Pd and GDC Co-infiltrated LSCM cathode for high-temperature CO2 electrolysis using solid oxide electrolysis cells. Chem. Eng. J. 420, 127706 (2021). https://doi.org/10.1016/j.cej.2020.127706
- Z. Yang, C. Ma, N. Wang, X. Jin, C. Jin et al., Electrochemical reduction of CO2 in a symmetrical solid oxide electrolysis cell with La0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ electrode. J. CO2 Util. 33, 445–451 (2019). https://doi.org/10.1016/j.jcou.2019.07.021
- Y. Li, Y. Li, S. Zhang, C. Ren, Y. Jing et al., Mutual conversion of CO–CO2 on a perovskite fuel electrode with endogenous alloy nanops for reversible solid oxide cells. ACS Appl. Mater. Interfaces 14, 9138–9150 (2022). https://doi.org/10.1021/acsami.1c23548
- H. Lv, T. Liu, X. Zhang, Y. Song, H. Matsumoto et al., Atomic-scale insight into exsolution of CoFe alloy nanops in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3–δ with efficient CO2 electrolysis. Angew. Chem. Int. Ed. 59, 15968–15973 (2020). https://doi.org/10.1002/anie.202006536
- J. Li, Q. Liu, Y. Song, H. Lv, W. Feng et al., In-situ exsolution of cobalt nanops from La0.5Sr0.5Fe0.8Co0.2O3−δ cathode for enhanced CO2 electrolysis performance. Green Chem. Eng. 3, 250–258 (2022). https://doi.org/10.1016/j.gce.2021.12.011
- K.J. Kim, C. Lim, K.T. Bae, J.J. Lee, M.Y. Oh et al., Concurrent promotion of phase transition and bimetallic nanocatalyst exsolution in perovskite oxides driven by Pd doping to achieve highly active bifunctional fuel electrodes for reversible solid oxide electrochemical cells. Appl. Catal. B Environ. 314, 121517 (2022). https://doi.org/10.1016/j.apcatb.2022.121517
- S.D. Ebbesen, S.H. Jensen, A. Hauch, M.B. Mogensen, High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. Chem. Rev. 114, 10697–10734 (2014). https://doi.org/10.1021/cr5000865
- S. Wang, H. Tsuruta, M. Asanuma, T. Ishihara, Ni–Fe–La(Sr)Fe(Mn)O3 as a new active cermet cathode for intermediate-temperature CO2 electrolysis using a LaGaO3-based electrolyte. Adv. Energy Mater. 5, 1401003 (2015). https://doi.org/10.1002/aenm.201401003
- L. Fan, B. Zhu, P.-C. Su, C. He, Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities. Nano Energy 45, 148–176 (2018). https://doi.org/10.1016/j.nanoen.2017.12.044
- M. Zhi, S. Lee, N. Miller, N.H. Menzler, N. Wu, An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode. Energy Environ. Sci. 5, 7066 (2012). https://doi.org/10.1039/c2ee02619h
- L. Fan, Y. Xiong, L. Liu, Y. Wang, H. Kishimoto et al., Performance of Gd0.2Ce0.8O1.9 infiltrated La0.2Sr0.8TiO3 nanofiber scaffolds as anodes for solid oxide fuel cells. J. Power Sour. 265, 125–131 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.109
- Y. Chen, Y. Bu, Y. Zhang, R. Yan, D. Ding et al., A highly efficient and robust nanofiber cathode for solid oxide fuel cells. Adv. Energy Mater. 7, 1601890 (2017). https://doi.org/10.1002/aenm.201601890
- Y. Choi, H.J. Cho, J. Kim, J.Y. Kang, J. Seo et al., Nanofiber composites as highly active and robust anodes for direct-hydrocarbon solid oxide fuel cells. ACS Nano 16, 14517–14526 (2022). https://doi.org/10.1021/acsnano.2c04927
- Y. Chen, Y. Bu, B. Zhao, Y. Zhang, D. Ding et al., A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy 26, 90–99 (2016). https://doi.org/10.1016/j.nanoen.2016.05.001
- M. Ahn, J. Lee, W. Lee, Nanofiber-based composite cathodes for intermediate temperature solid oxide fuel cells. J. Power. Sour. 353, 176–182 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.151
- X. Bian, Q. Fu, C. Qiu, X. Bie, F. Du et al., Carbon black and vapor grown carbon fibers binary conductive additive for the Li1.18Co0.15Ni0.15Mn0.52O2 electrodes for Li-ion batteries. Mater. Chem. Phys. 156, 69–75 (2015). https://doi.org/10.1016/j.matchemphys.2015.02.024
- J.H. Park, K.T. Bae, K.J. Kim, D.W. Joh, D. Kim et al., Ultra-fast fabrication of tape-cast anode supports for solid oxide fuel cells via resonant acoustic mixing technology. Ceram. Int. 45, 12154–12161 (2019). https://doi.org/10.1016/j.ceramint.2019.03.119
- T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015). https://doi.org/10.1016/j.electacta.2015.09.097
- D.W. Joh, A. Cha, J.H. Park, K.J. Kim, K.T. Bae et al., In situ synthesized La0.6Sr0.4Co0.2Fe0.8O3−δ–Gd0.1Ce0.9O1.95 nanocomposite cathodes via a modified sol–gel process for intermediate temperature solid oxide fuel cells. ACS Appl. Nano Mater. 1, 2934–2942 (2018). https://doi.org/10.1021/acsanm.8b00566
- J.A. Taillon, C. Pellegrinelli, Y.-L. Huang, E.D. Wachsman, L.G. Salamanca-Riba, Improving microstructural quantification in FIB/SEM nanotomography. Ultramicroscopy 184, 24–38 (2018). https://doi.org/10.1016/j.ultramic.2017.07.017
- S.S. Shin, J.H. Kim, K.T. Bae, K.-T. Lee, S.M. Kim et al., Multiscale structured low-temperature solid oxide fuel cells with 13 W power at 500 ℃. Energy Environ. Sci. 13, 3459–3468 (2020). https://doi.org/10.1039/d0ee00870b
- J. Park, K.T. Bae, D. Kim, W. Jeong, J. Nam et al., Unraveling the limitations of solid oxide electrolytes for all-solid-state electrodes through 3D digital twin structural analysis. Nano Energy 79, 105456 (2021). https://doi.org/10.1016/j.nanoen.2020.105456
- D. Kim, K.T. Bae, K.J. Kim, H.-N. Im, S. Jang et al., High-performance protonic ceramic electrochemical cells. ACS Energy Lett. 7, 2393–2400 (2022). https://doi.org/10.1021/acsenergylett.2c01370
- A. Buades, B. Coll, J.M. Morel, A non-local algorithm for image denoising. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR‘05). San Diego, CA, USA. IEEE, (2005). p60–65.
- W.M. Harris, J.J. Lombardo, G.J. Nelson, B. Lai, S. Wang et al., Three-dimensional microstructural imaging of sulfur poisoning-induced degradation in a Ni-YSZ anode of solid oxide fuel cells. Sci. Rep. 4, 5246 (2014). https://doi.org/10.1038/srep05246
- S. Lee, H. Ha, K.T. Bae, S. Kim, H. Choi et al., A measure of active interfaces in supported catalysts for high-temperature reactions. Chem. 8, 815–835 (2022). https://doi.org/10.1016/j.chempr.2021.11.024
- S.J. Cooper, A. Bertei, P.R. Shearing, J.A. Kilner, N.P. Brandon, TauFactor: an open-source application for calculating tortuosity factors from tomographic data. SoftwareX 5, 203–210 (2016). https://doi.org/10.1016/j.softx.2016.09.002
- B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou et al., A metal–organic framework-derived bifunctional oxygenelectrocatalyst. Nat. Energy 1, 15006 (2016). https://doi.org/10.1038/nenergy.2015.6
- C. Kuru, Co–Mo–Se ternary chalcogenide thin film coatedp-Si photocathode for efficient solar hydrogen production. Funct. Mater. Lett. 14, 2151002 (2021). https://doi.org/10.1142/s1793604721510024
- W. Lu, J. Shen, P. Zhang, Y. Zhong, Y. Hu et al., Construction of CoO/co-Cu-S hierarchical tubular heterostructures for hybrid supercapacitors. Angew. Chem. Int. Ed. 131, 15587–15593 (2019). https://doi.org/10.1002/ange.201907516
- J.H. Park, J.H. Shin, J.M. Ju, J.H. Lee, C. Choi et al., Modulating the electrocatalytic activity of N-doped carbon frameworks via coupling with dual metals for Zn-air batteries. Nano Converg. 9, 17 (2022). https://doi.org/10.1186/s40580-022-00308-8
- P. Wang, T. Yuan, H. Yuan, X. Zheng, H. Ijaz et al., PdO/SnO2 heterostructure for low-temperature detection of CO with fast response and recovery. RSC Adv. 9, 22875–22882 (2019). https://doi.org/10.1039/c9ra03171e
- J. Li, B. Wei, X. Yue, Z. Lü, A highly efficient and robust perovskite anode with iron-palladium co-exsolutions for intermediate-temperature solid-oxide fuel cells. Chemsuschem 11, 2593–2603 (2018). https://doi.org/10.1002/cssc.201800641
- D.J. Deka, J. Kim, S. Gunduz, D. Jain, Y. Shi et al., Coke formation during high-temperature CO2 electrolysis over AFeO3 (A = La/Sr) cathode: effect of A-site metal segregation. Appl. Catal. B Environ. 283, 119642 (2021). https://doi.org/10.1016/j.apcatb.2020.119642
- X. Xi, J. Liu, Y. Fan, L. Wang, J. Li et al., Reducing d-p band coupling to enhance CO2 electrocatalytic activity by Mg-doping in Sr2FeMoO6−δ double perovskite for high performance solid oxide electrolysis cells. Nano Energy 82, 105707 (2021). https://doi.org/10.1016/j.nanoen.2020.105707
- C. Yang, Y. Tian, J. Pu, B. Chi, Anion fluorine-doped La0.6Sr0.4Fe0.8Ni0.2O3−δ perovskite cathodes with enhanced electrocatalytic activity for solid oxide electrolysis cell direct CO2 electrolysis. ACS Sustain Chem. Eng. 10, 1047–1058 (2022). https://doi.org/10.1021/acssuschemeng.1c07576
- L. Zhang, W. Sun, C. Xu, R. Ren, X. Yang et al., Two-fold improvement in chemical adsorption ability to achieve effective carbon dioxide electrolysis. Appl. Catal. B Environ. 317, 121754 (2022). https://doi.org/10.1016/j.apcatb.2022.121754
- S. Zhang, Y. Jiang, H. Han, Y. Li, C. Xia, Perovskite oxyfluoride ceramic with in situ exsolved Ni–Fe nanops for direct CO2 electrolysis in solid oxide electrolysis cells. ACS Appl. Mater. Interfaces 14, 28854–28864 (2022). https://doi.org/10.1021/acsami.2c05324
- L. Zhang, S. Hu, W. Li, Z. Cao, H. Liu et al., Nano-CeO2−modified cathodes for direct electrochemical CO2 reduction in solid oxide electrolysis cells. ACS. Sustain. Chem. Eng. 7, 9629–9636 (2019). https://doi.org/10.1021/acssuschemeng.9b01183
- S. Park, Y. Kim, H. Han, Y.S. Chung, W. Yoon et al., In situ exsolved co nanops on ruddlesden-popper material As highly active catalyst for CO2 electrolysis to CO. Meet. Abstr. (2019). https://doi.org/10.1149/ma2019-01/33/1751
- K.T. Bae, I. Jeong, D. Kim, H. Yu, H.-N. Im et al., Highly active cobalt-free perovskites with Bi doping as bifunctional oxygen electrodes for solid oxide cells. Chem. Eng. J. 461, 142051 (2023). https://doi.org/10.1016/j.cej.2023.142051
- B.-H. Yun, K.J. Kim, D.W. Joh, M.S. Chae, J.J. Lee et al., Highly active and durable double-doped bismuth oxide-based oxygen electrodes for reversible solid oxide cells at reduced temperatures. J. Mater. Chem. A 7, 20558–20566 (2019). https://doi.org/10.1039/c9ta09203j
- D. Kim, J.W. Park, M.S. Chae, I. Jeong, J.H. Park et al., An efficient and robust lanthanum strontium cobalt ferrite catalyst as a bifunctional oxygen electrode for reversible solid oxide cells. J. Mater. Chem. A 9, 5507–5521 (2021). https://doi.org/10.1039/d0ta11233j
- T. Tan, Z. Wang, M. Qin, W. Zhong, J. Hu et al., In situ exsolution of core-shell structured NiFe/FeOx nanops on Pr0.4Sr1.6(NiFe)1.5Mo0.5O6−δ for CO2 electrolysis. Adv. Funct. Mater. 32, 2202878 (2022). https://doi.org/10.1002/adfm.202202878
- X. Yang, K. Sun, M. Ma, C. Xu, R. Ren et al., Achieving strong chemical adsorption ability for efficient carbon dioxide electrolysis. Appl. Catal. B Environ. 272, 118968 (2020). https://doi.org/10.1016/j.apcatb.2020.118968
- Y. Zhou, Z. Zhou, Y. Song, X. Zhang, F. Guan et al., Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell. Nano Energy 50, 43–51 (2018). https://doi.org/10.1016/j.nanoen.2018.04.054
- H. Yu, H.-N. Im, K.T. Lee, Exceptionally high-performance reversible solid oxide electrochemical cells with ultrathin and defect-free Sm0.075Nd0.075Ce0.85O2−δ interlayers. Adv. Funct. Mater. 32, 2207725 (2022). https://doi.org/10.1002/adfm.202207725
- X. Yang, W. Sun, M. Ma, C. Xu, R. Ren et al., Achieving highly efficient carbon dioxide electrolysis by In situ construction of the heterostructure. ACS Appl. Mater. Interfaces 13, 20060–20069 (2021). https://doi.org/10.1021/acsami.1c02146
- Y. Jiang, Y. Yang, C. Xia, H.J.M. Bouwmeester, Sr2Fe1.4Mn0.1Mo0.5O6–δ perovskite cathode for highly efficient CO2 electrolysis. J. Mater. Chem. A 7, 22939–22949 (2019). https://doi.org/10.1039/c9ta07689a
References
S. Lee, M. Kim, K.T. Lee, J.T.S. Irvine, T.H. Shin, Enhancing electrochemical CO2 reduction using Ce(Mn, Fe)O2 with La(Sr)Cr(Mn)O3 cathode for high-temperature solid oxide electrolysis cells. Adv. Energy Mater. 11, 2100339 (2021). https://doi.org/10.1002/aenm.202100339
O.S. Bushuyev, P. De Luna, C.T. Dinh, L. Tao, G. Saur et al., What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
X. Xi, J. Liu, W. Luo, Y. Fan, J. Zhang et al., Unravelingthe enhanced kinetics of Sr2Fe1+xMo1−xO6−δ electrocatalysts for high-performance solid oxide cells. Adv. Energy Mater. 11, 2170187 (2021). https://doi.org/10.1002/aenm.202170187
K. Zhang, Y. Zhao, W. He, P. Zhao, D. Zhang et al., Pr and Mo Co-doped SrFeO3−δ as an efficient cathode for pure CO2 reduction reaction in a solid oxide electrolysis cell. Energy Technol. 8, 2070101 (2020). https://doi.org/10.1002/ente.202070101
Y. Jiang, F. Chen, C. Xia, A review on cathode processes and materials for electro-reduction of carbon dioxide in solid oxide electrolysis cells. J. Power. Sour. 493, 229713 (2021). https://doi.org/10.1016/j.jpowsour.2021.229713
Y. Li, Y. Li, Y. Wan, Y. Xie, J. Zhu et al., Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent electrochemical performances. Adv. Energy Mater. 9, 1803156 (2019). https://doi.org/10.1002/aenm.201803156
F. He, M. Hou, F. Zhu, D. Liu, H. Zhang et al., Building efficient and durable hetero-interfaces on a perovskite-based electrode for electrochemical CO2 reduction. Adv. Energy Mater. 12, 2202175 (2022). https://doi.org/10.1002/aenm.202202175
E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999). https://doi.org/10.1038/23220
W. Yue, Y. Li, Y. Zheng, T. Wu, C. Zhao et al., Enhancing coking resistance of Ni/YSZ electrodes: in situ characterization, mechanism research, and surface engineering. Nano Energy 62, 64–78 (2019). https://doi.org/10.1016/j.nanoen.2019.05.006
J. Lee, S. Hwang, M. Ahn, M. Choi, S. Han et al., Enhanced interface reactivity by a nanowrinkled functional layer for intermediate-temperature solid oxide fuel cells. J. Mater. Chem. A. 7, 21120–21127 (2019). https://doi.org/10.1039/c9ta04818a
S. Lee, S.H. Woo, T.H. Shin, J.T.S. Irvine, Pd and GDC Co-infiltrated LSCM cathode for high-temperature CO2 electrolysis using solid oxide electrolysis cells. Chem. Eng. J. 420, 127706 (2021). https://doi.org/10.1016/j.cej.2020.127706
Z. Yang, C. Ma, N. Wang, X. Jin, C. Jin et al., Electrochemical reduction of CO2 in a symmetrical solid oxide electrolysis cell with La0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ electrode. J. CO2 Util. 33, 445–451 (2019). https://doi.org/10.1016/j.jcou.2019.07.021
Y. Li, Y. Li, S. Zhang, C. Ren, Y. Jing et al., Mutual conversion of CO–CO2 on a perovskite fuel electrode with endogenous alloy nanops for reversible solid oxide cells. ACS Appl. Mater. Interfaces 14, 9138–9150 (2022). https://doi.org/10.1021/acsami.1c23548
H. Lv, T. Liu, X. Zhang, Y. Song, H. Matsumoto et al., Atomic-scale insight into exsolution of CoFe alloy nanops in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3–δ with efficient CO2 electrolysis. Angew. Chem. Int. Ed. 59, 15968–15973 (2020). https://doi.org/10.1002/anie.202006536
J. Li, Q. Liu, Y. Song, H. Lv, W. Feng et al., In-situ exsolution of cobalt nanops from La0.5Sr0.5Fe0.8Co0.2O3−δ cathode for enhanced CO2 electrolysis performance. Green Chem. Eng. 3, 250–258 (2022). https://doi.org/10.1016/j.gce.2021.12.011
K.J. Kim, C. Lim, K.T. Bae, J.J. Lee, M.Y. Oh et al., Concurrent promotion of phase transition and bimetallic nanocatalyst exsolution in perovskite oxides driven by Pd doping to achieve highly active bifunctional fuel electrodes for reversible solid oxide electrochemical cells. Appl. Catal. B Environ. 314, 121517 (2022). https://doi.org/10.1016/j.apcatb.2022.121517
S.D. Ebbesen, S.H. Jensen, A. Hauch, M.B. Mogensen, High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. Chem. Rev. 114, 10697–10734 (2014). https://doi.org/10.1021/cr5000865
S. Wang, H. Tsuruta, M. Asanuma, T. Ishihara, Ni–Fe–La(Sr)Fe(Mn)O3 as a new active cermet cathode for intermediate-temperature CO2 electrolysis using a LaGaO3-based electrolyte. Adv. Energy Mater. 5, 1401003 (2015). https://doi.org/10.1002/aenm.201401003
L. Fan, B. Zhu, P.-C. Su, C. He, Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities. Nano Energy 45, 148–176 (2018). https://doi.org/10.1016/j.nanoen.2017.12.044
M. Zhi, S. Lee, N. Miller, N.H. Menzler, N. Wu, An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode. Energy Environ. Sci. 5, 7066 (2012). https://doi.org/10.1039/c2ee02619h
L. Fan, Y. Xiong, L. Liu, Y. Wang, H. Kishimoto et al., Performance of Gd0.2Ce0.8O1.9 infiltrated La0.2Sr0.8TiO3 nanofiber scaffolds as anodes for solid oxide fuel cells. J. Power Sour. 265, 125–131 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.109
Y. Chen, Y. Bu, Y. Zhang, R. Yan, D. Ding et al., A highly efficient and robust nanofiber cathode for solid oxide fuel cells. Adv. Energy Mater. 7, 1601890 (2017). https://doi.org/10.1002/aenm.201601890
Y. Choi, H.J. Cho, J. Kim, J.Y. Kang, J. Seo et al., Nanofiber composites as highly active and robust anodes for direct-hydrocarbon solid oxide fuel cells. ACS Nano 16, 14517–14526 (2022). https://doi.org/10.1021/acsnano.2c04927
Y. Chen, Y. Bu, B. Zhao, Y. Zhang, D. Ding et al., A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy 26, 90–99 (2016). https://doi.org/10.1016/j.nanoen.2016.05.001
M. Ahn, J. Lee, W. Lee, Nanofiber-based composite cathodes for intermediate temperature solid oxide fuel cells. J. Power. Sour. 353, 176–182 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.151
X. Bian, Q. Fu, C. Qiu, X. Bie, F. Du et al., Carbon black and vapor grown carbon fibers binary conductive additive for the Li1.18Co0.15Ni0.15Mn0.52O2 electrodes for Li-ion batteries. Mater. Chem. Phys. 156, 69–75 (2015). https://doi.org/10.1016/j.matchemphys.2015.02.024
J.H. Park, K.T. Bae, K.J. Kim, D.W. Joh, D. Kim et al., Ultra-fast fabrication of tape-cast anode supports for solid oxide fuel cells via resonant acoustic mixing technology. Ceram. Int. 45, 12154–12161 (2019). https://doi.org/10.1016/j.ceramint.2019.03.119
T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015). https://doi.org/10.1016/j.electacta.2015.09.097
D.W. Joh, A. Cha, J.H. Park, K.J. Kim, K.T. Bae et al., In situ synthesized La0.6Sr0.4Co0.2Fe0.8O3−δ–Gd0.1Ce0.9O1.95 nanocomposite cathodes via a modified sol–gel process for intermediate temperature solid oxide fuel cells. ACS Appl. Nano Mater. 1, 2934–2942 (2018). https://doi.org/10.1021/acsanm.8b00566
J.A. Taillon, C. Pellegrinelli, Y.-L. Huang, E.D. Wachsman, L.G. Salamanca-Riba, Improving microstructural quantification in FIB/SEM nanotomography. Ultramicroscopy 184, 24–38 (2018). https://doi.org/10.1016/j.ultramic.2017.07.017
S.S. Shin, J.H. Kim, K.T. Bae, K.-T. Lee, S.M. Kim et al., Multiscale structured low-temperature solid oxide fuel cells with 13 W power at 500 ℃. Energy Environ. Sci. 13, 3459–3468 (2020). https://doi.org/10.1039/d0ee00870b
J. Park, K.T. Bae, D. Kim, W. Jeong, J. Nam et al., Unraveling the limitations of solid oxide electrolytes for all-solid-state electrodes through 3D digital twin structural analysis. Nano Energy 79, 105456 (2021). https://doi.org/10.1016/j.nanoen.2020.105456
D. Kim, K.T. Bae, K.J. Kim, H.-N. Im, S. Jang et al., High-performance protonic ceramic electrochemical cells. ACS Energy Lett. 7, 2393–2400 (2022). https://doi.org/10.1021/acsenergylett.2c01370
A. Buades, B. Coll, J.M. Morel, A non-local algorithm for image denoising. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR‘05). San Diego, CA, USA. IEEE, (2005). p60–65.
W.M. Harris, J.J. Lombardo, G.J. Nelson, B. Lai, S. Wang et al., Three-dimensional microstructural imaging of sulfur poisoning-induced degradation in a Ni-YSZ anode of solid oxide fuel cells. Sci. Rep. 4, 5246 (2014). https://doi.org/10.1038/srep05246
S. Lee, H. Ha, K.T. Bae, S. Kim, H. Choi et al., A measure of active interfaces in supported catalysts for high-temperature reactions. Chem. 8, 815–835 (2022). https://doi.org/10.1016/j.chempr.2021.11.024
S.J. Cooper, A. Bertei, P.R. Shearing, J.A. Kilner, N.P. Brandon, TauFactor: an open-source application for calculating tortuosity factors from tomographic data. SoftwareX 5, 203–210 (2016). https://doi.org/10.1016/j.softx.2016.09.002
B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou et al., A metal–organic framework-derived bifunctional oxygenelectrocatalyst. Nat. Energy 1, 15006 (2016). https://doi.org/10.1038/nenergy.2015.6
C. Kuru, Co–Mo–Se ternary chalcogenide thin film coatedp-Si photocathode for efficient solar hydrogen production. Funct. Mater. Lett. 14, 2151002 (2021). https://doi.org/10.1142/s1793604721510024
W. Lu, J. Shen, P. Zhang, Y. Zhong, Y. Hu et al., Construction of CoO/co-Cu-S hierarchical tubular heterostructures for hybrid supercapacitors. Angew. Chem. Int. Ed. 131, 15587–15593 (2019). https://doi.org/10.1002/ange.201907516
J.H. Park, J.H. Shin, J.M. Ju, J.H. Lee, C. Choi et al., Modulating the electrocatalytic activity of N-doped carbon frameworks via coupling with dual metals for Zn-air batteries. Nano Converg. 9, 17 (2022). https://doi.org/10.1186/s40580-022-00308-8
P. Wang, T. Yuan, H. Yuan, X. Zheng, H. Ijaz et al., PdO/SnO2 heterostructure for low-temperature detection of CO with fast response and recovery. RSC Adv. 9, 22875–22882 (2019). https://doi.org/10.1039/c9ra03171e
J. Li, B. Wei, X. Yue, Z. Lü, A highly efficient and robust perovskite anode with iron-palladium co-exsolutions for intermediate-temperature solid-oxide fuel cells. Chemsuschem 11, 2593–2603 (2018). https://doi.org/10.1002/cssc.201800641
D.J. Deka, J. Kim, S. Gunduz, D. Jain, Y. Shi et al., Coke formation during high-temperature CO2 electrolysis over AFeO3 (A = La/Sr) cathode: effect of A-site metal segregation. Appl. Catal. B Environ. 283, 119642 (2021). https://doi.org/10.1016/j.apcatb.2020.119642
X. Xi, J. Liu, Y. Fan, L. Wang, J. Li et al., Reducing d-p band coupling to enhance CO2 electrocatalytic activity by Mg-doping in Sr2FeMoO6−δ double perovskite for high performance solid oxide electrolysis cells. Nano Energy 82, 105707 (2021). https://doi.org/10.1016/j.nanoen.2020.105707
C. Yang, Y. Tian, J. Pu, B. Chi, Anion fluorine-doped La0.6Sr0.4Fe0.8Ni0.2O3−δ perovskite cathodes with enhanced electrocatalytic activity for solid oxide electrolysis cell direct CO2 electrolysis. ACS Sustain Chem. Eng. 10, 1047–1058 (2022). https://doi.org/10.1021/acssuschemeng.1c07576
L. Zhang, W. Sun, C. Xu, R. Ren, X. Yang et al., Two-fold improvement in chemical adsorption ability to achieve effective carbon dioxide electrolysis. Appl. Catal. B Environ. 317, 121754 (2022). https://doi.org/10.1016/j.apcatb.2022.121754
S. Zhang, Y. Jiang, H. Han, Y. Li, C. Xia, Perovskite oxyfluoride ceramic with in situ exsolved Ni–Fe nanops for direct CO2 electrolysis in solid oxide electrolysis cells. ACS Appl. Mater. Interfaces 14, 28854–28864 (2022). https://doi.org/10.1021/acsami.2c05324
L. Zhang, S. Hu, W. Li, Z. Cao, H. Liu et al., Nano-CeO2−modified cathodes for direct electrochemical CO2 reduction in solid oxide electrolysis cells. ACS. Sustain. Chem. Eng. 7, 9629–9636 (2019). https://doi.org/10.1021/acssuschemeng.9b01183
S. Park, Y. Kim, H. Han, Y.S. Chung, W. Yoon et al., In situ exsolved co nanops on ruddlesden-popper material As highly active catalyst for CO2 electrolysis to CO. Meet. Abstr. (2019). https://doi.org/10.1149/ma2019-01/33/1751
K.T. Bae, I. Jeong, D. Kim, H. Yu, H.-N. Im et al., Highly active cobalt-free perovskites with Bi doping as bifunctional oxygen electrodes for solid oxide cells. Chem. Eng. J. 461, 142051 (2023). https://doi.org/10.1016/j.cej.2023.142051
B.-H. Yun, K.J. Kim, D.W. Joh, M.S. Chae, J.J. Lee et al., Highly active and durable double-doped bismuth oxide-based oxygen electrodes for reversible solid oxide cells at reduced temperatures. J. Mater. Chem. A 7, 20558–20566 (2019). https://doi.org/10.1039/c9ta09203j
D. Kim, J.W. Park, M.S. Chae, I. Jeong, J.H. Park et al., An efficient and robust lanthanum strontium cobalt ferrite catalyst as a bifunctional oxygen electrode for reversible solid oxide cells. J. Mater. Chem. A 9, 5507–5521 (2021). https://doi.org/10.1039/d0ta11233j
T. Tan, Z. Wang, M. Qin, W. Zhong, J. Hu et al., In situ exsolution of core-shell structured NiFe/FeOx nanops on Pr0.4Sr1.6(NiFe)1.5Mo0.5O6−δ for CO2 electrolysis. Adv. Funct. Mater. 32, 2202878 (2022). https://doi.org/10.1002/adfm.202202878
X. Yang, K. Sun, M. Ma, C. Xu, R. Ren et al., Achieving strong chemical adsorption ability for efficient carbon dioxide electrolysis. Appl. Catal. B Environ. 272, 118968 (2020). https://doi.org/10.1016/j.apcatb.2020.118968
Y. Zhou, Z. Zhou, Y. Song, X. Zhang, F. Guan et al., Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell. Nano Energy 50, 43–51 (2018). https://doi.org/10.1016/j.nanoen.2018.04.054
H. Yu, H.-N. Im, K.T. Lee, Exceptionally high-performance reversible solid oxide electrochemical cells with ultrathin and defect-free Sm0.075Nd0.075Ce0.85O2−δ interlayers. Adv. Funct. Mater. 32, 2207725 (2022). https://doi.org/10.1002/adfm.202207725
X. Yang, W. Sun, M. Ma, C. Xu, R. Ren et al., Achieving highly efficient carbon dioxide electrolysis by In situ construction of the heterostructure. ACS Appl. Mater. Interfaces 13, 20060–20069 (2021). https://doi.org/10.1021/acsami.1c02146
Y. Jiang, Y. Yang, C. Xia, H.J.M. Bouwmeester, Sr2Fe1.4Mn0.1Mo0.5O6–δ perovskite cathode for highly efficient CO2 electrolysis. J. Mater. Chem. A 7, 22939–22949 (2019). https://doi.org/10.1039/c9ta07689a