Highest Solar-to-Hydrogen Conversion Efficiency in Cu2ZnSnS4 Photocathodes and Its Directly Unbiased Solar Seawater Splitting
Corresponding Author: Guangxing Liang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 257
Abstract
Despite being an excellent candidate for a photocathode, Cu2ZnSnS4 (CZTS) performance is limited by suboptimal bulk and interfacial charge carrier dynamics. In this work, we introduce a facile and versatile CZTS precursor seed layer engineering technique, which significantly enhances crystal growth and mitigates detrimental defects in the post-sulfurized CZTS light-absorbing films. This effective optimization of defects and charge carrier dynamics results in a highly efficient CZTS/CdS/TiO2/Pt thin-film photocathode, achieving a record half-cell solar-to-hydrogen (HC-STH) conversion efficiency of 9.91%. Additionally, the photocathode exhibits a highest photocurrent density (Jph) of 29.44 mA cm−2 (at 0 VRHE) and favorable onset potential (Von) of 0.73 VRHE. Furthermore, our CTZS photocathode demonstrates a remarkable Jph of 16.54 mA cm−2 and HC-STH efficiency of 2.56% in natural seawater, followed by an impressive unbiased STH efficiency of 2.20% in a CZTS-BiVO4 tandem cell. The scalability of this approach is underscored by the successful fabrication of a 4 × 4 cm2 module, highlighting its significant potential for practical, unbiased in situ solar seawater splitting applications.
Highlights:
1 A novel approach, precursor seed layer engineering, is applied to prepare Cu2ZnSnS4 (CZTS) light-absorbing films using the solution-processed spin-coating method.
2 Mo/CZTS/CdS/TiO2/Pt photocathode effectively mitigates defects in CZTS light absorber and the CZTS/CdS heterojunction interface, optimizing charge carrier dynamics.
3 Record photoelectrochemical performance including half-cell solar-to-hydrogen (HC-STH) efficiency of 9.91%, photocurrent density of 29.44 mA cm−2 at 0 VRHE in 0.5 M H2SO4 electrolyte, and STH efficiency of 2.20% in CZTS-BiVO4 tandem cell in natural seawater is achieved.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Hisatomi, K. Domen, Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2(5), 387–399 (2019). https://doi.org/10.1038/s41929-019-0242-6
- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972). https://doi.org/10.1038/238037a0
- X. Zhang, Y. Guo, C. Wang, Multi-interface engineering of nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Energy Mater. 4, 400044 (2024). https://doi.org/10.20517/energymater.2023.115
- P. Guo, Y. Tang, J. Cheng, R. Mo, J. Luo et al., Improving Cu2ZnSnS4-based photocathodes for solar water splitting via SnO2 overlayers. ACS Energy Lett. 9(12), 6055–6063 (2024). https://doi.org/10.1021/acsenergylett.4c02686
- G. Liang, Z. Li, M. Ishaq, Z. Zheng, Z. Su et al., Charge separation enhancement enables record photocurrent density in Cu2ZnSn(S, Se)4 photocathodes for efficient solar hydrogen production. Adv. Energy Mater. 13(19), 2300215 (2023). https://doi.org/10.1002/aenm.202300215
- D. Huang, L. Li, K. Wang, Y. Li, K. Feng et al., Wittichenite semiconductor of Cu3BiS3 films for efficient hydrogen evolution from solar driven photoelectrochemical water splitting. Nat. Commun. 12, 3795 (2021). https://doi.org/10.1038/s41467-021-24060-5
- S. Ikeda, W. Fujita, R. Katsube, Y. Nose, H. Suzuki et al., Crystalline-face-dependent photoelectrochemical properties of single crystalline CuGaSe2 photocathodes for hydrogen evolution under sunlight radiation. Electrochim. Acta 454, 142384 (2023). https://doi.org/10.1016/j.electacta.2023.142384
- J. Song, B. Teymur, Y. Zhou, E. Ngaboyamahina, D.B. Mitzi, Porous Cu2BaSn(S, Se)4 film as a photocathode using non-toxic solvent and a ball-milling approach. ACS Appl. Energy Mater. 4, 81–87 (2021). https://doi.org/10.1021/acsaem.0c01892
- U. Chalapathi, C. Hemalatha, S. Alhammadi, G.S. Reddy, A. Divya et al., Understanding phase evolution in CuSbS2 absorbers via rapid sulfurization of Cu/Sb/Cu stacks. Phys. B Condens. Matter 690, 416241 (2024). https://doi.org/10.1016/j.physb.2024.416241
- W. Yang, J.H. Kim, O.S. Hutter, L.J. Phillips, J. Tan et al., Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting. Nat. Commun. 11, 861 (2020). https://doi.org/10.1038/s41467-020-14704-3
- J.-X. Jian, L.-H. Xie, A. Mumtaz, T. Baines, J.D. Major et al., Interface-engineered Ni-coated CdTe heterojunction photocathode for enhanced photoelectrochemical hydrogen evolution. ACS Appl. Mater. Interfaces 15(17), 21057–21065 (2023). https://doi.org/10.1021/acsami.3c01476
- B. Koo, S. Byun, S.W. Nam, S.Y. Moon, S. Kim et al., Reduced graphene oxide as a catalyst binder: greatly enhanced photoelectrochemical stability of Cu(In, Ga)Se2 photocathode for solar water splitting. Adv. Funct. Mater. 28(16), 1705136 (2018). https://doi.org/10.1002/adfm.201705136
- M. Chen, Y. Liu, C. Li, A. Li, X. Chang et al., Spatial control of cocatalysts and elimination of interfacial defects towards efficient and robust CIGS photocathodes for solar water splitting. Energy Environ. Sci. 11(8), 2025–2034 (2018). https://doi.org/10.1039/c7ee03650g
- B. Koo, D. Kim, P. Boonmongkolras, S.R. Pae, S. Byun et al., Unassisted water splitting exceeding 9% solar-to-hydrogen conversion efficiency by Cu(In, Ga)(S, Se)2 photocathode with modified surface band structure and halide perovskite solar cell. ACS Appl. Energy Mater. 3(3), 2296–2303 (2020). https://doi.org/10.1021/acsaem.9b02387
- P. Zhou, I.A. Navid, Y. Ma, Y. Xiao, P. Wang et al., Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613(7942), 66–70 (2023). https://doi.org/10.1038/s41586-022-05399-1
- S. Chamekh, N. Khemiri, M. Kanzari, Effect of annealing under different atmospheres of CZTS thin films as absorber layer for solar cell application. SN Appl. Sci. 2(9), 1507 (2020). https://doi.org/10.1007/s42452-020-03287-9
- R.J. Deokate, R.S. Kate, S.C. Bulakhe, Physical and optical properties of sprayed Cu2ZnSnS4 (CZTS) thin film: effect of Cu concentration. J. Mater. Sci. Mater. Electron. 30(4), 3530–3538 (2019). https://doi.org/10.1007/s10854-018-00630-0
- S.S. Fouad, I.M. El Radaf, P. Sharma, M.S. El-Bana, Multifunctional CZTS thin films: structural, optoelectrical, electrical and photovoltaic properties. J. Alloys Compd. 757, 124–133 (2018). https://doi.org/10.1016/j.jallcom.2018.05.033
- D. Yokoyama, T. Minegishi, K. Jimbo, T. Hisatomi, G. Ma et al., H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light. Appl. Phys. Express 3, 101202 (2010). https://doi.org/10.1143/APEX.3.101202
- P. Wang, T. Minegishi, G. Ma, K. Takanabe, Y. Satou et al., Photoelectrochemical conversion of toluene to methylcyclohexane as an organic hydride by Cu2ZnSnS4-based photoelectrode assemblies. J. Am. Chem. Soc. 134(5), 2469–2472 (2012). https://doi.org/10.1021/ja209869k
- G. Xiao, X. Ren, Y. Hu, Y. Cao, Z. Li et al., Spin-coated CZTS film with a gradient Cu-deficient interfacial layer for solar hydrogen evolution. ACS Energy Lett. 9(2), 715–726 (2024). https://doi.org/10.1021/acsenergylett.4c00013
- L. Li, K. Feng, D. Huang, K. Wang, Y. Li et al., Surface plasmon resonance effect of a Pt-nano-ps-modified TiO2 nanoball overlayer enables a significant enhancement in efficiency to 3.5% for a Cu2ZnSnS4-based thin film photocathode used for solar water splitting. Chem. Eng. J. 396, 125264 (2020). https://doi.org/10.1016/j.cej.2020.125264
- L. Li, C. Wang, K. Feng, D. Huang, K. Wang et al., Kesterite Cu2ZnSnS4 thin-film solar water-splitting photovoltaics for solar seawater desalination. Cell Rep. Phys. Sci. 2, 100468 (2021). https://doi.org/10.1016/j.xcrp.2021.100468
- W. Chen, A.-S. She, M.-H. Ji, H.-Y. Shi, Y. Yang et al., Optimizing charge separation and transport: enhanced photoelectrochemical water splitting in α-Fe2O3/CZTS nanorod arrays. Catalysts 14(11), 812 (2024). https://doi.org/10.3390/catal14110812
- Y.F. Tay, M. Zhang, S. Zhang, S. Lie, S.Y. Chiam et al., Charge transfer enhancement at the CZTS photocathode interface using ITO for efficient solar water reduction. J. Mater. Chem. A 11(48), 26543–26550 (2023). https://doi.org/10.1039/d3ta05227c
- D. Huang, K. Wang, L. Li, K. Feng, N. An et al., 3.17% efficient Cu2ZnSnS4–BiVO4 integrated tandem cell for standalone overall solar water splitting. Energy Environ. Sci. 14(3), 1480–1489 (2021). https://doi.org/10.1039/d0ee03892j
- S. Chen, X. Gong, A. Walsh, S.-H. Wei, Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl. Phys. Lett. 96, 021902 (2010). https://doi.org/10.1063/1.3275796
- M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ. Sci. 8(11), 3134–3159 (2015). https://doi.org/10.1039/c5ee02153g
- M.A. Olgar, A. Seyhan, A.O. Sarp, R. Zan, Impact of sulfurization parameters on properties of CZTS thin films grown using quaternary target. J. Mater. Sci. Mater. Electron. 31(22), 20620–20631 (2020). https://doi.org/10.1007/s10854-020-04582-2
- M.A. Olgar, A.O. Sarp, A. Seyhan, R. Zan, Impact of stacking order and annealing temperature on properties of CZTS thin films and solar cell performance. Renew. Energy 179, 1865–1874 (2021). https://doi.org/10.1016/j.renene.2021.08.023
- P. Zhang, Q. Yu, X. Min, L. Guo, J. Shi et al., Fabrication of Cu2ZnSn(S, Se)4 photovoltaic devices with 10% efficiency by optimizing the annealing temperature of precursor films. RSC Adv. 8, 4119–4124 (2018). https://doi.org/10.1039/C7RA13069D
- S. Chen, T. Liu, M. Chen, M. Ishaq, R. Tang et al., Crystal growth promotion and interface optimization enable highly efficient Sb2Se3 photocathodes for solar hydrogen evolution. Nano Energy 99, 107417 (2022). https://doi.org/10.1016/j.nanoen.2022.107417
- S. Islam, M. Hossain, H. Kabir, M. Rahaman, M. Bashar et al., Optical, structural and morphological properties of spin coated copper zinc tin sulfide thin films. Int. J. Thin Films Sci. Technol. 4, 155 (2015). https://doi.org/10.12785/ijtfst/040301
- S. Chen, Y. Chen, H.S. Aziz, H.H. Zhang, Z.L. Li et al., A Cd-free electron transport layer simultaneously enhances charge carrier separation and transfer in Sb2Se3 photocathodes for efficient solar hydrogen production Adv. Funct. Mater. 35, 2420912 (2024). https://doi.org/10.1002/adfm.202420912
- T. Zhou, S. Chen, J. Wang, Y. Zhang, J. Li et al., Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by co-modification of CQDs and ultrathin β-FeOOH layers. Chem. Eng. J. 403, 126350 (2021). https://doi.org/10.1016/j.cej.2020.126350
- C. Yan, F. Liu, N. Song, B.K. Ng, J.A. Stride et al., Band alignments of different buffer layers (CdS, Zn (O, S), and In2S3) on Cu2ZnSnS4. Appl. Phys. Lett. 104, 173901 (2014). https://doi.org/10.1063/1.4873715
- H.-J. Chen, S.-W. Fu, S.-H. Wu, T.-C. Tsai, H.-T. Wu et al., Structural and photoelectron spectroscopic studies of band alignment at the Cu2ZnSnS4/CdS heterojunction with slight Ni doping in Cu2ZnSnS4. J. Phys. D Appl. Phys. 49, 335102 (2016). https://doi.org/10.1088/0022-3727/2F49/2F33/2F335102
- Y. Li, K. Wang, D. Huang, L. Li, J. Tao et al., CdxZn1-xS/Sb2Se3 thin film photocathode for efficient solar water splitting. Appl. Catal. B Environ. 286, 119872 (2021). https://doi.org/10.1016/j.apcatb.2020.119872
- L. Tang, M. Zhu, W. Chen, S. Tang, Y. Feng et al., Solid solution ZnW1−x MoxO4 for enhanced photocatalytic H2 evolution. New J. Chem. 44, 19796–19801 (2020). https://doi.org/10.1039/D0NJ04622A
- R.V. Digraskar, B.B. Mulik, P.S. Walke, A.V. Ghule, B.R. Sathe, Enhanced hydrogen evolution reactions on nanostructured Cu2ZnSnS4 (CZTS) electrocatalyst. Appl. Surf. Sci. 412, 475–481 (2017). https://doi.org/10.1016/j.apsusc.2017.03.262
- G. Liang, X. Chen, D. Ren, X. Jiang, R. Tang et al., Ion doping simultaneously increased the carrier density and modified the conduction type of Sb2Se3 thin films towards quasi-homojunction solar cell. J. Materiomics. 7, 1324–1334 (2021). https://doi.org/10.1016/j.jmat.2021.02.009
- V. Pakštas, G. Grincienė, A. Selskis, S. Balakauskas, M. Talaikis et al., Improvement of CZTSSe film quality and superstrate solar cell performance through optimized post-deposition annealing. Sci. Rep. 12, 16170 (2022). https://doi.org/10.1038/s41598-022-20670-1
- X. Zhao, D. Kou, W. Zhou, Z. Zhou, Y. Meng et al., Nanoscale electrical property enhancement through antimony incorporation to pave the way for the development of low-temperature processed Cu2ZnSn(S, Se)4 solar cells. J. Mater. Chem. A 7(7), 3135–3142 (2019). https://doi.org/10.1039/c8ta11783g
- Y. Sun, P. Qiu, W. Yu, J. Li, H. Guo et al., N-Type surface design for p-Type CZTSSe thin film to attain high efficiency. Adv. Mater. 33, 2104330 (2021). https://doi.org/10.1002/adma.202104330
- Z. Yu, C. Li, S. Chen, Z. Zheng, P. Fan et al., Unveiling the selenization reaction mechanisms in ambient air-processed highly efficient kesterite solar cells. Adv. Energy Mater. 13(19), 2300521 (2023). https://doi.org/10.1002/aenm.202300521
- R. Tang, S. Chen, Z.H. Zheng, Z.H. Su, J.T. Luo et al., Heterojunction annealing enabling record open-circuit voltage in antimony triselenide solar cells. Adv. Mater. 34(14), 2109078 (2022). https://doi.org/10.1002/adma.202109078
- P. Luo, T. Imran, D.L. Ren, J. Zhao, K.W. Wu et al., Electron transport layer engineering induced carrier dynamics optimization for efficient Cd-free Sb2Se3 thin-film solar cells. Small 20(4), 2306516 (2024). https://doi.org/10.1002/smll.202306516
- H.-S. Duan, H. Zhou, Q. Chen, P. Sun, S. Luo et al., The identification and characterization of defect states in hybrid organic–inorganic perovskite photovoltaics. Phys. Chem. Chem. Phys. 17(1), 112–116 (2015). https://doi.org/10.1039/c4cp04479g
- M. Igalson, A. Czudek, Electrical spectroscopy methods for the characterization of defects in thin-film compound solar cells. J. Appl. Phys. 131(24), 240901 (2022). https://doi.org/10.1063/5.0085963
- S. Chen, A. Walsh, X.-G. Gong, S.-H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25(11), 1522–1539 (2013). https://doi.org/10.1002/adma.201203146
- S. Agrawal, D.O. De Souza, C. Balasubramanian, S. Mukherjee, Effect of secondary phases controlled by precursor composition on the efficiency of CZTS thin film solar cell. Sol. Energy Mater. Sol. Cells 267, 112719 (2024). https://doi.org/10.1016/j.solmat.2024.112719
References
T. Hisatomi, K. Domen, Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2(5), 387–399 (2019). https://doi.org/10.1038/s41929-019-0242-6
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972). https://doi.org/10.1038/238037a0
X. Zhang, Y. Guo, C. Wang, Multi-interface engineering of nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Energy Mater. 4, 400044 (2024). https://doi.org/10.20517/energymater.2023.115
P. Guo, Y. Tang, J. Cheng, R. Mo, J. Luo et al., Improving Cu2ZnSnS4-based photocathodes for solar water splitting via SnO2 overlayers. ACS Energy Lett. 9(12), 6055–6063 (2024). https://doi.org/10.1021/acsenergylett.4c02686
G. Liang, Z. Li, M. Ishaq, Z. Zheng, Z. Su et al., Charge separation enhancement enables record photocurrent density in Cu2ZnSn(S, Se)4 photocathodes for efficient solar hydrogen production. Adv. Energy Mater. 13(19), 2300215 (2023). https://doi.org/10.1002/aenm.202300215
D. Huang, L. Li, K. Wang, Y. Li, K. Feng et al., Wittichenite semiconductor of Cu3BiS3 films for efficient hydrogen evolution from solar driven photoelectrochemical water splitting. Nat. Commun. 12, 3795 (2021). https://doi.org/10.1038/s41467-021-24060-5
S. Ikeda, W. Fujita, R. Katsube, Y. Nose, H. Suzuki et al., Crystalline-face-dependent photoelectrochemical properties of single crystalline CuGaSe2 photocathodes for hydrogen evolution under sunlight radiation. Electrochim. Acta 454, 142384 (2023). https://doi.org/10.1016/j.electacta.2023.142384
J. Song, B. Teymur, Y. Zhou, E. Ngaboyamahina, D.B. Mitzi, Porous Cu2BaSn(S, Se)4 film as a photocathode using non-toxic solvent and a ball-milling approach. ACS Appl. Energy Mater. 4, 81–87 (2021). https://doi.org/10.1021/acsaem.0c01892
U. Chalapathi, C. Hemalatha, S. Alhammadi, G.S. Reddy, A. Divya et al., Understanding phase evolution in CuSbS2 absorbers via rapid sulfurization of Cu/Sb/Cu stacks. Phys. B Condens. Matter 690, 416241 (2024). https://doi.org/10.1016/j.physb.2024.416241
W. Yang, J.H. Kim, O.S. Hutter, L.J. Phillips, J. Tan et al., Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting. Nat. Commun. 11, 861 (2020). https://doi.org/10.1038/s41467-020-14704-3
J.-X. Jian, L.-H. Xie, A. Mumtaz, T. Baines, J.D. Major et al., Interface-engineered Ni-coated CdTe heterojunction photocathode for enhanced photoelectrochemical hydrogen evolution. ACS Appl. Mater. Interfaces 15(17), 21057–21065 (2023). https://doi.org/10.1021/acsami.3c01476
B. Koo, S. Byun, S.W. Nam, S.Y. Moon, S. Kim et al., Reduced graphene oxide as a catalyst binder: greatly enhanced photoelectrochemical stability of Cu(In, Ga)Se2 photocathode for solar water splitting. Adv. Funct. Mater. 28(16), 1705136 (2018). https://doi.org/10.1002/adfm.201705136
M. Chen, Y. Liu, C. Li, A. Li, X. Chang et al., Spatial control of cocatalysts and elimination of interfacial defects towards efficient and robust CIGS photocathodes for solar water splitting. Energy Environ. Sci. 11(8), 2025–2034 (2018). https://doi.org/10.1039/c7ee03650g
B. Koo, D. Kim, P. Boonmongkolras, S.R. Pae, S. Byun et al., Unassisted water splitting exceeding 9% solar-to-hydrogen conversion efficiency by Cu(In, Ga)(S, Se)2 photocathode with modified surface band structure and halide perovskite solar cell. ACS Appl. Energy Mater. 3(3), 2296–2303 (2020). https://doi.org/10.1021/acsaem.9b02387
P. Zhou, I.A. Navid, Y. Ma, Y. Xiao, P. Wang et al., Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613(7942), 66–70 (2023). https://doi.org/10.1038/s41586-022-05399-1
S. Chamekh, N. Khemiri, M. Kanzari, Effect of annealing under different atmospheres of CZTS thin films as absorber layer for solar cell application. SN Appl. Sci. 2(9), 1507 (2020). https://doi.org/10.1007/s42452-020-03287-9
R.J. Deokate, R.S. Kate, S.C. Bulakhe, Physical and optical properties of sprayed Cu2ZnSnS4 (CZTS) thin film: effect of Cu concentration. J. Mater. Sci. Mater. Electron. 30(4), 3530–3538 (2019). https://doi.org/10.1007/s10854-018-00630-0
S.S. Fouad, I.M. El Radaf, P. Sharma, M.S. El-Bana, Multifunctional CZTS thin films: structural, optoelectrical, electrical and photovoltaic properties. J. Alloys Compd. 757, 124–133 (2018). https://doi.org/10.1016/j.jallcom.2018.05.033
D. Yokoyama, T. Minegishi, K. Jimbo, T. Hisatomi, G. Ma et al., H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light. Appl. Phys. Express 3, 101202 (2010). https://doi.org/10.1143/APEX.3.101202
P. Wang, T. Minegishi, G. Ma, K. Takanabe, Y. Satou et al., Photoelectrochemical conversion of toluene to methylcyclohexane as an organic hydride by Cu2ZnSnS4-based photoelectrode assemblies. J. Am. Chem. Soc. 134(5), 2469–2472 (2012). https://doi.org/10.1021/ja209869k
G. Xiao, X. Ren, Y. Hu, Y. Cao, Z. Li et al., Spin-coated CZTS film with a gradient Cu-deficient interfacial layer for solar hydrogen evolution. ACS Energy Lett. 9(2), 715–726 (2024). https://doi.org/10.1021/acsenergylett.4c00013
L. Li, K. Feng, D. Huang, K. Wang, Y. Li et al., Surface plasmon resonance effect of a Pt-nano-ps-modified TiO2 nanoball overlayer enables a significant enhancement in efficiency to 3.5% for a Cu2ZnSnS4-based thin film photocathode used for solar water splitting. Chem. Eng. J. 396, 125264 (2020). https://doi.org/10.1016/j.cej.2020.125264
L. Li, C. Wang, K. Feng, D. Huang, K. Wang et al., Kesterite Cu2ZnSnS4 thin-film solar water-splitting photovoltaics for solar seawater desalination. Cell Rep. Phys. Sci. 2, 100468 (2021). https://doi.org/10.1016/j.xcrp.2021.100468
W. Chen, A.-S. She, M.-H. Ji, H.-Y. Shi, Y. Yang et al., Optimizing charge separation and transport: enhanced photoelectrochemical water splitting in α-Fe2O3/CZTS nanorod arrays. Catalysts 14(11), 812 (2024). https://doi.org/10.3390/catal14110812
Y.F. Tay, M. Zhang, S. Zhang, S. Lie, S.Y. Chiam et al., Charge transfer enhancement at the CZTS photocathode interface using ITO for efficient solar water reduction. J. Mater. Chem. A 11(48), 26543–26550 (2023). https://doi.org/10.1039/d3ta05227c
D. Huang, K. Wang, L. Li, K. Feng, N. An et al., 3.17% efficient Cu2ZnSnS4–BiVO4 integrated tandem cell for standalone overall solar water splitting. Energy Environ. Sci. 14(3), 1480–1489 (2021). https://doi.org/10.1039/d0ee03892j
S. Chen, X. Gong, A. Walsh, S.-H. Wei, Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl. Phys. Lett. 96, 021902 (2010). https://doi.org/10.1063/1.3275796
M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ. Sci. 8(11), 3134–3159 (2015). https://doi.org/10.1039/c5ee02153g
M.A. Olgar, A. Seyhan, A.O. Sarp, R. Zan, Impact of sulfurization parameters on properties of CZTS thin films grown using quaternary target. J. Mater. Sci. Mater. Electron. 31(22), 20620–20631 (2020). https://doi.org/10.1007/s10854-020-04582-2
M.A. Olgar, A.O. Sarp, A. Seyhan, R. Zan, Impact of stacking order and annealing temperature on properties of CZTS thin films and solar cell performance. Renew. Energy 179, 1865–1874 (2021). https://doi.org/10.1016/j.renene.2021.08.023
P. Zhang, Q. Yu, X. Min, L. Guo, J. Shi et al., Fabrication of Cu2ZnSn(S, Se)4 photovoltaic devices with 10% efficiency by optimizing the annealing temperature of precursor films. RSC Adv. 8, 4119–4124 (2018). https://doi.org/10.1039/C7RA13069D
S. Chen, T. Liu, M. Chen, M. Ishaq, R. Tang et al., Crystal growth promotion and interface optimization enable highly efficient Sb2Se3 photocathodes for solar hydrogen evolution. Nano Energy 99, 107417 (2022). https://doi.org/10.1016/j.nanoen.2022.107417
S. Islam, M. Hossain, H. Kabir, M. Rahaman, M. Bashar et al., Optical, structural and morphological properties of spin coated copper zinc tin sulfide thin films. Int. J. Thin Films Sci. Technol. 4, 155 (2015). https://doi.org/10.12785/ijtfst/040301
S. Chen, Y. Chen, H.S. Aziz, H.H. Zhang, Z.L. Li et al., A Cd-free electron transport layer simultaneously enhances charge carrier separation and transfer in Sb2Se3 photocathodes for efficient solar hydrogen production Adv. Funct. Mater. 35, 2420912 (2024). https://doi.org/10.1002/adfm.202420912
T. Zhou, S. Chen, J. Wang, Y. Zhang, J. Li et al., Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by co-modification of CQDs and ultrathin β-FeOOH layers. Chem. Eng. J. 403, 126350 (2021). https://doi.org/10.1016/j.cej.2020.126350
C. Yan, F. Liu, N. Song, B.K. Ng, J.A. Stride et al., Band alignments of different buffer layers (CdS, Zn (O, S), and In2S3) on Cu2ZnSnS4. Appl. Phys. Lett. 104, 173901 (2014). https://doi.org/10.1063/1.4873715
H.-J. Chen, S.-W. Fu, S.-H. Wu, T.-C. Tsai, H.-T. Wu et al., Structural and photoelectron spectroscopic studies of band alignment at the Cu2ZnSnS4/CdS heterojunction with slight Ni doping in Cu2ZnSnS4. J. Phys. D Appl. Phys. 49, 335102 (2016). https://doi.org/10.1088/0022-3727/2F49/2F33/2F335102
Y. Li, K. Wang, D. Huang, L. Li, J. Tao et al., CdxZn1-xS/Sb2Se3 thin film photocathode for efficient solar water splitting. Appl. Catal. B Environ. 286, 119872 (2021). https://doi.org/10.1016/j.apcatb.2020.119872
L. Tang, M. Zhu, W. Chen, S. Tang, Y. Feng et al., Solid solution ZnW1−x MoxO4 for enhanced photocatalytic H2 evolution. New J. Chem. 44, 19796–19801 (2020). https://doi.org/10.1039/D0NJ04622A
R.V. Digraskar, B.B. Mulik, P.S. Walke, A.V. Ghule, B.R. Sathe, Enhanced hydrogen evolution reactions on nanostructured Cu2ZnSnS4 (CZTS) electrocatalyst. Appl. Surf. Sci. 412, 475–481 (2017). https://doi.org/10.1016/j.apsusc.2017.03.262
G. Liang, X. Chen, D. Ren, X. Jiang, R. Tang et al., Ion doping simultaneously increased the carrier density and modified the conduction type of Sb2Se3 thin films towards quasi-homojunction solar cell. J. Materiomics. 7, 1324–1334 (2021). https://doi.org/10.1016/j.jmat.2021.02.009
V. Pakštas, G. Grincienė, A. Selskis, S. Balakauskas, M. Talaikis et al., Improvement of CZTSSe film quality and superstrate solar cell performance through optimized post-deposition annealing. Sci. Rep. 12, 16170 (2022). https://doi.org/10.1038/s41598-022-20670-1
X. Zhao, D. Kou, W. Zhou, Z. Zhou, Y. Meng et al., Nanoscale electrical property enhancement through antimony incorporation to pave the way for the development of low-temperature processed Cu2ZnSn(S, Se)4 solar cells. J. Mater. Chem. A 7(7), 3135–3142 (2019). https://doi.org/10.1039/c8ta11783g
Y. Sun, P. Qiu, W. Yu, J. Li, H. Guo et al., N-Type surface design for p-Type CZTSSe thin film to attain high efficiency. Adv. Mater. 33, 2104330 (2021). https://doi.org/10.1002/adma.202104330
Z. Yu, C. Li, S. Chen, Z. Zheng, P. Fan et al., Unveiling the selenization reaction mechanisms in ambient air-processed highly efficient kesterite solar cells. Adv. Energy Mater. 13(19), 2300521 (2023). https://doi.org/10.1002/aenm.202300521
R. Tang, S. Chen, Z.H. Zheng, Z.H. Su, J.T. Luo et al., Heterojunction annealing enabling record open-circuit voltage in antimony triselenide solar cells. Adv. Mater. 34(14), 2109078 (2022). https://doi.org/10.1002/adma.202109078
P. Luo, T. Imran, D.L. Ren, J. Zhao, K.W. Wu et al., Electron transport layer engineering induced carrier dynamics optimization for efficient Cd-free Sb2Se3 thin-film solar cells. Small 20(4), 2306516 (2024). https://doi.org/10.1002/smll.202306516
H.-S. Duan, H. Zhou, Q. Chen, P. Sun, S. Luo et al., The identification and characterization of defect states in hybrid organic–inorganic perovskite photovoltaics. Phys. Chem. Chem. Phys. 17(1), 112–116 (2015). https://doi.org/10.1039/c4cp04479g
M. Igalson, A. Czudek, Electrical spectroscopy methods for the characterization of defects in thin-film compound solar cells. J. Appl. Phys. 131(24), 240901 (2022). https://doi.org/10.1063/5.0085963
S. Chen, A. Walsh, X.-G. Gong, S.-H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25(11), 1522–1539 (2013). https://doi.org/10.1002/adma.201203146
S. Agrawal, D.O. De Souza, C. Balasubramanian, S. Mukherjee, Effect of secondary phases controlled by precursor composition on the efficiency of CZTS thin film solar cell. Sol. Energy Mater. Sol. Cells 267, 112719 (2024). https://doi.org/10.1016/j.solmat.2024.112719