Bi-Layered, Ultrathin Coating Initiated Relay Response to Impart Superior Fire Resistance for Polymeric and Metallic Substrates
Corresponding Author: De‑Yi Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 231
Abstract
Developing high-efficient flame-retardant coatings is crucial for fire safety polymer and battery fields. Traditional intumescent coatings and ceramifiable coatings struggle to provide immediate and prolonged protection simultaneously, which limits the applicability. To address this, an innovative bi-layered coating with organic/nano-inorganic additives is inspired by differential response behaviors, enabling relay response effect with both fast-acting and extended protection. Specifically, two layers function continuously in the form of a relay. With a mere 320 microns, the bi-layered coating withstands fire temperatures of up to 1400 °C for at least 900 s. Consequently, the coating effective prevented burn through in aluminum plates and glass fabric-reinforced epoxy resin, which otherwise were burned through in 135 and 173 s, respectively. Meanwhile, the bi-layered coating suppressed the formation and decomposition of solid interface layer in lithium soft-package batteries, leading to prolonged electrochemical stability and fire safety. Additionally, the bi-layered coating with a fast response endows polyurethane foam with rapid self-extinguishing, preventing ignition even under exposure to strong fire of 1400 °C. Shortly, our work offers new insights into the design and development of thin, high-performance, and multi-application flame-retardant coatings.
Highlights:
1 Relay response of bi-layered coating achieved fast response and extended protection.
2 320-µm coating achieved over 900 s of burn-through resistance.
3 320-µm coating achieved extended electrochemical stability for battery under fire.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.-W. Liu, H.-B. Zhao, Y.-Z. Wang, Advanced flame-retardant methods for polymeric materials. Adv. Mater. 34(46), e2107905 (2022). https://doi.org/10.1002/adma.202107905
- H. Yang, B. Yu, P. Song, C. Maluk, H. Wang, Surface-coating engineering for flame retardant flexible polyurethane foams: a critical review. Compos. Part B Eng. 176, 107185 (2019). https://doi.org/10.1016/j.compositesb.2019.107185
- S. Liang, N.M. Neisius, S. Gaan, Recent developments in flame retardant polymeric coatings. Prog. Org. Coat. 76(11), 1642–1665 (2013). https://doi.org/10.1016/j.porgcoat.2013.07.014
- W. Cai, J.L. Wang, W. Wang, S.C. Li, M.Z. Rahman et al., Colored radiative cooling and flame-retardant polyurethane-based coatings: selective absorption/reflection in solar waveband. Small 20, 2402349 (2024). https://doi.org/10.1002/smll.202402349
- Z. Ma, J. Zhang, C. Maluk, Y. Yu, S.M. Seraji et al., A lava-inspired micro/nano-structured ceramifiable organic-inorganic hybrid fire-extinguishing coating. Matter 5(3), 911–932 (2022). https://doi.org/10.1016/j.matt.2021.12.009
- D. Jiao, H. Sima, X. Shi, C. Zhang, B. Liu, Mussel-inspired flame retardant coating on polyurethane foam. Chem. Eng. J. 474, 145588 (2023). https://doi.org/10.1016/j.cej.2023.145588
- D.D. Tang, L.B. Zhu, X. Li, Y. Liu, Q. Wang, Improved flame resistance and thermal insulation properties of steel fireproof coatings based on polyvinyl alcohol @ expandable graphite. Prog. Org. Coat. 191, 108444 (2024). https://doi.org/10.1016/j.porgcoat.2024.108444
- J.R. Xavier, R. Bhaskar, S. Subramanian, Multifunctional graphitic carbon nitride/manganese dioxide/epoxy nanocomposite coating on steel for enhanced anticorrosion, flame retardant, mechanical, and hydrophobic properties. J. Ind. Eng. Chem. 134, 514–536 (2024). https://doi.org/10.1016/j.jiec.2024.01.015
- L. Li, Y. Huang, W. Tang, Y. Zhang, L. Qian, Synergistic effect between piperazine pyrophosphate and melamine polyphosphate in flame retardant coatings for structural steel. Polymers 14(18), 3722 (2022). https://doi.org/10.3390/polym14183722
- J.R. Xavier, S.P. Vinodhini, R. Ganesan, Innovative nanocomposite coating for aluminum alloy: superior corrosion resistance, flame retardancy, and mechanical strength for aerospace applications. J. Mater. Sci. 59(27), 12830–12861 (2024). https://doi.org/10.1007/s10853-024-09919-4
- J.R. Xavier, S.P. Vinodhini, J. Raja Beryl, Anti-corrosion and flame-retardant properties of environmentally benign smart functionalized WS2/rGO in epoxy coatings for enhanced steel structural protection in natural seawater. Mater. Today Commun. 38, 107842 (2024). https://doi.org/10.1016/j.mtcomm.2023.107842
- Q. Wang, B. Mao, S.I. Stoliarov, J. Sun, A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog. Energy Combust. Sci. 73, 95–131 (2019). https://doi.org/10.1016/j.pecs.2019.03.002
- J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2010). https://doi.org/10.1021/cm901452z
- X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2018). https://doi.org/10.1016/j.ensm.2017.05.013
- Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun et al., Thermal runaway caused fire and explosion of lithium ion battery. J. Power. Sour. 208, 210–224 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.038
- Q.-K. Zhang, X.-Q. Zhang, H. Yuan, J.-Q. Huang, Thermally stable and nonflammable electrolytes for lithium metal batteries: progress and perspectives. Small Sci. 1(10), 2100058 (2021). https://doi.org/10.1002/smsc.202100058
- Z. Ma, J. Feng, S. Huo, Z. Sun, S. Bourbigot et al., Mussel-inspired, self-healing, highly effective fully polymeric fire-retardant coatings enabled by group synergy. Adv. Mater. 36(44), e2410453 (2024). https://doi.org/10.1002/adma.202410453
- Z. Ma, X. Liu, X. Xu, L. Liu, B. Yu et al., Bioinspired, highly adhesive, nanostructured polymeric coatings for superhydrophobic fire-extinguishing thermal insulation foam. ACS Nano 15(7), 11667–11680 (2021). https://doi.org/10.1021/acsnano.1c02254
- X. Ao, A. Vázquez-López, D. Mocerino, C. González, D.-Y. Wang, Flame retardancy and fire mechanical properties for natural fiber/polymer composite: a review. Compos. Part B Eng. 268, 111069 (2024). https://doi.org/10.1016/j.compositesb.2023.111069
- X.-H. Shi, X.-L. Li, Y.-M. Li, Z. Li, D.-Y. Wang, Flame-retardant strategy and mechanism of fiber reinforced polymeric composite: a review. Compos. Part B Eng. 233, 109663 (2022). https://doi.org/10.1016/j.compositesb.2022.109663
- A.P. Mouritz, A.G. Gibson, Fire Properties of Polymer Composite Materials (Springer Science & Business Media, Berlin, 2007)
- S. Bourbigot, B. Gardelle, S. Duquesne, Intumescent silicone-based coatings for the fire protection of carbon fiber reinforced composites. Fire Saf. Sci. 11, 781–793 (2014). https://doi.org/10.3801/iafss.fss.11-781
- Á. Pomázi, M. Krecz, A. Toldy, Thermal behaviour and fire and mechanical performance of carbon fibre-reinforced epoxy composites coated with flame-retardant epoxy gelcoats. J. Therm. Anal. Calorim. 148(7), 2685–2702 (2023). https://doi.org/10.1007/s10973-022-11710-z
- P. Luangtriratana, B.K. Kandola, P. Myler, Ceramic particulate thermal barrier surface coatings for glass fibre-reinforced epoxy composites. Mater. Des. 68, 232–244 (2015). https://doi.org/10.1016/j.matdes.2014.11.057
- X. Ao, J. Xiao, J. Hobson, J. de la Vega, G. Yin et al., Bilayer coating strategy for glass fiber reinforced polymer composites toward superior fire safety and post-fire mechanical properties. Compos. Commun. 44, 101763 (2023). https://doi.org/10.1016/j.coco.2023.101763
- M.M.S. Mohd Sabee, Z. Itam, S. Beddu, N.M. Zahari, N.L. Mohd Kamal et al., Flame retardant coatings: additives, binders, and fillers. Polymers 14(14), 2911 (2022). https://doi.org/10.3390/polym14142911
- E.J. Price, J. Covello, A. Tuchler, G.E. Wnek, Intumescent, epoxy-based flame-retardant coatings based on poly(acrylic acid) compositions. ACS Appl. Mater. Interfaces 12(16), 18997–19005 (2020). https://doi.org/10.1021/acsami.0c00567
- J. Mastalska-Popławska, K. Kadac, P. Izak, M. Gierej, A. Stempkowska et al., The influence of ceramic additives on intumescence and thermal activity of epoxy coatings for steel. J. Appl. Polym. Sci. 138(9), 49914 (2021). https://doi.org/10.1002/app.49914
- W. Tang, L. Qian, S.G. Prolongo, D.-Y. Wang, Small core of piperazine/silane aggregation initiate efficient charring flame retardant effect in polypropylene composites. Polym. Degrad. Stab. 208, 110265 (2023). https://doi.org/10.1016/j.polymdegradstab.2023.110265
- M. Wang, Z. Liang, S. Yan, X. Tao, Y. Zou et al., The preparation and property analysis of B4C modified inorganic amorphous aluminum phosphates-based intumescent flame retardant coating. Constr. Build. Mater. 359, 129480 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129480
- W. Zhan, L. Li, L. Chen, Q. Kong, M. Chen et al., Biomaterials in intumescent fire-retardant coatings: a review. Prog. Org. Coat. 192, 108483 (2024). https://doi.org/10.1016/j.porgcoat.2024.108483
- E.D. Weil, Fire-protective and flame-retardant coatings - a state-of-the-art review. J. Fire Sci. 29(3), 259–296 (2011). https://doi.org/10.1177/0734904110395469
- M. Tao, W. Tang, L. Qian, J. Wang, W. Xi et al., Toughening behavior and synergistic flame retardant effect of a ternary block copolymer with amorphous morphology and thermal softening property in polypropylene. Chem. Eng. J. 461, 141963 (2023). https://doi.org/10.1016/j.cej.2023.141963
- W. Tang, L. Qian, Y. Chen, Y. Qiu, B. Xu, Intumescent flame retardant behavior of charring agents with different aggregation of piperazine/triazine groups in polypropylene. Polym. Degrad. Stab. 169, 108982 (2019). https://doi.org/10.1016/j.polymdegradstab.2019.108982
- M. Xu, Y. Chen, L. Qian, J. Wang, S. Tang, Component ratio effects of hyperbranched triazine compound and ammonium polyphosphate in flame-retardant polypropylene composites. J. Appl. Polym. Sci. 131(21), 41006 (2014). https://doi.org/10.1002/app.41006
- W. Tang, L. Qian, S.G. Prolongo, D.-Y. Wang, Dendritic copolymers from P-, N- and Si-based monomer and melamine phosphate generate thermal deformation toughening and a rapid charring flame retardant effect in polypropylene. Chem. Eng. J. 471, 144716 (2023). https://doi.org/10.1016/j.cej.2023.144716
- M. Tao, L. Qian, J. Wang, H. Zhu, W. Tang et al., From physical mixtures to block copolymer: Impose outstandingly toughening and flame retardant effect to polypropylene. Compos. Part B Eng. 253, 110538 (2023). https://doi.org/10.1016/j.compositesb.2023.110538
- W. Tang, L. Qian, Y. Chen, Y. Qiu, B. Xu et al., Joint-aggregation intumescent flame-retardant effect of ammonium polyphosphate and charring agent in polypropylene. Polym. Adv. Technol. 31(8), 1699–1708 (2020). https://doi.org/10.1002/pat.4897
- A. Abdelkhalik, M. Mahmoud, M.A. Nour, M.A. Hassan, E.R. Souaya, Smoke suppression, flame retardancy, and fire toxicity of polypropylene containing melamine salt of pentaerythritol phosphate halloysite. J. Vinyl Addit. Technol. 29(2), 356–369 (2023). https://doi.org/10.1002/vnl.21987
- W. Tang, H. Zhu, W. Xi, Y. Qiu, L. Qian, Cage-shaped octaphenyl silsesquioxane with micro-nano dispersibility for strengthening intumescent flame retardancy in polypropylene composites. J. Appl. Polym. Sci. 140(22), e53907 (2023). https://doi.org/10.1002/app.53907
- S. Li, L. Qian, W. Tang, Y. Qiu, J. Wang et al., Microp-aggregation effect of intumescent flame retardants on flame retardancy and toughening property of polypropylene. Polym. Degrad. Stab. 222, 110705 (2024). https://doi.org/10.1016/j.polymdegradstab.2024.110705
- X. Li, J. Liu, F. Chen, J. Zhang, H. Li et al., Eco-friendly flame retardant coating based on ammonium polyphosphate and tyramine for lyocell fabrics. Polym. Degrad. Stab. 218, 110572 (2023). https://doi.org/10.1016/j.polymdegradstab.2023.110572
- W. Tang, L. Qian, S.G. Prolongo, Y. Qiu, D.-Y. Wang, Macromolecular piperazine/aluminum phosphate hybrid and its efficient intumescent flame retardant/thermal conductive polypropylene. Chem. Eng. J. 495, 153162 (2024). https://doi.org/10.1016/j.cej.2024.153162
- W. Cai, L. Qi, T. Cui, B. Lin, M.Z. Rahman et al., Chameleon-inspired, dipole moment-increasing, fire-retardant strategies toward promoting the practical application of radiative cooling materials. Adv. Funct. Mater. 35(2), 2412902 (2025). https://doi.org/10.1002/adfm.202412902
- T. Cui, Y. Zheng, M. Hu, B. Lin, J. Wang et al., Biomimetic multifunctional graphene-based coating for thermal management, solar de-icing, and fire safety: inspired from the antireflection nanostructure of compound eyes. Small 20(35), 2312083 (2024). https://doi.org/10.1002/smll.202312083
- F. Li, Y. Wang, K. Yu, M. Lai, J. Zhao, In-situ polymerized zinc ions chelated Si-C-N cenospheres-based geopolymeric coating constructed by incorporating β-cyclodextrin and dopamine for flame-retarding plywood. Constr. Build. Mater. 393, 131920 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131920
- S. Ortelli, G. Malucelli, M. Blosi, I. Zanoni, A.L. Costa, NanoTiO2@DNA complex: a novel eco, durable, fire retardant design strategy for cotton textiles. J. Colloid Interface Sci. 546, 174–183 (2019). https://doi.org/10.1016/j.jcis.2019.03.055
- Y.-M. Li, S.-L. Hu, D.-Y. Wang, Polymer-based ceramifiable composites for flame retardant applications: a review. Compos. Commun. 21, 100405 (2020). https://doi.org/10.1016/j.coco.2020.100405
- C. Sadik, O. Moudden, A. El Bouari, I.-E. El Amrani, Review on the elaboration and characterization of ceramics refractories based on magnesite and dolomite. J. Asian Ceram. Soc. 4(3), 219–233 (2016). https://doi.org/10.1016/j.jascer.2016.06.006
- J. Song, Z. Huang, Y. Qin, H. Wang, M. Shi, Effects of zirconium silicide on the vulcanization, mechanical and ablation resistance properties of ceramifiable silicone rubber composites. Polymers 12(2), 496 (2020). https://doi.org/10.3390/polym12020496
- R. Anyszka, D.M. Bieliński, Z. Pędzich, M. Szumera, Influence of surface-modified montmorillonites on properties of silicone rubber-based ceramizable composites. J. Therm. Anal. Calorim. 119(1), 111–121 (2015). https://doi.org/10.1007/s10973-014-4156-x
- Y. Wang, X. Lai, H. Li, Z. Liu, X. Zeng, Synergistically catalyzing ceramization of silicone rubber by boron oxide and platinum-nitrogen system. J. Non Cryst. Solids 593, 121765 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121765
- J. Tian, L. Yan, H. Zhang, Y. Wang, Y. Cai et al., Enhanced flexibility and ablative performance of silicone rubber by constructing an interpenetrating zirconium-containing polysiloxane double network. Polymer 270, 125749 (2023). https://doi.org/10.1016/j.polymer.2023.125749
- Z.Y. Chen, Y.Y. Wu, S.C. Liu, Y. Li, Z.Q. Guan et al., Pottery-inspired flexible fire-shielding ceramifiable silicone foams for exceptional long-term thermal protection. Adv. Funct. Mater. 35(3), 2413362 (2025). https://doi.org/10.1002/adfm.202413362
- J. Zhang, Y. Tang, C. Song, J. Zhang, H. Wang, PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 °C to 120 °C. J. Power. Sources 163(1), 532–537 (2006). https://doi.org/10.1016/j.jpowsour.2006.09.026
- Z. Song, F. Chen, M. Martinez-Ibañez, W. Feng, M. Forsyth et al., A reflection on polymer electrolytes for solid-state lithium metal batteries. Nat. Commun. 14(1), 4884 (2023). https://doi.org/10.1038/s41467-023-40609-y
- S.K. Heiskanen, J. Kim, B.L. Lucht, Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 3(10), 2322–2333 (2019). https://doi.org/10.1016/j.joule.2019.08.018
- K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4(6), eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
- D. Matykiewicz, B. Przybyszewski, R. Stanik, A. Czulak, Modification of glass reinforced epoxy composites by ammonium polyphosphate (APP) and melamine polyphosphate (PNA) during the resin powder molding process. Compos. Part B Eng. 108, 224–231 (2017). https://doi.org/10.1016/j.compositesb.2016.10.003
- Q. Fang, Y. Zhan, X. Chen, R. Wu, W. Zhang et al., A bio-based intumescent flame retardant with biomolecules functionalized ammonium polyphosphate enables polylactic acid with excellent flame retardancy. Eur. Polym. J. 177, 111479 (2022). https://doi.org/10.1016/j.eurpolymj.2022.111479
- R. Wang, S. Zhang, S. Du, M. Xu, Z. Wang et al., Glass-blowing-inspired constructing a novel ceramizable intumescent flame retardant for realizing superior flame retardancy, smoke suppression and water resistance of polyethylene composites. Compos. Part A Appl. Sci. Manuf. 190, 108687 (2025). https://doi.org/10.1016/j.compositesa.2024.108687
- D. Yan, D. Chen, J. Tan, L. Yuan, Z. Huang et al., Synergistic flame retardant effect of a new N-P flame retardant on poplar wood density board. Polym. Degrad. Stab. 211, 110331 (2023). https://doi.org/10.1016/j.polymdegradstab.2023.110331
- Z. Yang, W. Xi, L. Qian, Y. Qiu, J. Wang et al., Adsorption charring flame retardant effect of phosphaphenanthrene derivate intercalated micro-expanded graphite composite system in rigid polyurethane foams. Polym. Degrad. Stab. 216, 110493 (2023). https://doi.org/10.1016/j.polymdegradstab.2023.110493
- S. Li, W. Tang, L. Qian, J. Wang, X. Wu et al., In-suit cemented strategy enables intumescent flame retardant transition from hyper-hydrophilic to hydrophobic and aggregation flame retardant effect simultaneously in polypropylene. Compos. Part B Eng. 287, 111874 (2024). https://doi.org/10.1016/j.compositesb.2024.111874
- Z.-H. Wang, X. Xiao, J.-Y. Zhang, B.-W. Liu, X.-L. Wang et al., Highly transparent and environment-friendly flame-retardant coating for cotton and silk fabrics. Ind. Crops Prod. 222, 120066 (2024). https://doi.org/10.1016/j.indcrop.2024.120066
References
B.-W. Liu, H.-B. Zhao, Y.-Z. Wang, Advanced flame-retardant methods for polymeric materials. Adv. Mater. 34(46), e2107905 (2022). https://doi.org/10.1002/adma.202107905
H. Yang, B. Yu, P. Song, C. Maluk, H. Wang, Surface-coating engineering for flame retardant flexible polyurethane foams: a critical review. Compos. Part B Eng. 176, 107185 (2019). https://doi.org/10.1016/j.compositesb.2019.107185
S. Liang, N.M. Neisius, S. Gaan, Recent developments in flame retardant polymeric coatings. Prog. Org. Coat. 76(11), 1642–1665 (2013). https://doi.org/10.1016/j.porgcoat.2013.07.014
W. Cai, J.L. Wang, W. Wang, S.C. Li, M.Z. Rahman et al., Colored radiative cooling and flame-retardant polyurethane-based coatings: selective absorption/reflection in solar waveband. Small 20, 2402349 (2024). https://doi.org/10.1002/smll.202402349
Z. Ma, J. Zhang, C. Maluk, Y. Yu, S.M. Seraji et al., A lava-inspired micro/nano-structured ceramifiable organic-inorganic hybrid fire-extinguishing coating. Matter 5(3), 911–932 (2022). https://doi.org/10.1016/j.matt.2021.12.009
D. Jiao, H. Sima, X. Shi, C. Zhang, B. Liu, Mussel-inspired flame retardant coating on polyurethane foam. Chem. Eng. J. 474, 145588 (2023). https://doi.org/10.1016/j.cej.2023.145588
D.D. Tang, L.B. Zhu, X. Li, Y. Liu, Q. Wang, Improved flame resistance and thermal insulation properties of steel fireproof coatings based on polyvinyl alcohol @ expandable graphite. Prog. Org. Coat. 191, 108444 (2024). https://doi.org/10.1016/j.porgcoat.2024.108444
J.R. Xavier, R. Bhaskar, S. Subramanian, Multifunctional graphitic carbon nitride/manganese dioxide/epoxy nanocomposite coating on steel for enhanced anticorrosion, flame retardant, mechanical, and hydrophobic properties. J. Ind. Eng. Chem. 134, 514–536 (2024). https://doi.org/10.1016/j.jiec.2024.01.015
L. Li, Y. Huang, W. Tang, Y. Zhang, L. Qian, Synergistic effect between piperazine pyrophosphate and melamine polyphosphate in flame retardant coatings for structural steel. Polymers 14(18), 3722 (2022). https://doi.org/10.3390/polym14183722
J.R. Xavier, S.P. Vinodhini, R. Ganesan, Innovative nanocomposite coating for aluminum alloy: superior corrosion resistance, flame retardancy, and mechanical strength for aerospace applications. J. Mater. Sci. 59(27), 12830–12861 (2024). https://doi.org/10.1007/s10853-024-09919-4
J.R. Xavier, S.P. Vinodhini, J. Raja Beryl, Anti-corrosion and flame-retardant properties of environmentally benign smart functionalized WS2/rGO in epoxy coatings for enhanced steel structural protection in natural seawater. Mater. Today Commun. 38, 107842 (2024). https://doi.org/10.1016/j.mtcomm.2023.107842
Q. Wang, B. Mao, S.I. Stoliarov, J. Sun, A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog. Energy Combust. Sci. 73, 95–131 (2019). https://doi.org/10.1016/j.pecs.2019.03.002
J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2010). https://doi.org/10.1021/cm901452z
X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2018). https://doi.org/10.1016/j.ensm.2017.05.013
Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun et al., Thermal runaway caused fire and explosion of lithium ion battery. J. Power. Sour. 208, 210–224 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.038
Q.-K. Zhang, X.-Q. Zhang, H. Yuan, J.-Q. Huang, Thermally stable and nonflammable electrolytes for lithium metal batteries: progress and perspectives. Small Sci. 1(10), 2100058 (2021). https://doi.org/10.1002/smsc.202100058
Z. Ma, J. Feng, S. Huo, Z. Sun, S. Bourbigot et al., Mussel-inspired, self-healing, highly effective fully polymeric fire-retardant coatings enabled by group synergy. Adv. Mater. 36(44), e2410453 (2024). https://doi.org/10.1002/adma.202410453
Z. Ma, X. Liu, X. Xu, L. Liu, B. Yu et al., Bioinspired, highly adhesive, nanostructured polymeric coatings for superhydrophobic fire-extinguishing thermal insulation foam. ACS Nano 15(7), 11667–11680 (2021). https://doi.org/10.1021/acsnano.1c02254
X. Ao, A. Vázquez-López, D. Mocerino, C. González, D.-Y. Wang, Flame retardancy and fire mechanical properties for natural fiber/polymer composite: a review. Compos. Part B Eng. 268, 111069 (2024). https://doi.org/10.1016/j.compositesb.2023.111069
X.-H. Shi, X.-L. Li, Y.-M. Li, Z. Li, D.-Y. Wang, Flame-retardant strategy and mechanism of fiber reinforced polymeric composite: a review. Compos. Part B Eng. 233, 109663 (2022). https://doi.org/10.1016/j.compositesb.2022.109663
A.P. Mouritz, A.G. Gibson, Fire Properties of Polymer Composite Materials (Springer Science & Business Media, Berlin, 2007)
S. Bourbigot, B. Gardelle, S. Duquesne, Intumescent silicone-based coatings for the fire protection of carbon fiber reinforced composites. Fire Saf. Sci. 11, 781–793 (2014). https://doi.org/10.3801/iafss.fss.11-781
Á. Pomázi, M. Krecz, A. Toldy, Thermal behaviour and fire and mechanical performance of carbon fibre-reinforced epoxy composites coated with flame-retardant epoxy gelcoats. J. Therm. Anal. Calorim. 148(7), 2685–2702 (2023). https://doi.org/10.1007/s10973-022-11710-z
P. Luangtriratana, B.K. Kandola, P. Myler, Ceramic particulate thermal barrier surface coatings for glass fibre-reinforced epoxy composites. Mater. Des. 68, 232–244 (2015). https://doi.org/10.1016/j.matdes.2014.11.057
X. Ao, J. Xiao, J. Hobson, J. de la Vega, G. Yin et al., Bilayer coating strategy for glass fiber reinforced polymer composites toward superior fire safety and post-fire mechanical properties. Compos. Commun. 44, 101763 (2023). https://doi.org/10.1016/j.coco.2023.101763
M.M.S. Mohd Sabee, Z. Itam, S. Beddu, N.M. Zahari, N.L. Mohd Kamal et al., Flame retardant coatings: additives, binders, and fillers. Polymers 14(14), 2911 (2022). https://doi.org/10.3390/polym14142911
E.J. Price, J. Covello, A. Tuchler, G.E. Wnek, Intumescent, epoxy-based flame-retardant coatings based on poly(acrylic acid) compositions. ACS Appl. Mater. Interfaces 12(16), 18997–19005 (2020). https://doi.org/10.1021/acsami.0c00567
J. Mastalska-Popławska, K. Kadac, P. Izak, M. Gierej, A. Stempkowska et al., The influence of ceramic additives on intumescence and thermal activity of epoxy coatings for steel. J. Appl. Polym. Sci. 138(9), 49914 (2021). https://doi.org/10.1002/app.49914
W. Tang, L. Qian, S.G. Prolongo, D.-Y. Wang, Small core of piperazine/silane aggregation initiate efficient charring flame retardant effect in polypropylene composites. Polym. Degrad. Stab. 208, 110265 (2023). https://doi.org/10.1016/j.polymdegradstab.2023.110265
M. Wang, Z. Liang, S. Yan, X. Tao, Y. Zou et al., The preparation and property analysis of B4C modified inorganic amorphous aluminum phosphates-based intumescent flame retardant coating. Constr. Build. Mater. 359, 129480 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129480
W. Zhan, L. Li, L. Chen, Q. Kong, M. Chen et al., Biomaterials in intumescent fire-retardant coatings: a review. Prog. Org. Coat. 192, 108483 (2024). https://doi.org/10.1016/j.porgcoat.2024.108483
E.D. Weil, Fire-protective and flame-retardant coatings - a state-of-the-art review. J. Fire Sci. 29(3), 259–296 (2011). https://doi.org/10.1177/0734904110395469
M. Tao, W. Tang, L. Qian, J. Wang, W. Xi et al., Toughening behavior and synergistic flame retardant effect of a ternary block copolymer with amorphous morphology and thermal softening property in polypropylene. Chem. Eng. J. 461, 141963 (2023). https://doi.org/10.1016/j.cej.2023.141963
W. Tang, L. Qian, Y. Chen, Y. Qiu, B. Xu, Intumescent flame retardant behavior of charring agents with different aggregation of piperazine/triazine groups in polypropylene. Polym. Degrad. Stab. 169, 108982 (2019). https://doi.org/10.1016/j.polymdegradstab.2019.108982
M. Xu, Y. Chen, L. Qian, J. Wang, S. Tang, Component ratio effects of hyperbranched triazine compound and ammonium polyphosphate in flame-retardant polypropylene composites. J. Appl. Polym. Sci. 131(21), 41006 (2014). https://doi.org/10.1002/app.41006
W. Tang, L. Qian, S.G. Prolongo, D.-Y. Wang, Dendritic copolymers from P-, N- and Si-based monomer and melamine phosphate generate thermal deformation toughening and a rapid charring flame retardant effect in polypropylene. Chem. Eng. J. 471, 144716 (2023). https://doi.org/10.1016/j.cej.2023.144716
M. Tao, L. Qian, J. Wang, H. Zhu, W. Tang et al., From physical mixtures to block copolymer: Impose outstandingly toughening and flame retardant effect to polypropylene. Compos. Part B Eng. 253, 110538 (2023). https://doi.org/10.1016/j.compositesb.2023.110538
W. Tang, L. Qian, Y. Chen, Y. Qiu, B. Xu et al., Joint-aggregation intumescent flame-retardant effect of ammonium polyphosphate and charring agent in polypropylene. Polym. Adv. Technol. 31(8), 1699–1708 (2020). https://doi.org/10.1002/pat.4897
A. Abdelkhalik, M. Mahmoud, M.A. Nour, M.A. Hassan, E.R. Souaya, Smoke suppression, flame retardancy, and fire toxicity of polypropylene containing melamine salt of pentaerythritol phosphate halloysite. J. Vinyl Addit. Technol. 29(2), 356–369 (2023). https://doi.org/10.1002/vnl.21987
W. Tang, H. Zhu, W. Xi, Y. Qiu, L. Qian, Cage-shaped octaphenyl silsesquioxane with micro-nano dispersibility for strengthening intumescent flame retardancy in polypropylene composites. J. Appl. Polym. Sci. 140(22), e53907 (2023). https://doi.org/10.1002/app.53907
S. Li, L. Qian, W. Tang, Y. Qiu, J. Wang et al., Microp-aggregation effect of intumescent flame retardants on flame retardancy and toughening property of polypropylene. Polym. Degrad. Stab. 222, 110705 (2024). https://doi.org/10.1016/j.polymdegradstab.2024.110705
X. Li, J. Liu, F. Chen, J. Zhang, H. Li et al., Eco-friendly flame retardant coating based on ammonium polyphosphate and tyramine for lyocell fabrics. Polym. Degrad. Stab. 218, 110572 (2023). https://doi.org/10.1016/j.polymdegradstab.2023.110572
W. Tang, L. Qian, S.G. Prolongo, Y. Qiu, D.-Y. Wang, Macromolecular piperazine/aluminum phosphate hybrid and its efficient intumescent flame retardant/thermal conductive polypropylene. Chem. Eng. J. 495, 153162 (2024). https://doi.org/10.1016/j.cej.2024.153162
W. Cai, L. Qi, T. Cui, B. Lin, M.Z. Rahman et al., Chameleon-inspired, dipole moment-increasing, fire-retardant strategies toward promoting the practical application of radiative cooling materials. Adv. Funct. Mater. 35(2), 2412902 (2025). https://doi.org/10.1002/adfm.202412902
T. Cui, Y. Zheng, M. Hu, B. Lin, J. Wang et al., Biomimetic multifunctional graphene-based coating for thermal management, solar de-icing, and fire safety: inspired from the antireflection nanostructure of compound eyes. Small 20(35), 2312083 (2024). https://doi.org/10.1002/smll.202312083
F. Li, Y. Wang, K. Yu, M. Lai, J. Zhao, In-situ polymerized zinc ions chelated Si-C-N cenospheres-based geopolymeric coating constructed by incorporating β-cyclodextrin and dopamine for flame-retarding plywood. Constr. Build. Mater. 393, 131920 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131920
S. Ortelli, G. Malucelli, M. Blosi, I. Zanoni, A.L. Costa, NanoTiO2@DNA complex: a novel eco, durable, fire retardant design strategy for cotton textiles. J. Colloid Interface Sci. 546, 174–183 (2019). https://doi.org/10.1016/j.jcis.2019.03.055
Y.-M. Li, S.-L. Hu, D.-Y. Wang, Polymer-based ceramifiable composites for flame retardant applications: a review. Compos. Commun. 21, 100405 (2020). https://doi.org/10.1016/j.coco.2020.100405
C. Sadik, O. Moudden, A. El Bouari, I.-E. El Amrani, Review on the elaboration and characterization of ceramics refractories based on magnesite and dolomite. J. Asian Ceram. Soc. 4(3), 219–233 (2016). https://doi.org/10.1016/j.jascer.2016.06.006
J. Song, Z. Huang, Y. Qin, H. Wang, M. Shi, Effects of zirconium silicide on the vulcanization, mechanical and ablation resistance properties of ceramifiable silicone rubber composites. Polymers 12(2), 496 (2020). https://doi.org/10.3390/polym12020496
R. Anyszka, D.M. Bieliński, Z. Pędzich, M. Szumera, Influence of surface-modified montmorillonites on properties of silicone rubber-based ceramizable composites. J. Therm. Anal. Calorim. 119(1), 111–121 (2015). https://doi.org/10.1007/s10973-014-4156-x
Y. Wang, X. Lai, H. Li, Z. Liu, X. Zeng, Synergistically catalyzing ceramization of silicone rubber by boron oxide and platinum-nitrogen system. J. Non Cryst. Solids 593, 121765 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121765
J. Tian, L. Yan, H. Zhang, Y. Wang, Y. Cai et al., Enhanced flexibility and ablative performance of silicone rubber by constructing an interpenetrating zirconium-containing polysiloxane double network. Polymer 270, 125749 (2023). https://doi.org/10.1016/j.polymer.2023.125749
Z.Y. Chen, Y.Y. Wu, S.C. Liu, Y. Li, Z.Q. Guan et al., Pottery-inspired flexible fire-shielding ceramifiable silicone foams for exceptional long-term thermal protection. Adv. Funct. Mater. 35(3), 2413362 (2025). https://doi.org/10.1002/adfm.202413362
J. Zhang, Y. Tang, C. Song, J. Zhang, H. Wang, PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 °C to 120 °C. J. Power. Sources 163(1), 532–537 (2006). https://doi.org/10.1016/j.jpowsour.2006.09.026
Z. Song, F. Chen, M. Martinez-Ibañez, W. Feng, M. Forsyth et al., A reflection on polymer electrolytes for solid-state lithium metal batteries. Nat. Commun. 14(1), 4884 (2023). https://doi.org/10.1038/s41467-023-40609-y
S.K. Heiskanen, J. Kim, B.L. Lucht, Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 3(10), 2322–2333 (2019). https://doi.org/10.1016/j.joule.2019.08.018
K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4(6), eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
D. Matykiewicz, B. Przybyszewski, R. Stanik, A. Czulak, Modification of glass reinforced epoxy composites by ammonium polyphosphate (APP) and melamine polyphosphate (PNA) during the resin powder molding process. Compos. Part B Eng. 108, 224–231 (2017). https://doi.org/10.1016/j.compositesb.2016.10.003
Q. Fang, Y. Zhan, X. Chen, R. Wu, W. Zhang et al., A bio-based intumescent flame retardant with biomolecules functionalized ammonium polyphosphate enables polylactic acid with excellent flame retardancy. Eur. Polym. J. 177, 111479 (2022). https://doi.org/10.1016/j.eurpolymj.2022.111479
R. Wang, S. Zhang, S. Du, M. Xu, Z. Wang et al., Glass-blowing-inspired constructing a novel ceramizable intumescent flame retardant for realizing superior flame retardancy, smoke suppression and water resistance of polyethylene composites. Compos. Part A Appl. Sci. Manuf. 190, 108687 (2025). https://doi.org/10.1016/j.compositesa.2024.108687
D. Yan, D. Chen, J. Tan, L. Yuan, Z. Huang et al., Synergistic flame retardant effect of a new N-P flame retardant on poplar wood density board. Polym. Degrad. Stab. 211, 110331 (2023). https://doi.org/10.1016/j.polymdegradstab.2023.110331
Z. Yang, W. Xi, L. Qian, Y. Qiu, J. Wang et al., Adsorption charring flame retardant effect of phosphaphenanthrene derivate intercalated micro-expanded graphite composite system in rigid polyurethane foams. Polym. Degrad. Stab. 216, 110493 (2023). https://doi.org/10.1016/j.polymdegradstab.2023.110493
S. Li, W. Tang, L. Qian, J. Wang, X. Wu et al., In-suit cemented strategy enables intumescent flame retardant transition from hyper-hydrophilic to hydrophobic and aggregation flame retardant effect simultaneously in polypropylene. Compos. Part B Eng. 287, 111874 (2024). https://doi.org/10.1016/j.compositesb.2024.111874
Z.-H. Wang, X. Xiao, J.-Y. Zhang, B.-W. Liu, X.-L. Wang et al., Highly transparent and environment-friendly flame-retardant coating for cotton and silk fabrics. Ind. Crops Prod. 222, 120066 (2024). https://doi.org/10.1016/j.indcrop.2024.120066