Sustainable Materials Enabled Terahertz Functional Devices
Corresponding Author: Wendao Xu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 212
Abstract
Terahertz (THz) devices, owing to their distinctive optical properties, have achieved myriad applications in diverse domains including wireless communication, medical imaging therapy, hazardous substance detection, and environmental governance. Concurrently, to mitigate the environmental impact of electronic waste generated by traditional materials, sustainable materials-based THz functional devices are being explored for further research by taking advantages of their eco-friendliness, cost-effective, enhanced safety, robust biodegradability and biocompatibility. This review focuses on the origins and distinctive biological structures of sustainable materials as well as succinctly elucidates the latest applications in THz functional device fabrication, including wireless communication devices, macromolecule detection sensors, environment monitoring sensors, and biomedical therapeutic devices. We further highlight recent applications of sustainable materials-based THz functional devices in hazardous substance detection, protein-based macromolecule detection, and environmental monitoring. Besides, this review explores the developmental prospects of integrating sustainable materials with THz functional devices, presenting their potential applications in the future.
Highlights:
1 Sources and types of sustainable materials and their advantages in fabricating high performance terahertz (THz) functional devices are systematically reviewed.
2 The principles and implementations of sustainable material enabled THz functional devices for wireless communication, molecular sensing, and biomedical detection.
3 This review emphasizes new insights from a comprehensive analysis, presenting challenges in intelligent modulation and perception of sustainable materials assisted THz functional devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wang, F. Zheng, Y. Xu, M.G. Mauk, X. Qiu et al., Recent progress in terahertz biosensors based on artificial electromagnetic subwavelength structure. Trac Trends Anal. Chem. 158, 116888 (2023). https://doi.org/10.1016/j.trac.2022.116888
- L. Du, M.R. Molas, Z. Huang, G. Zhang, F. Wang et al., Moiré photonics and optoelectronics. Science 379(6639), eadg0014 (2023). https://doi.org/10.1126/science.adg0014
- P. Bawuah, J.A. Zeitler, Advances in terahertz time-domain spectroscopy of pharmaceutical solids: a review. Trac Trends Anal. Chem. 139, 116272 (2021). https://doi.org/10.1016/j.trac.2021.116272
- A.H. Barajas-Aguilar, J. Zion, I. Sequeira, A.Z. Barabas, T. Taniguchi et al., Electrically driven amplification of terahertz acoustic waves in graphene. Nat. Commun. 15(1), 2550 (2024). https://doi.org/10.1038/s41467-024-46819-2
- X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu et al., Terahertz surface plasmonic waves: a review. Adv. Photon. 2(1), 1 (2020). https://doi.org/10.1117/1.ap.2.1.014001
- C. McDonnell, J. Deng, S. Sideris, T. Ellenbogen, G. Li, Functional THz emitters based on Pancharatnam–Berry phase nonlinear metasurfaces. Nat. Commun. 12(1), 30 (2021). https://doi.org/10.1038/s41467-020-20283-0
- H. Ge, Z. Sun, Y. Jiang, X. Wu, Z. Jia et al., Recent advances in THz detection of water. Int. J. Mol. Sci. 24(13), 10936 (2023). https://doi.org/10.3390/ijms241310936
- Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber et al., Terahertz topological photonics for on-chip communication. Nat. Photonics 14(7), 446–451 (2020). https://doi.org/10.1038/s41566-020-0618-9
- Z. Zhang, F.Y. Gao, J.B. Curtis, Z.-J. Liu, Y.-C. Chien et al., Terahertz field-induced nonlinear coupling of two magnon modes in an antiferromagnet. Nat. Phys. 20(5), 801–806 (2024). https://doi.org/10.1038/s41567-024-02386-3
- D. Zhang, Y. Zeng, Y. Bai, Z. Li, Y. Tian et al., Coherent surface plasmon polariton amplification via free-electron pumping. Nature 611(7934), 55–60 (2022). https://doi.org/10.1038/s41586-022-05239-2
- T. Dong, S.-J. Zhang, N.-L. Wang, Recent development of ultrafast optical characterizations for quantum materials. Adv. Mater. 35(27), e2110068 (2023). https://doi.org/10.1002/adma.202110068
- X. Lu, F. Zhang, L. Zhu, S. Peng, J. Yan et al., A terahertz meta-sensor array for 2D strain mapping. Nat. Commun. 15(1), 3157 (2024). https://doi.org/10.1038/s41467-024-47474-3
- F. Qaderi, T. Rosca, M. Burla, J. Leuthold, D. Flandre et al., Millimeter-wave to near-terahertz sensors based on reversible insulator-to-metal transition in VO2. Commun. Mater. 4, 34 (2023). https://doi.org/10.1038/s43246-023-00350-x
- J.M. Jornet, E.W. Knightly, D.M. Mittleman, Wireless communications sensing and security above 100 GHz. Nat. Commun. 14(1), 841 (2023). https://doi.org/10.1038/s41467-023-36621-x
- X. Li, J. Li, Y. Li, A. Ozcan, M. Jarrahi, High-throughput terahertz imaging: progress and challenges. Light Sci. Appl. 12(1), 233 (2023). https://doi.org/10.1038/s41377-023-01278-0
- J. Yin, K. Wu, Y. Yu, Y. Zhong, Z. Song et al., Terahertz photons inhibit cancer cells long term by suppressing nano telomerase activity. ACS Nano 18(6), 4796–4810 (2024). https://doi.org/10.1021/acsnano.3c09216
- S. Shen, X. Liu, Y. Shen, J. Qu, E. Pickwell-MacPherson et al., Recent advances in the development of materials for terahertz metamaterial sensing. Adv. Opt. Mater. 10(1), 2101008 (2022). https://doi.org/10.1002/adom.202101008
- P. Nie, D. Zhu, Z. Cui, F. Qu, L. Lin et al., Sensitive detection of chlorpyrifos pesticide using an all-dielectric broadband terahertz metamaterial absorber. Sens. Actuators B Chem. 307, 127642 (2020). https://doi.org/10.1016/j.snb.2019.127642
- Y. Wang, Z. Cui, X. Zhang, X. Zhang, Y. Zhu et al., Excitation of surface plasmon resonance on multiwalled carbon nanotube metasurfaces for pesticide sensors. ACS Appl. Mater. Interfaces 12(46), 52082–52088 (2020). https://doi.org/10.1021/acsami.0c10943
- L. Afsah-Hejri, E. Akbari, A. Toudeshki, T. Homayouni, A. Alizadeh et al., Terahertz spectroscopy and imaging: a review on agricultural applications. Comput. Electron. Agric. 177, 105628 (2020). https://doi.org/10.1016/j.compag.2020.105628
- F. Jiang, T. Li, Y.J. Li, Y. Zhang, A. Gong et al., Wood-based nanotechnologies toward sustainability. Adv. Mater. 30, 1703453 (2018). https://doi.org/10.1002/adma.201703453
- G. Hayes, M. Laurel, D. MacKinnon, T. Zhao, H.A. Houck et al., Polymers without petrochemicals: sustainable routes to conventional monomers. Chem. Rev. 123(5), 2609–2734 (2023). https://doi.org/10.1021/acs.chemrev.2c00354
- A. Balčytis, M. Ryu, X. Wang, F. Novelli, G. Seniutinas et al., Silk: optical properties over 12.6 octaves THz-IR-visible-UV range. Materials 10(4), 356 (2017). https://doi.org/10.3390/ma10040356
- N.M. Santhosh, U. Puc, M. Jazbinšek, A. Oberlintner, V. Shvalya et al., Exploring effects of plasma surface engineering on cellulose nanofilms via broadband THz spectroscopy. Appl. Surf. Sci. 682, 161698 (2025). https://doi.org/10.1016/j.apsusc.2024.161698
- A. Elfwing, C.S. Ponseca Jr., L. Ouyang, A. Urbanowicz, A. Krotkus et al., Conducting helical structures from celery decorated with a metallic conjugated polymer give resonances in the terahertz range. Adv. Funct. Mater. 28(24), 1706595 (2018). https://doi.org/10.1002/adfm.201706595
- L. Gai, H. Zhao, F. Wang, P. Wang, Y. Liu et al., Advances in core: shell engineering of carbon-based composites for electromagnetic wave absorption. Nano Res. 15(10), 9410–9439 (2022). https://doi.org/10.1007/s12274-022-4695-6
- H. Tu, M. Zhu, B. Duan, L. Zhang, Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 33(28), e2000682 (2021). https://doi.org/10.1002/adma.202000682
- A. Irastorza, I. Zarandona, M. Andonegi, P. Guerrero, K. de la Caba, The versatility of collagen and chitosan: from food to biomedical applications. Food Hydrocoll. 116, 106633 (2021). https://doi.org/10.1016/j.foodhyd.2021.106633
- C. Wang, K. Xia, Y. Zhang, D.L. Kaplan, Silk-based advanced materials for soft electronics. Acc. Chem. Res. 52(10), 2916–2927 (2019). https://doi.org/10.1021/acs.accounts.9b00333
- B. Yao, T. Xiao, O.A. Makgae, X. Jie, S. Gonzalez-Cortes et al., Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst. Nat. Commun. 11(1), 6395 (2020). https://doi.org/10.1038/s41467-020-20214-z
- D. Panáček, L. Zdražil, M. Langer, V. Šedajová, Z. Baďura et al., Graphene nanobeacons with high-affinity pockets for combined, selective, and effective decontamination and reagentless detection of heavy metals. Small 18(33), e2201003 (2022). https://doi.org/10.1002/smll.202201003
- T. Raj, K. Chandrasekhar, A. Naresh Kumar, S.-H. Kim, Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: a sustainable approach. Renew. Sustain. Energy Rev. 158, 112130 (2022). https://doi.org/10.1016/j.rser.2022.112130
- B. Ates, S. Koytepe, A. Ulu, C. Gurses, V.K. Thakur, Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem. Rev. 120(17), 9304–9362 (2020). https://doi.org/10.1021/acs.chemrev.9b00553
- A.R. Pai, Y. Lu, S. Joseph, N.M. Santhosh, R. Degl’Innocenti et al., Ultra-broadband shielding of cellulose nanofiber commingled biocarbon functional constructs: a paradigm shift towards sustainable terahertz absorbers. Chem. Eng. J. 467, 143213 (2023). https://doi.org/10.1016/j.cej.2023.143213
- Q. Zeng, W. Liu, S. Lin, Z. Chen, L. Zeng et al., Aptamer HB5 modified terahertz metasurface biosensor used for specific detection of HER2. Sens. Actuators B Chem. 355, 131337 (2022). https://doi.org/10.1016/j.snb.2021.131337
- Y. Guo, D. Wang, Y. Tian, J. Wang, T. Bai et al., FeCo alloy nanop decorated cellulose based carbon aerogel as a low-cost and efficient electromagnetic microwave absorber. J. Mater. Chem. C 10(1), 126–134 (2022). https://doi.org/10.1039/D1TC04494J
- C. Kuang, S. Chen, M. Luo, Q. Zhang, X. Sun et al., Switchable broadband terahertz absorbers based on conducting polymer-cellulose aerogels. Adv. Sci. 11(3), e2305898 (2024). https://doi.org/10.1002/advs.202305898
- E. Kontturi, P. Laaksonen, M.B. Linder, Nonappa, A.H. Gröschel et al., Advanced materials through assembly of nanocelluloses. Adv. Mater. 30(24), e1703779 (2018). https://doi.org/10.1002/adma.201703779
- Z. Hui, L. Zhang, G. Ren, G. Sun, H.D. Yu et al., Green flexible electronics: natural materials, fabrication, and applications. Adv. Mater. 35(28), 2211202 (2023). https://doi.org/10.1002/adma.202211202
- F. Basarir, Y.A. Haj, F. Zou, S. De, A. Nguyen et al., Edible and biodegradable wearable capacitive pressure sensors: a paradigm shift toward sustainable electronics with bio-based materials. Adv. Funct. Mater. 34(39), 2403268 (2024). https://doi.org/10.1002/adfm.202403268
- G. de Marzo, V.M. Mastronardi, M.T. Todaro, L. Blasi, V. Antonaci et al., Sustainable electronic biomaterials for body-compliant devices: challenges and perspectives for wearable bio-mechanical sensors and body energy harvesters. Nano Energy 123, 109336 (2024). https://doi.org/10.1016/j.nanoen.2024.109336
- P.S. Pálvölgyi, M. Nelo, O. Pitkänen, J. Peräntie, H. Liimatainen et al., Ultra-low permittivity porous silica-cellulose nanocomposite substrates for 6G telecommunication. Nanotechnology 31(43), 435203 (2020). https://doi.org/10.1088/1361-6528/aba4cc
- S. Basu, O. Omadjela, D. Gaddes, S. Tadigadapa, J. Zimmer et al., Cellulose microfibril formation by surface-tethered cellulose synthase enzymes. ACS Nano 10(2), 1896–1907 (2016). https://doi.org/10.1021/acsnano.5b05648
- Z. Li, C. Chen, R. Mi, W. Gan, J. Dai et al., A strong, tough, and scalable structural material from fast-growing bamboo. Adv. Mater. 32(10), e1906308 (2020). https://doi.org/10.1002/adma.201906308
- X. Dong, W. Gan, Y. Shang, J. Tang, Y. Wang et al., Low-value wood for sustainable high-performance structural materials. Nat. Sustain. 5(7), 628–635 (2022). https://doi.org/10.1038/s41893-022-00887-8
- H. Pan, G. Chen, Y. Chen, A. Di Carlo, M.A. Mayer et al., Biodegradable cotton fiber-based piezoresistive textiles for wearable biomonitoring. Biosens. Bioelectron. 222, 114999 (2023). https://doi.org/10.1016/j.bios.2022.114999
- W. Xia, A. Anwar, L. Wang, Z. Cao, B. Li et al., Microwave-assisted solid-state pretreatment for fabrication of hemp fibres using ethanolamine at low temperature. Carbohydr. Polym. 332, 121906 (2024). https://doi.org/10.1016/j.carbpol.2024.121906
- T.S. Lankiewicz, H. Choudhary, Y. Gao, B. Amer, S.P. Lillington et al., Lignin deconstruction by anaerobic fungi. Nat. Microbiol. 8(4), 596–610 (2023). https://doi.org/10.1038/s41564-023-01336-8
- D. Sawada, Y. Nishiyama, R. Shah, V. Trevor Forsyth, E. Mossou et al., Untangling the threads of cellulose mercerization. Nat. Commun. 13(1), 6189 (2022). https://doi.org/10.1038/s41467-022-33812-w
- Z. Quan, Q. Zhang, H. Li, S. Sun, Y. Xu, Fluorescent cellulose-based materials for information encryption and anti-counterfeiting. Coord. Chem. Rev. 493, 215287 (2023). https://doi.org/10.1016/j.ccr.2023.215287
- A. Etale, A.J. Onyianta, S.R. Turner, S.J. Eichhorn, Cellulose: a review of water interactions, applications in composites, and water treatment. Chem. Rev. 123(5), 2016–2048 (2023). https://doi.org/10.1021/acs.chemrev.2c00477
- G. Du, J. Wang, Y. Liu, J. Yuan, T. Liu et al., Fabrication of advanced cellulosic triboelectric materials via dielectric modulation. Adv. Sci. 10(15), e2206243 (2023). https://doi.org/10.1002/advs.202206243
- J. Li, M. Shen, W. Xiao, Y. Li, W. Pan et al., Regulating the physicochemical and structural properties of different starches by complexation with tea polyphenols. Food Hydrocoll. 142, 108836 (2023). https://doi.org/10.1016/j.foodhyd.2023.108836
- L. Rong, X. Chen, M. Shen, J. Yang, X. Qi et al., The application of 3D printing technology on starch-based product: a review. Trends Food Sci. Technol. 134, 149–161 (2023). https://doi.org/10.1016/j.tifs.2023.02.015
- S. Nakajima, K. Shiraga, T. Suzuki, N. Kondo, Y. Ogawa, Quantification of starch content in germinating mung bean seedlings by terahertz spectroscopy. Food Chem. 294, 203–208 (2019). https://doi.org/10.1016/j.foodchem.2019.05.065
- Z. Wang, P. Mhaske, A. Farahnaky, S. Kasapis, M. Majzoobi, Cassava starch: chemical modification and its impact on functional properties and digestibility, a review. Food Hydrocoll. 129, 107542 (2022). https://doi.org/10.1016/j.foodhyd.2022.107542
- J. Hao, S. Yan, H. Yuan, C. Du, Y. Tan, High-strength alginate fibers wet-spun from pre-crosslinked sodium alginate solutions. Carbohydr. Polym. 342, 122386 (2024). https://doi.org/10.1016/j.carbpol.2024.122386
- H. Bojorges, A. López-Rubio, A. Martínez-Abad, M.J. Fabra, Overview of alginate extraction processes: impact on alginate molecular structure and techno-functional properties. Trends Food Sci. Technol. 140, 104142 (2023). https://doi.org/10.1016/j.tifs.2023.104142
- C. Hu, W. Lu, A. Mata, K. Nishinari, Y. Fang, Ions-induced gelation of alginate: mechanisms and applications. Int. J. Biol. Macromol. 177, 578–588 (2021). https://doi.org/10.1016/j.ijbiomac.2021.02.086
- H. Zhang, J. Cheng, Q. Ao, Preparation of alginate-based biomaterials and their applications in biomedicine. Mar. Drugs 19(5), 264 (2021). https://doi.org/10.3390/md19050264
- P. Pękala, M. Szymańska-Chargot, A. Zdunek, Interactions between non-cellulosic plant cell wall polysaccharides and cellulose emerging from adsorption studies. Cellulose 30(15), 9221–9239 (2023). https://doi.org/10.1007/s10570-023-05442-y
- C. Li, A. Wu, R.G. Gilbert, Critical examination of the characterization techniques, and the evidence, for the existence of extra-long amylopectin chains. Compr. Rev. Food Sci. Food Saf. 22(5), 4053–4073 (2023). https://doi.org/10.1111/1541-4337.13212
- M. Xie, L. Lian, X. Mu, Z. Luo, C.E. Garciamendez-Mijares et al., Volumetric additive manufacturing of pristine silk-based (bio)inks. Nat. Commun. 14(1), 210 (2023). https://doi.org/10.1038/s41467-023-35807-7
- A. Khalid, D. Bai, A.N. Abraham, A. Jadhav, D. Linklater et al., Electrospun nanodiamond-silk fibroin membranes: a multifunctional platform for biosensing and wound-healing applications. ACS Appl. Mater. Interfaces 12(43), 48408–48419 (2020). https://doi.org/10.1021/acsami.0c15612
- Z. Hao, D. Long, Y. Zhang, D. Umuhoza, J. Dai et al., New insight into the mechanism of in vivo fibroin self-assembly and secretion in the silkworm, Bombyx mori. Int. J. Biol. Macromol. 169, 473–479 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.132
- E.S.X. Moh, N.H. Packer, Enzymatic azido-GalNAc-functionalized silk fibroin for click chemistry conjugation. Biomacromol 22(4), 1752–1755 (2021). https://doi.org/10.1021/acs.biomac.0c01791
- J.K. Sahoo, O. Hasturk, T. Falcucci, D.L. Kaplan, Silk chemistry and biomedical material designs. Nat. Rev. Chem. 7(5), 302–318 (2023). https://doi.org/10.1038/s41570-023-00486-x
- T. Inoue, T. Kurosaki, Memory B cells. Nat. Rev. Immunol. 24(1), 5–17 (2024). https://doi.org/10.1038/s41577-023-00897-3
- R. Liu, F. Zhang, Y. Sang, I. Katouzian, S.M. Jafari et al., Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends Food Sci. Technol. 123, 355–375 (2022). https://doi.org/10.1016/j.tifs.2022.03.025
- O. Tietz, F. Cortezon-Tamarit, R. Chalk, S. Able, K.A. Vallis, Tricyclic cell-penetrating peptides for efficient delivery of functional antibodies into cancer cells. Nat. Chem. 14, 284–293 (2022). https://doi.org/10.1038/s41557-021-00866-0
- S. Qi, N. Duan, I.M. Khan, X. Dong, Y. Zhang et al., Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol. Adv. 55, 107902 (2022). https://doi.org/10.1016/j.biotechadv.2021.107902
- Z. Zhang, H. Karimi-Maleh, Label-free electrochemical aptasensor based on gold nanops/titanium carbide MXene for lead detection with its reduction peak as index signal. Adv. Compos. Hybrid Mater. 6(2), 68 (2023). https://doi.org/10.1007/s42114-023-00652-1
- P.S. Achanta, J. Brent Friesen, G. Harris, G.K. Webster, S.-N. Chen et al., Development of centrifugal partition chromatography for the purification of antibody-drug conjugates. Anal. Chem. 95(5), 2783–2788 (2023). https://doi.org/10.1021/acs.analchem.2c03919
- B. Song, X. Fan, J. Shen, H. Gu, Ultra-stable and self-healing coordinated collagen-based multifunctional double-network organohydrogel e-skin for multimodal sensing monitoring of strain-resistance, bioelectrode, and self-powered triboelectric nanogenerator. Chem. Eng. J. 474, 145780 (2023). https://doi.org/10.1016/j.cej.2023.145780
- S. Quan, J. Zhang, L. Zhang, N. Li, L. Zhu et al., Versatile triblock peptides mimicking ABC-type heterotrimeric collagen with stabilizing salt bridges. Int. J. Biol. Macromol. 272(Pt 1), 132446 (2024). https://doi.org/10.1016/j.ijbiomac.2024.132446
- P. Wongrattanakamon, W. Yooin, B. Sirithunyalug, P. Nimmanpipug, S. Jiranusornkul, Tentative peptide-lipid bilayer models elucidating molecular behaviors and interactions driving passive cellular uptake of collagen-derived small peptides. Molecules 26(3), 710 (2021). https://doi.org/10.3390/molecules26030710
- L. Wu, Q. Wang, Y. Li, M. Yang, M. Dong et al., A dopamine acrylamide molecule for promoting collagen biomimetic mineralization and regulating crystal growth direction. ACS Appl. Mater. Interfaces 13(33), 39142–39156 (2021). https://doi.org/10.1021/acsami.1c12412
- R. Yang, G. Li, C. Zhuang, P. Yu, T. Ye et al., Gradient bimetallic ion-based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. Sci. Adv. 7(26), eabg3816 (2021). https://doi.org/10.1126/sciadv.abg3816
- Y. You, Y. Tian, Z. Yang, J. Shi, K.J. Kwak et al., Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat. Biomed. Eng. 7(7), 887–900 (2023). https://doi.org/10.1038/s41551-022-00989-w
- D.S. Liu, M. Nikoo, G. Boran, P. Zhou, J.M. Regenstein, Collagen and gelatin. Annu. Rev. Food Sci. Technol. 6, 527–557 (2015). https://doi.org/10.1146/annurev-food-031414-111800
- C. Tang, K. Zhou, Y.C. Zhu, W.D. Zhang, Y. Xie, Z.M. Wang, H. Zhou, T.T. Yang, Q. Zhang, B.C. Xu, Collagen and its derivatives: from structure and properties to their applications in food industry. Food Hydrocoll. 131, 107748 (2022). https://doi.org/10.1016/j.foodhyd.2022.107748
- V. Kriuchkovskaia, E.K. Eames, R.B. Riggins, B.A.C. Harley, Acquired temozolomide resistance instructs patterns of glioblastoma behavior in gelatin hydrogels. bioRxiv, 2023.11.14.567115 (2023). https://doi.org/10.1101/2023.11.14.567115
- Y.-H. Zhu, C.-Y. Zhou, X. Peng, W. Wang, Z. Liu et al., Dialdehyde starch cross-linked aminated gelatin sponges with excellent hemostatic performance and biocompatibility. Carbohydr. Polym. 342, 122326 (2024). https://doi.org/10.1016/j.carbpol.2024.122326
- E. Sharifi, S. Yousefiasl, N. Laderian, N. Rabiee, P. Makvandi et al., Cell-loaded genipin cross-linked collagen/gelatin skin substitute adorned with zinc-doped bioactive glass-ceramic for cutaneous wound regeneration. Int. J. Biol. Macromol. 251, 125898 (2023). https://doi.org/10.1016/j.ijbiomac.2023.125898
- M. Nuerjiang, X. Bai, L. Sun, Q. Wang, X. Xia et al., Size effect of fish gelatin nanops on the mechanical properties of collagen film based on its hierarchical structure. Food Hydrocoll. 144, 108931 (2023). https://doi.org/10.1016/j.foodhyd.2023.108931
- H.-Y. Wang, Y. Zhang, M. Zhang, Y.-Q. Zhang, Functional modification of silk fibroin from silkworms and its application to medical biomaterials: a review. Int. J. Biol. Macromol. 259(Pt 1), 129099 (2024). https://doi.org/10.1016/j.ijbiomac.2023.129099
- P. Ratnatilaka Na Bhuket, Y. Li, S.M. Yu, From collagen mimetics to collagen hybridization and back. Acc. Chem. Res. 57(12), 1649–1657 (2024). https://doi.org/10.1021/acs.accounts.3c00772
- K. Ahmad, Y. Meng, C. Fan, A.S.U. Din, Q. Jia et al., Collagen/gelatin and polysaccharide complexes enhance gastric retention and mucoadhesive properties. Int. J. Biol. Macromol. 266(Pt 2), 131034 (2024). https://doi.org/10.1016/j.ijbiomac.2024.131034
- M.I. Ahmad, Y. Li, J. Pan, F. Liu, H. Dai et al., Collagen and gelatin: structure, properties, and applications in food industry. Int. J. Biol. Macromol. 254(Pt 3), 128037 (2024). https://doi.org/10.1016/j.ijbiomac.2023.128037
- J. Liao, Y. Zhou, B. Hou, J. Zhang, H. Huang, Nano-chitin: preparation strategies and food biopolymer film reinforcement and applications. Carbohydr. Polym. 305, 120553 (2023). https://doi.org/10.1016/j.carbpol.2023.120553
- L.G. Greca, A. Azpiazu, G. Reyes, O.J. Rojas, B.L. Tardy et al., Chitin-based pulps: Structure-property relationships and environmental sustainability. Carbohydr. Polym. 325, 121561 (2024). https://doi.org/10.1016/j.carbpol.2023.121561
- J. Lv, X. Lv, M. Ma, D.-H. Oh, Z. Jiang et al., Chitin and chitin-based biomaterials: a review of advances in processing and food applications. Carbohydr. Polym. 299, 120142 (2023). https://doi.org/10.1016/j.carbpol.2022.120142
- K. Kim, M. Ha, B. Choi, S.H. Joo, H.S. Kang et al., Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers. Nano Energy 48, 275–283 (2018). https://doi.org/10.1016/j.nanoen.2018.03.056
- F. Gao, B.S. Zhang, J.H. Zhao, J.F. Huang, P.S. Jia et al., Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. Nat. Plants 5, 1167–1176 (2019). https://doi.org/10.1038/s41477-019-0527-4
- F.D. Moghaddam, E.N. Zare, M. Hassanpour, F.R. Bertani, A. Serajian et al., Chitosan-based nanosystems for cancer diagnosis and therapy: stimuli-responsive, immune response, and clinical studies. Carbohydr. Polym. 330, 121839 (2024). https://doi.org/10.1016/j.carbpol.2024.121839
- B. Jiang, H. Jiao, X. Guo, G. Chen, J. Guo et al., Lignin-based materials for additive manufacturing: chemistry, processing, structures, properties, and applications. Adv. Sci. 10(9), e2206055 (2023). https://doi.org/10.1002/advs.202206055
- E. Subbotina, T. Rukkijakan, M.D. Marquez-Medina, X. Yu, M. Johnsson et al., Oxidative cleavage of C–C bonds in lignin. Nat. Chem. 13(11), 1118–1125 (2021). https://doi.org/10.1038/s41557-021-00783-2
- S. Dabral, H. Wotruba, J.G. Hernández, C. Bolm, Mechanochemical oxidation and cleavage of lignin β-O-4 model compounds and lignin. ACS Sustain. Chem. Eng. 6(3), 3242–3254 (2018). https://doi.org/10.1021/acssuschemeng.7b03418
- A. Kirui, W. Zhao, F. Deligey, H. Yang, X. Kang et al., Carbohydrate–aromatic interface and molecular architecture of lignocellulose. Nat. Commun. 13(1), 538 (2022). https://doi.org/10.1038/s41467-022-28165-3
- G. Yang, Z. Gong, X. Luo, L. Chen, L. Shuai, Bonding wood with uncondensed lignins as adhesives. Nature 621(7979), 511–515 (2023). https://doi.org/10.1038/s41586-023-06507-5
- M. Zhou, O.A. Fakayode, A.E. AhmedYagoub, Q. Ji, C. Zhou, Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization. Renew. Sustain. Energy Rev. 156, 111986 (2022). https://doi.org/10.1016/j.rser.2021.111986
- A. El-Araby, W. Janati, R. Ullah, S. Ercisli, F. Errachidi, Chitosan, chitosan derivatives, and chitosan-based nanocomposites: eco-friendly materials for advanced applications (a review). Front. Chem. 11, 1327426 (2024). https://doi.org/10.3389/fchem.2023.1327426
- Y. Cao, C. Zhang, D.C.W. Tsang, J. Fan, J.H. Clark et al., Hydrothermal liquefaction of lignin to aromatic chemicals: impact of lignin structure. Ind. Eng. Chem. Res. 59(39), 16957–16969 (2020). https://doi.org/10.1021/acs.iecr.0c01617
- T.A. Shmool, P.J. Hooper, G.S. Kaminski Schierle, C.F. van der Walle, J.A. Zeitler, Terahertz spectroscopy: an investigation of the structural dynamics of freeze-dried poly lactic-co-glycolic acid microspheres. Pharmaceutics 11(6), 291 (2019). https://doi.org/10.3390/pharmaceutics11060291
- C. Xu, Z. Ren, J. Wei, C. Lee, Reconfigurable terahertz metamaterials: from fundamental principles to advanced 6G applications. iScience 25(2), 103799 (2022). https://doi.org/10.1016/j.isci.2022.103799
- J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain et al., Security and eavesdropping in terahertz wireless links. Nature 563(7729), 89–93 (2018). https://doi.org/10.1038/s41586-018-0609-x
- S. Yang, Z. Lin, X. Wang, J. Huang, R. Yang et al., Stretchable, transparent, and ultra-broadband terahertz shielding thin films based on wrinkled MXene architectures. Nano-Micro Lett. 16(1), 165 (2024). https://doi.org/10.1007/s40820-024-01365-w
- T. Zhao, P. Xie, H. Wan, T. Ding, M. Liu et al., Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band. Nat. Photonics 17(7), 622–628 (2023). https://doi.org/10.1038/s41566-023-01197-x
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- P.S. Pálvölgyi, D. Sebők, I. Szenti, E. Bozo, H. Ervasti et al., Lightweight porous silica foams with extreme-low dielectric permittivity and loss for future 6G wireless communication technologies. Nano Res. 14(5), 1450–1456 (2021). https://doi.org/10.1007/s12274-020-3201-2
- Y. Yang, J.-R. Tao, D. Yang, Q.-M. He, X.-D. Chen et al., Improving dispersion and delamination of graphite in biodegradable starch materials via constructing cation-π interaction: towards microwave shielding enhancement. J. Mater. Sci. Technol. 129, 196–205 (2022). https://doi.org/10.1016/j.jmst.2022.04.045
- F. Pan, L. Cai, Y. Dong, X. Zhu, Y. Shi et al., Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption. J. Mater. Sci. Technol. 101, 85–94 (2022). https://doi.org/10.1016/j.jmst.2021.05.066
- J. Wang, X. Wu, Y. Wang, W. Zhao, Y. Zhao et al., Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nano-Micro Lett. 15(1), 11 (2022). https://doi.org/10.1007/s40820-022-00982-7
- R. Haataja, S. Myllymäki, O. Laitinen, H. Jantunen, H. Liimatainen, Controlling the cell and surface architecture of cellulose nanofiber/PVA/Ti3C2TX MXene hybrid cryogels for optimized permittivity and EMI shielding performance. Mater. Des. 228, 111855 (2023). https://doi.org/10.1016/j.matdes.2023.111855
- Y.-X. Sun, Q. Zou, J. Zhao, X.-Z. Li, H. Jiang et al., Eco-friendly silver nanops/chitosan/poly(vinyl alcohol) composites exhibit remarkable EMI shielding capabilities and outstanding thermal conductivities. ACS Appl. Mater. Interfaces 15(29), 35631–35638 (2023). https://doi.org/10.1021/acsami.3c04813
- C. Liu, M. Han, J. Lin, W. Liu, J. Liu et al., Wood biomass-derived carbon for high-performance electromagnetic wave absorbing and shielding. Carbon 208, 255–276 (2023). https://doi.org/10.1016/j.carbon.2023.03.067
- P.A. Drózdz, N. Xenidis, J. Campion, S. Smirnov, A. Przewloka et al., Highly efficient absorption of THz radiation using waveguide-integrated carbon nanotube/cellulose aerogels. Appl. Mater. Today 29, 101684 (2022). https://doi.org/10.1016/j.apmt.2022.101684
- A. Naseer, M. Mumtaz, M. Raffi, I. Ahmad, S.D. Khan et al., Reinforcement of electromagnetic wave absorption characteristics in PVDF-PMMA nanocomposite by intercalation of carbon nanofibers. Electron. Mater. Lett. 15(2), 201–207 (2019). https://doi.org/10.1007/s13391-018-00104-9
- T. Bai, Y. Guo, D. Wang, H. Liu, G. Song et al., A resilient and lightweight bacterial cellulose-derived C/rGO aerogel-based electromagnetic wave absorber integrated with multiple functions. J. Mater. Chem. A 9(9), 5566–5577 (2021). https://doi.org/10.1039/D0TA11122H
- H.-D. Huang, C.-Y. Liu, D. Zhou, X. Jiang, G.-J. Zhong et al., Cellulose composite aerogel for highly efficient electromagnetic interference shielding. J. Mater. Chem. A 3(9), 4983–4991 (2015). https://doi.org/10.1039/c4ta05998k
- X. Chen, S. Guo, S. Tan, J. Ma, T. Xu et al., An environmentally friendly chitosan-derived VO2/carbon aerogel for radar infrared compatible stealth. Carbon 213, 118313 (2023). https://doi.org/10.1016/j.carbon.2023.118313
- N. Arooj, M. Mumtaz, A. Rehman, I. Ahmad, S. Khan et al., Optimizing electromagnetic interference shielding of carbon nanofibers reinforced nylon 6, 6 nanocomposite films in terahertz range. J. Appl. Polym. Sci. 140(18), e53790 (2023). https://doi.org/10.1002/app.53790
- Y. Cai, Y. Cheng, Z. Wang, G. Fei, M. Lavorgna et al., Facile and scalable preparation of ultralight cobalt@graphene aerogel microspheres with strong and wide bandwidth microwave absorption. Chem. Eng. J. 457, 141102 (2023). https://doi.org/10.1016/j.cej.2022.141102
- W. Wang, Z. Peng, Z. Ma, L. Zhang, X. Wang et al., High-efficiency electromagnetic interference shielding from highly aligned MXene porous composites via controlled directional freezing. ACS Appl. Mater. Interfaces 15(40), 47566–47576 (2023). https://doi.org/10.1021/acsami.3c10599
- J. Quan, X. Lan, G.J.H. Lim, Y. Hou, Y. Yang et al., Hierarchical SiC fiber aerogel toward microwave attenuation and thermal insulation application. J. Alloys Compd. 911, 165097 (2022). https://doi.org/10.1016/j.jallcom.2022.165097
- X. Li, R. Hu, Z. Xiong, D. Wang, Z. Zhang et al., Metal-organic gel leading to customized magnetic-coupling engineering in carbon aerogels for excellent radar stealth and thermal insulation performances. Nano-Micro Lett. 16(1), 42 (2023). https://doi.org/10.1007/s40820-023-01255-7
- R. Wu, W. Li, Y. Wan, Z. Ren, X. Xu et al., Anisotropic terahertz response of stretch-aligned composite films based on carbon nanotube–SiC hybrid structures. RSC Adv. 5(34), 26985–26990 (2015). https://doi.org/10.1039/C4RA14871A
- Q. Chang, C. Li, J. Sui, G.I.N. Waterhouse, Z.-M. Zhang et al., Ni/Ni3ZnC0.7 modified alginate-derived carbon composites with porous structures for electromagnetic wave absorption. Carbon 200, 166–177 (2022). https://doi.org/10.1016/j.carbon.2022.07.075
- Z. Lou, Q. Wang, U.I. Kara, R.S. Mamtani, X. Zhou et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 14(1), 11 (2021). https://doi.org/10.1007/s40820-021-00750-z
- N.R. Tanguy, M. Rana, A.A. Khan, X. Zhang, N. Tratnik et al., Natural lignocellulosic nanofibrils as tribonegative materials for self-powered wireless electronics. Nano Energy 98, 107337 (2022). https://doi.org/10.1016/j.nanoen.2022.107337
- M.Y. Cui, Z.D. Wu, Y. Lu, X.H. Wei, L.L. Dai, Near-field mimo communications for 6G: fundamentals, challenges, potentials, and future directions. IEEE Commun. Mag. 61, 40–46 (2023). https://doi.org/10.1109/mcom.004.2200136
- K. Myny, The development of flexible integrated circuits based on thin-film transistors. Nat. Electron. 1(1), 30–39 (2018). https://doi.org/10.1038/s41928-017-0008-6
- L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe et al., Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev. 3(2), 021303 (2016). https://doi.org/10.1063/1.4953034
- S. Wei, J. Jiang, L. Sun, J. Li, T.H. Tao et al., A hierarchically encoded data storage device with controlled transiency. Adv. Mater. 34(20), e2201035 (2022). https://doi.org/10.1002/adma.202201035
- X. Cai, Z. Zhou, T.H. Tao, Photoinduced tunable and reconfigurable electronic and photonic devices using a silk-based diffractive optics platform. Adv. Sci. 7(14), 2000475 (2020). https://doi.org/10.1002/advs.202000475
- Y. Tao, K. He, E. Zhang, J. Tan, H. Hao et al., Cellulose-derived wearable carbon nanoflake sensors customized by semiconductor laser photochemistry. Adv. Sens. Res. 2(3), 2200020 (2023). https://doi.org/10.1002/adsr.202200020
- V.V. Gerasimov, A.K. Nikitin, A.G. Lemzyakov, I.A. Azarov, Evaluation of the efficiency of generation of terahertz surface plasmon polaritons by the end-fire coupling technique. Photonics 10(8), 917 (2023). https://doi.org/10.3390/photonics10080917
- H. Wang, L. Xie, A. Albo, Y. Ying, W. Xu, Selective detection enabled by terahertz spectroscopy and plasmonics: principles and implementations. Trac Trends Anal. Chem. 180, 117917 (2024). https://doi.org/10.1016/j.trac.2024.117917
- X.H. Yin, J.T. Li, H.C. Chen, Y.N. Luo, Terahertz absorption peaks formation mechanism of imidazole and pyrazole. Laser Optoelectron. Prog. 60, 0930005 (2023). https://doi.org/10.3788/lop221275
- Y. Zhao, B. Miao, M.A. Nawaz, Q. Zhu, Q. Chen et al., Construction of cellulose nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers with gradient structure for efficient electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 7(2), 34 (2024). https://doi.org/10.1007/s42114-024-00839-0
- V. Montes-García, P. Samorì, Humidity sensing with supramolecular nanostructures. Adv. Mater. 36(12), e2208766 (2024). https://doi.org/10.1002/adma.202208766
- S. Ummartyotin, H. Manuspiya, A critical review on cellulose: from fundamental to an approach on sensor technology. Renew. Sustain. Energy Rev. 41, 402–412 (2015). https://doi.org/10.1016/j.rser.2014.08.050
- W. Zhang, X. Chen, J. Zhao, X. Wang, X. Li et al., Cellulose template-based triboelectric nanogenerators for self-powered sensing at high humidity. Nano Energy 108, 108196 (2023). https://doi.org/10.1016/j.nanoen.2023.108196
- X.R. Jin, T.T. Lang, A terahertz metamaterial humidity sensor based on silk fibroin. Acta Opt Sin. 43, aos230714 (2023). https://doi.org/10.3788/aos230714
- Y.Y. Diao, X.Y. Liu, G.W. Toh, L. Shi, J. Zi, Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing. Adv. Funct. Mater. 23(43), 5373–5380 (2013). https://doi.org/10.1002/adfm.201203672
- H.S. Kim, S.H. Cha, B. Roy, S. Kim, Y.H. Ahn, Humidity sensing using THz metamaterial with silk protein fibroin. Opt. Express 26(26), 33575–33581 (2018). https://doi.org/10.1364/OE.26.033575
- B. You, C.-F. Huang, J.-Y. Lu, Terahertz humidity sensing based on surface-modified polymer mesh membranes with photografting PEGMA brush. Polymers 15(15), 3302 (2023). https://doi.org/10.3390/polym15153302
- C. Lei, Y. Guo, W. Guan, H. Lu, W. Shi et al., Polyzwitterionic hydrogels for efficient atmospheric water harvesting. Angew. Chem. Int. Ed. 61(13), e202200271 (2022). https://doi.org/10.1002/anie.202200271
- S.K. Chatterjee, S.N. Khan, Designing tunable narrowband parametric source in Chalcogenide-based dynamic fiber geometry. J. Opt. 23(1), 015503 (2021). https://doi.org/10.1088/2040-8986/abccfd
- P. Zhu, Y. Kuang, Y. Wei, F. Li, H. Ou et al., Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability. Chem. Eng. J. 404, 127105 (2021). https://doi.org/10.1016/j.cej.2020.127105
- G. AyissiEyebe, B. Bideau, N. Boubekeur, É. Loranger, F. Domingue, Environmentally-friendly cellulose nanofibre sheets for humidity sensing in microwave frequencies. Sens. Actuators B Chem. 245, 484–492 (2017). https://doi.org/10.1016/j.snb.2017.01.130
- I.M. Garnica-Palafox, A.M. Velázquez-Benítez, F. Sánchez-Arevalo, N. Qureshi, Terahertz detection of acid blue 113 dye using hybrid hydrogels. J. Infrared Millim. Terahertz Waves 45, 300–321 (2024). https://doi.org/10.1007/s10762-024-00968-z
- M.S. Abdelwahab, N.M. El Halfawy, M.Y. El-Naggar, Lead adsorption and antibacterial activity using modified magnetic biochar/sodium alginate nanocomposite. Int. J. Biol. Macromol. 206, 730–739 (2022). https://doi.org/10.1016/j.ijbiomac.2022.03.053
- X.-H. Li, X. Li, K.-N. Liao, P. Min, T. Liu et al., Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 8(48), 33230–33239 (2016). https://doi.org/10.1021/acsami.6b12295
- A.V. Andrianov, A.N. Aleshin, Terahertz absorption in composite films based on organometallic perovskite and mixed cellulose ester. Tech. Phys. Lett. 46(5), 510–513 (2020). https://doi.org/10.1134/s1063785020050181
- C.C. Huang, Y.G. Zhang, L.J. Liang, H.Y. Yao, W.J. Liu, F. Qiu, Ultrasensitive terahertz biosensor based on graphene regulation near its dirac point and electromagnetically induced transparency. Laser Optoelectron. Prog. 60, 1517001 (2023). https://doi.org/10.3788/lop221769
- H. Tao, L.R. Chieffo, M.A. Brenckle, S.M. Siebert, M. Liu et al., Metamaterials on paper as a sensing platform. Adv. Mater. 23(28), 3197–3201 (2011). https://doi.org/10.1002/adma.201100163
- Z. Zeng, E. Mavrona, D. Sacré, N. Kummer, J. Cao et al., Terahertz birefringent biomimetic aerogels based on cellulose nanofibers and conductive nanomaterials. ACS Nano 15(4), 7451–7462 (2021). https://doi.org/10.1021/acsnano.1c00856
- N. Horiuchi, Terahertz surprises. Nat. Photonics 12(3), 128–130 (2018). https://doi.org/10.1038/s41566-018-0115-6
- E.-S. Yu, S.-H. Lee, G. Lee, Q.-H. Park, A.J. Chung et al., Nanoscale terahertz monitoring on multiphase dynamic assembly of nanops under aqueous environment. Adv. Sci. 8(11), e2004826 (2021). https://doi.org/10.1002/advs.202004826
- Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong et al., Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon 115, 629–639 (2017). https://doi.org/10.1016/j.carbon.2017.01.054
- T. Zhang, S. Zeng, H. Jiang, Z. Li, D. Bai et al., Leather solid waste/poly(vinyl alcohol)/polyaniline aerogel with mechanical robustness, flame retardancy, and enhanced electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13(9), 11332–11343 (2021). https://doi.org/10.1021/acsami.1c00880
- P. Alonso-González, A.Y. Nikitin, Y. Gao, A. Woessner, M.B. Lundeberg et al., Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12(1), 31–35 (2017). https://doi.org/10.1038/nnano.2016.185
- P.H. Malinowski, W.M. Ostachowicz, F. Touchard, M. Boustie, L. Chocinski-Arnault et al., Study of plant fibre composites with damage induced by laser and mechanical impacts. Compos. Part B Eng. 152, 209–219 (2018). https://doi.org/10.1016/j.compositesb.2018.07.004
- R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang et al., Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures. Biosens. Bioelectron. 188, 113336 (2021). https://doi.org/10.1016/j.bios.2021.113336
- R. Wang, W. Xu, D. Chen, R. Zhou, Q. Wang et al., Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials. ACS Appl. Mater. Interfaces 12(36), 40629–40634 (2020). https://doi.org/10.1021/acsami.0c06503
- S.A. Yoon, S.H. Cha, S.W. Jun, S.J. Park, J.-Y. Park et al., Identifying different types of microorganisms with terahertz spectroscopy. Biomed. Opt. Express 11(1), 406–416 (2019). https://doi.org/10.1364/BOE.376584
- S. Bakels, M.-P. Gaigeot, A.M. Rijs, Gas-phase infrared spectroscopy of neutral peptides: insights from the far-IR and THz domain. Chem. Rev. 120(7), 3233–3260 (2020). https://doi.org/10.1021/acs.chemrev.9b00547
- J. Wang, K. Morita, M. Ando, S. Yoshida, H. Nagata et al., Terahertz aptasensor for dopamine neurochemical detection. Appl. Phys. Express 16(5), 052002 (2023). https://doi.org/10.35848/1882-0786/acd102
- E.M. Hassan, A. Mohamed, M.C. DeRosa, W.G. Willmore, Y. Hanaoka et al., High-sensitivity detection of metastatic breast cancer cells via terahertz chemical microscopy using aptamers. Sens. Actuators B Chem. 287, 595–601 (2019). https://doi.org/10.1016/j.snb.2019.02.019
- A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali et al., Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors. ACS Sens. 2(9), 1359–1368 (2017). https://doi.org/10.1021/acssensors.7b00478
- H. Xiong, H. Sun, J. Zhou, H. Li, H. Zhang et al., Terahertz anisotropy in Fascia and lean meat tissues. Biomed. Opt. Express 13(5), 2605–2615 (2022). https://doi.org/10.1364/BOE.454338
- H.-T. Chen, A.J. Taylor, N. Yu, A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79(7), 076401 (2016). https://doi.org/10.1088/0034-4885/79/7/076401
- J. Zhou, X. Zhao, G. Huang, X. Yang, Y. Zhang et al., Molecule-specific terahertz biosensors based on an aptamer hydrogel-functionalized metamaterial for sensitive assays in aqueous environments. ACS Sens. 6(5), 1884–1890 (2021). https://doi.org/10.1021/acssensors.1c00174
- S. Fan, B. Ung, E.P.J. Parrott, E. Pickwell-MacPherson, Gelatin embedding: a novel way to preserve biological samples for terahertz imaging and spectroscopy. Phys. Med. Biol. 60(7), 2703–2713 (2015). https://doi.org/10.1088/0031-9155/60/7/2703
- T. Kiwa, A. Tenma, S. Takahashi, K. Sakai, K. Tsukada, Label free immune assay using terahertz chemical microscope. Sens. Actuators B Chem. 187, 8–11 (2013). https://doi.org/10.1016/j.snb.2012.08.051
- R.D. Wang, L. Xu, L.J. Huang, X.B. Zhang, H. Ruan et al., Ultrasensitive terahertz biodetection enabled by quasi-BIC-based metasensors. Small 19, 2301165 (2023). https://doi.org/10.1002/smll.202301165
- M. Zhang, Z. Yang, M. Tang, D. Wang, H. Wang et al., Terahertz spectroscopic signatures of microcystin aptamer solution probed with a microfluidic chip. Sensors 19(3), 534 (2019). https://doi.org/10.3390/s19030534
- S. Lin, X. Xu, F. Hu, Z. Chen, Y. Wang et al., Using antibody modified terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen. IEEE J. Sel. Top. Quantum Electron. 27(4), 6900207 (2021). https://doi.org/10.1109/JSTQE.2020.3038308
- C. Luo, T.T. CaiWei, Z. Fan, L. Chen, R. Singh et al., Terahertz Lattice enhanced Quasi-Anapole Immunosensor assisted by protein antibody and AuNPs. Sens. Actuators B Chem. 410, 135628 (2024). https://doi.org/10.1016/j.snb.2024.135628
- K. Liu, R. Zhang, Y. Liu, X. Chen, K. Li et al., Gold nanop enhanced detection of EGFR with a terahertz metamaterial biosensor. Biomed. Opt. Express 12(3), 1559–1567 (2021). https://doi.org/10.1364/BOE.418859
- W. Yu, J. Li, G. Huang, Z. He, H. Tian et al., Rapid and sensitive detection of Staphylococcus aureus using a THz metamaterial biosensor based on aptamer-functionalized Fe3O4@Au nanocomposites. Talanta 272, 125760 (2024). https://doi.org/10.1016/j.talanta.2024.125760
- H. Tao, J.J. Amsden, A.C. Strikwerda, K. Fan, D.L. Kaplan et al., Metamaterial silk composites at terahertz frequencies. Adv. Mater. 22(32), 3527–3531 (2010). https://doi.org/10.1002/adma.201000412
- L. Sun, Z. Zhou, J. Zhong, Z. Shi, Y. Mao et al., Implantable, degradable, therapeutic terahertz metamaterial devices. Small 16(17), e2000294 (2020). https://doi.org/10.1002/smll.202000294
- R. Dong, J. AxelZeitler, Visualising liquid transport through coated pharmaceutical tablets using Terahertz pulsed imaging. Int. J. Pharm. 619, 121703 (2022). https://doi.org/10.1016/j.ijpharm.2022.121703
- M. Ma, D. Powell, M. Nassar, J. Teckoe, D. Markl et al., Impact of immediate release film coating on the disintegration process of tablets. J. Control. Release 373, 533–546 (2024). https://doi.org/10.1016/j.jconrel.2024.07.037
- H. Guerboukha, G. Yan, O. Skorobogata, M. Skorobogatiy, Silk foam terahertz waveguides. Adv. Opt. Mater. 2(12), 1181–1192 (2014). https://doi.org/10.1002/adom.201400228
- A.V. Andrianov, A.N. Aleshin, A.K. Khripunov, V.N. Trukhin, Terahertz properties of bacterial cellulose films and its composite with conducting polymer PEDOT/PSS. Synth. Met. 205, 201–205 (2015). https://doi.org/10.1016/j.synthmet.2015.04.016
- J.Y. Huang, D.W. Li, M. Zhao, H.Z. Ke, A. Mensah et al., Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors. Chem. Eng. J. 373, 1357–1366 (2019). https://doi.org/10.1016/j.cej.2019.05.136
- L.A. Sterczewski, J. Westberg, Y. Yang, D. Burghoff, J. Reno et al., Terahertz hyperspectral imaging with dual chip-scale combs. Optica 6(6), 766 (2019). https://doi.org/10.1364/optica.6.000766
- A. Ahmadivand, B. Gerislioglu, Z. Ramezani, A. Kaushik, P. Manickam et al., Functionalized terahertz plasmonic metasensors: femtomolar-level detection of SARS-CoV-2 spike proteins. Biosens. Bioelectron. 177, 112971 (2021). https://doi.org/10.1016/j.bios.2021.112971
- X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu et al., Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 34(10), 810–824 (2016). https://doi.org/10.1016/j.tibtech.2016.04.008
- W.J. Choi, K. Yano, M. Cha, F.M. Colombari, J.-Y. Kim et al., Chiral phonons in microcrystals and nanofibrils of biomolecules. Nat. Photon. 16(5), 366–373 (2022). https://doi.org/10.1038/s41566-022-00969-1
- W. Shi, F. Fan, S. Li, L. Ma, Y.-M. Wang et al., Enhanced terahertz specific sensing for Alzheimer’s marker by metasurface-analyte union modification on microfluidic sensor. IEEE Sens. J. 24(6), 7690–7699 (2024). https://doi.org/10.1109/JSEN.2024.3358959
- Z. Su, S. Xu, L. Xie, Terahertz metamaterial immunosensor based on nano Au film structure for detecting trace of chloramphenicol in milk. J. Food Meas. Charact. 18(6), 4108–4119 (2024). https://doi.org/10.1007/s11694-024-02479-w
- Z. Zhang, R. Zhao, M. Cong, J. Qiu, Developments of terahertz metasurface biosensors: a literature review. Nanotechnol. Rev. 13(1), 20230182 (2024). https://doi.org/10.1515/ntrev-2023-0182
- M.A. Ali, C. Hu, B. Yuan, S. Jahan, M.S. Saleh et al., Breaking the barrier to biomolecule limit-of-detection via 3D printed multi-length-scale graphene-coated electrodes. Nat. Commun. 12(1), 7077 (2021). https://doi.org/10.1038/s41467-021-27361-x
- H. Tao, A.C. Strikwerda, M. Liu, J.P. Mondia, E. Ekmekci et al., Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications. Appl. Phys. Lett. 97(26), 261909 (2010). https://doi.org/10.1063/1.3533367
- Y. Roh, T. Kim, G. Lee, M. Seo, E.-S. Yu, Advances in terahertz biosensors toward photon-molecule interplay. Trac Trends Anal. Chem. 175, 117715 (2024). https://doi.org/10.1016/j.trac.2024.117715
- R. Degl’Innocenti, H.Y. Lin, M. Navarro-Cía, Recent progress in terahertz metamaterial modulators. Nanophotonics 11, 1485–1514 (2022). https://doi.org/10.1515/nanoph-2021-0803
- C.-L. Luo, M.-L. Huang, C. Sun, K.-Y. Zhao, H. Guo et al., Anisotropic electromagnetic wave shielding performance in Janus cellulose nanofiber composite films. Mater. Today Phys. 44, 101440 (2024). https://doi.org/10.1016/j.mtphys.2024.101440
- Y. Dong, W. An, Z. Wang, D. Zhang, An artificial intelligence-assisted flexible and wearable mechanoluminescent strain sensor system. Nano-Micro Lett. 17(1), 62 (2024). https://doi.org/10.1007/s40820-024-01572-5
- H. Xia, L. Wang, H. Zhang, Z. Wang, L. Zhu et al., MXene/PPy@PDMS sponge-based flexible pressure sensor for human posture recognition with the assistance of a convolutional neural network in deep learning. Microsyst. Nanoeng. 9, 155 (2023). https://doi.org/10.1038/s41378-023-00605-0
- C. Yang, D. Zhang, W. Wang, H. Zhang, L. Zhou, Multi-functional MXene/helical multi-walled carbon nanotubes flexible sensor for tire pressure detection and speech recognition enabled by machine learning. Chem. Eng. J. 505, 159157 (2025). https://doi.org/10.1016/j.cej.2024.159157
- H. Zhang, D. Zhang, R. Mao, L. Zhou, C. Yang et al., MoS2-based charge trapping layer enabled triboelectric nanogenerator with assistance of CNN-GRU model for intelligent perception. Nano Energy 127, 109753 (2024). https://doi.org/10.1016/j.nanoen.2024.109753
- L. Yang, H. Liu, S. Ding, J. Wu, Y. Zhang et al., Superabsorbent fibers for comfortable disposable medical protective clothing. Adv. Fiber Mater. 2(3), 140–149 (2020). https://doi.org/10.1007/s42765-020-00044-w
References
H. Wang, F. Zheng, Y. Xu, M.G. Mauk, X. Qiu et al., Recent progress in terahertz biosensors based on artificial electromagnetic subwavelength structure. Trac Trends Anal. Chem. 158, 116888 (2023). https://doi.org/10.1016/j.trac.2022.116888
L. Du, M.R. Molas, Z. Huang, G. Zhang, F. Wang et al., Moiré photonics and optoelectronics. Science 379(6639), eadg0014 (2023). https://doi.org/10.1126/science.adg0014
P. Bawuah, J.A. Zeitler, Advances in terahertz time-domain spectroscopy of pharmaceutical solids: a review. Trac Trends Anal. Chem. 139, 116272 (2021). https://doi.org/10.1016/j.trac.2021.116272
A.H. Barajas-Aguilar, J. Zion, I. Sequeira, A.Z. Barabas, T. Taniguchi et al., Electrically driven amplification of terahertz acoustic waves in graphene. Nat. Commun. 15(1), 2550 (2024). https://doi.org/10.1038/s41467-024-46819-2
X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu et al., Terahertz surface plasmonic waves: a review. Adv. Photon. 2(1), 1 (2020). https://doi.org/10.1117/1.ap.2.1.014001
C. McDonnell, J. Deng, S. Sideris, T. Ellenbogen, G. Li, Functional THz emitters based on Pancharatnam–Berry phase nonlinear metasurfaces. Nat. Commun. 12(1), 30 (2021). https://doi.org/10.1038/s41467-020-20283-0
H. Ge, Z. Sun, Y. Jiang, X. Wu, Z. Jia et al., Recent advances in THz detection of water. Int. J. Mol. Sci. 24(13), 10936 (2023). https://doi.org/10.3390/ijms241310936
Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber et al., Terahertz topological photonics for on-chip communication. Nat. Photonics 14(7), 446–451 (2020). https://doi.org/10.1038/s41566-020-0618-9
Z. Zhang, F.Y. Gao, J.B. Curtis, Z.-J. Liu, Y.-C. Chien et al., Terahertz field-induced nonlinear coupling of two magnon modes in an antiferromagnet. Nat. Phys. 20(5), 801–806 (2024). https://doi.org/10.1038/s41567-024-02386-3
D. Zhang, Y. Zeng, Y. Bai, Z. Li, Y. Tian et al., Coherent surface plasmon polariton amplification via free-electron pumping. Nature 611(7934), 55–60 (2022). https://doi.org/10.1038/s41586-022-05239-2
T. Dong, S.-J. Zhang, N.-L. Wang, Recent development of ultrafast optical characterizations for quantum materials. Adv. Mater. 35(27), e2110068 (2023). https://doi.org/10.1002/adma.202110068
X. Lu, F. Zhang, L. Zhu, S. Peng, J. Yan et al., A terahertz meta-sensor array for 2D strain mapping. Nat. Commun. 15(1), 3157 (2024). https://doi.org/10.1038/s41467-024-47474-3
F. Qaderi, T. Rosca, M. Burla, J. Leuthold, D. Flandre et al., Millimeter-wave to near-terahertz sensors based on reversible insulator-to-metal transition in VO2. Commun. Mater. 4, 34 (2023). https://doi.org/10.1038/s43246-023-00350-x
J.M. Jornet, E.W. Knightly, D.M. Mittleman, Wireless communications sensing and security above 100 GHz. Nat. Commun. 14(1), 841 (2023). https://doi.org/10.1038/s41467-023-36621-x
X. Li, J. Li, Y. Li, A. Ozcan, M. Jarrahi, High-throughput terahertz imaging: progress and challenges. Light Sci. Appl. 12(1), 233 (2023). https://doi.org/10.1038/s41377-023-01278-0
J. Yin, K. Wu, Y. Yu, Y. Zhong, Z. Song et al., Terahertz photons inhibit cancer cells long term by suppressing nano telomerase activity. ACS Nano 18(6), 4796–4810 (2024). https://doi.org/10.1021/acsnano.3c09216
S. Shen, X. Liu, Y. Shen, J. Qu, E. Pickwell-MacPherson et al., Recent advances in the development of materials for terahertz metamaterial sensing. Adv. Opt. Mater. 10(1), 2101008 (2022). https://doi.org/10.1002/adom.202101008
P. Nie, D. Zhu, Z. Cui, F. Qu, L. Lin et al., Sensitive detection of chlorpyrifos pesticide using an all-dielectric broadband terahertz metamaterial absorber. Sens. Actuators B Chem. 307, 127642 (2020). https://doi.org/10.1016/j.snb.2019.127642
Y. Wang, Z. Cui, X. Zhang, X. Zhang, Y. Zhu et al., Excitation of surface plasmon resonance on multiwalled carbon nanotube metasurfaces for pesticide sensors. ACS Appl. Mater. Interfaces 12(46), 52082–52088 (2020). https://doi.org/10.1021/acsami.0c10943
L. Afsah-Hejri, E. Akbari, A. Toudeshki, T. Homayouni, A. Alizadeh et al., Terahertz spectroscopy and imaging: a review on agricultural applications. Comput. Electron. Agric. 177, 105628 (2020). https://doi.org/10.1016/j.compag.2020.105628
F. Jiang, T. Li, Y.J. Li, Y. Zhang, A. Gong et al., Wood-based nanotechnologies toward sustainability. Adv. Mater. 30, 1703453 (2018). https://doi.org/10.1002/adma.201703453
G. Hayes, M. Laurel, D. MacKinnon, T. Zhao, H.A. Houck et al., Polymers without petrochemicals: sustainable routes to conventional monomers. Chem. Rev. 123(5), 2609–2734 (2023). https://doi.org/10.1021/acs.chemrev.2c00354
A. Balčytis, M. Ryu, X. Wang, F. Novelli, G. Seniutinas et al., Silk: optical properties over 12.6 octaves THz-IR-visible-UV range. Materials 10(4), 356 (2017). https://doi.org/10.3390/ma10040356
N.M. Santhosh, U. Puc, M. Jazbinšek, A. Oberlintner, V. Shvalya et al., Exploring effects of plasma surface engineering on cellulose nanofilms via broadband THz spectroscopy. Appl. Surf. Sci. 682, 161698 (2025). https://doi.org/10.1016/j.apsusc.2024.161698
A. Elfwing, C.S. Ponseca Jr., L. Ouyang, A. Urbanowicz, A. Krotkus et al., Conducting helical structures from celery decorated with a metallic conjugated polymer give resonances in the terahertz range. Adv. Funct. Mater. 28(24), 1706595 (2018). https://doi.org/10.1002/adfm.201706595
L. Gai, H. Zhao, F. Wang, P. Wang, Y. Liu et al., Advances in core: shell engineering of carbon-based composites for electromagnetic wave absorption. Nano Res. 15(10), 9410–9439 (2022). https://doi.org/10.1007/s12274-022-4695-6
H. Tu, M. Zhu, B. Duan, L. Zhang, Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 33(28), e2000682 (2021). https://doi.org/10.1002/adma.202000682
A. Irastorza, I. Zarandona, M. Andonegi, P. Guerrero, K. de la Caba, The versatility of collagen and chitosan: from food to biomedical applications. Food Hydrocoll. 116, 106633 (2021). https://doi.org/10.1016/j.foodhyd.2021.106633
C. Wang, K. Xia, Y. Zhang, D.L. Kaplan, Silk-based advanced materials for soft electronics. Acc. Chem. Res. 52(10), 2916–2927 (2019). https://doi.org/10.1021/acs.accounts.9b00333
B. Yao, T. Xiao, O.A. Makgae, X. Jie, S. Gonzalez-Cortes et al., Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst. Nat. Commun. 11(1), 6395 (2020). https://doi.org/10.1038/s41467-020-20214-z
D. Panáček, L. Zdražil, M. Langer, V. Šedajová, Z. Baďura et al., Graphene nanobeacons with high-affinity pockets for combined, selective, and effective decontamination and reagentless detection of heavy metals. Small 18(33), e2201003 (2022). https://doi.org/10.1002/smll.202201003
T. Raj, K. Chandrasekhar, A. Naresh Kumar, S.-H. Kim, Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: a sustainable approach. Renew. Sustain. Energy Rev. 158, 112130 (2022). https://doi.org/10.1016/j.rser.2022.112130
B. Ates, S. Koytepe, A. Ulu, C. Gurses, V.K. Thakur, Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem. Rev. 120(17), 9304–9362 (2020). https://doi.org/10.1021/acs.chemrev.9b00553
A.R. Pai, Y. Lu, S. Joseph, N.M. Santhosh, R. Degl’Innocenti et al., Ultra-broadband shielding of cellulose nanofiber commingled biocarbon functional constructs: a paradigm shift towards sustainable terahertz absorbers. Chem. Eng. J. 467, 143213 (2023). https://doi.org/10.1016/j.cej.2023.143213
Q. Zeng, W. Liu, S. Lin, Z. Chen, L. Zeng et al., Aptamer HB5 modified terahertz metasurface biosensor used for specific detection of HER2. Sens. Actuators B Chem. 355, 131337 (2022). https://doi.org/10.1016/j.snb.2021.131337
Y. Guo, D. Wang, Y. Tian, J. Wang, T. Bai et al., FeCo alloy nanop decorated cellulose based carbon aerogel as a low-cost and efficient electromagnetic microwave absorber. J. Mater. Chem. C 10(1), 126–134 (2022). https://doi.org/10.1039/D1TC04494J
C. Kuang, S. Chen, M. Luo, Q. Zhang, X. Sun et al., Switchable broadband terahertz absorbers based on conducting polymer-cellulose aerogels. Adv. Sci. 11(3), e2305898 (2024). https://doi.org/10.1002/advs.202305898
E. Kontturi, P. Laaksonen, M.B. Linder, Nonappa, A.H. Gröschel et al., Advanced materials through assembly of nanocelluloses. Adv. Mater. 30(24), e1703779 (2018). https://doi.org/10.1002/adma.201703779
Z. Hui, L. Zhang, G. Ren, G. Sun, H.D. Yu et al., Green flexible electronics: natural materials, fabrication, and applications. Adv. Mater. 35(28), 2211202 (2023). https://doi.org/10.1002/adma.202211202
F. Basarir, Y.A. Haj, F. Zou, S. De, A. Nguyen et al., Edible and biodegradable wearable capacitive pressure sensors: a paradigm shift toward sustainable electronics with bio-based materials. Adv. Funct. Mater. 34(39), 2403268 (2024). https://doi.org/10.1002/adfm.202403268
G. de Marzo, V.M. Mastronardi, M.T. Todaro, L. Blasi, V. Antonaci et al., Sustainable electronic biomaterials for body-compliant devices: challenges and perspectives for wearable bio-mechanical sensors and body energy harvesters. Nano Energy 123, 109336 (2024). https://doi.org/10.1016/j.nanoen.2024.109336
P.S. Pálvölgyi, M. Nelo, O. Pitkänen, J. Peräntie, H. Liimatainen et al., Ultra-low permittivity porous silica-cellulose nanocomposite substrates for 6G telecommunication. Nanotechnology 31(43), 435203 (2020). https://doi.org/10.1088/1361-6528/aba4cc
S. Basu, O. Omadjela, D. Gaddes, S. Tadigadapa, J. Zimmer et al., Cellulose microfibril formation by surface-tethered cellulose synthase enzymes. ACS Nano 10(2), 1896–1907 (2016). https://doi.org/10.1021/acsnano.5b05648
Z. Li, C. Chen, R. Mi, W. Gan, J. Dai et al., A strong, tough, and scalable structural material from fast-growing bamboo. Adv. Mater. 32(10), e1906308 (2020). https://doi.org/10.1002/adma.201906308
X. Dong, W. Gan, Y. Shang, J. Tang, Y. Wang et al., Low-value wood for sustainable high-performance structural materials. Nat. Sustain. 5(7), 628–635 (2022). https://doi.org/10.1038/s41893-022-00887-8
H. Pan, G. Chen, Y. Chen, A. Di Carlo, M.A. Mayer et al., Biodegradable cotton fiber-based piezoresistive textiles for wearable biomonitoring. Biosens. Bioelectron. 222, 114999 (2023). https://doi.org/10.1016/j.bios.2022.114999
W. Xia, A. Anwar, L. Wang, Z. Cao, B. Li et al., Microwave-assisted solid-state pretreatment for fabrication of hemp fibres using ethanolamine at low temperature. Carbohydr. Polym. 332, 121906 (2024). https://doi.org/10.1016/j.carbpol.2024.121906
T.S. Lankiewicz, H. Choudhary, Y. Gao, B. Amer, S.P. Lillington et al., Lignin deconstruction by anaerobic fungi. Nat. Microbiol. 8(4), 596–610 (2023). https://doi.org/10.1038/s41564-023-01336-8
D. Sawada, Y. Nishiyama, R. Shah, V. Trevor Forsyth, E. Mossou et al., Untangling the threads of cellulose mercerization. Nat. Commun. 13(1), 6189 (2022). https://doi.org/10.1038/s41467-022-33812-w
Z. Quan, Q. Zhang, H. Li, S. Sun, Y. Xu, Fluorescent cellulose-based materials for information encryption and anti-counterfeiting. Coord. Chem. Rev. 493, 215287 (2023). https://doi.org/10.1016/j.ccr.2023.215287
A. Etale, A.J. Onyianta, S.R. Turner, S.J. Eichhorn, Cellulose: a review of water interactions, applications in composites, and water treatment. Chem. Rev. 123(5), 2016–2048 (2023). https://doi.org/10.1021/acs.chemrev.2c00477
G. Du, J. Wang, Y. Liu, J. Yuan, T. Liu et al., Fabrication of advanced cellulosic triboelectric materials via dielectric modulation. Adv. Sci. 10(15), e2206243 (2023). https://doi.org/10.1002/advs.202206243
J. Li, M. Shen, W. Xiao, Y. Li, W. Pan et al., Regulating the physicochemical and structural properties of different starches by complexation with tea polyphenols. Food Hydrocoll. 142, 108836 (2023). https://doi.org/10.1016/j.foodhyd.2023.108836
L. Rong, X. Chen, M. Shen, J. Yang, X. Qi et al., The application of 3D printing technology on starch-based product: a review. Trends Food Sci. Technol. 134, 149–161 (2023). https://doi.org/10.1016/j.tifs.2023.02.015
S. Nakajima, K. Shiraga, T. Suzuki, N. Kondo, Y. Ogawa, Quantification of starch content in germinating mung bean seedlings by terahertz spectroscopy. Food Chem. 294, 203–208 (2019). https://doi.org/10.1016/j.foodchem.2019.05.065
Z. Wang, P. Mhaske, A. Farahnaky, S. Kasapis, M. Majzoobi, Cassava starch: chemical modification and its impact on functional properties and digestibility, a review. Food Hydrocoll. 129, 107542 (2022). https://doi.org/10.1016/j.foodhyd.2022.107542
J. Hao, S. Yan, H. Yuan, C. Du, Y. Tan, High-strength alginate fibers wet-spun from pre-crosslinked sodium alginate solutions. Carbohydr. Polym. 342, 122386 (2024). https://doi.org/10.1016/j.carbpol.2024.122386
H. Bojorges, A. López-Rubio, A. Martínez-Abad, M.J. Fabra, Overview of alginate extraction processes: impact on alginate molecular structure and techno-functional properties. Trends Food Sci. Technol. 140, 104142 (2023). https://doi.org/10.1016/j.tifs.2023.104142
C. Hu, W. Lu, A. Mata, K. Nishinari, Y. Fang, Ions-induced gelation of alginate: mechanisms and applications. Int. J. Biol. Macromol. 177, 578–588 (2021). https://doi.org/10.1016/j.ijbiomac.2021.02.086
H. Zhang, J. Cheng, Q. Ao, Preparation of alginate-based biomaterials and their applications in biomedicine. Mar. Drugs 19(5), 264 (2021). https://doi.org/10.3390/md19050264
P. Pękala, M. Szymańska-Chargot, A. Zdunek, Interactions between non-cellulosic plant cell wall polysaccharides and cellulose emerging from adsorption studies. Cellulose 30(15), 9221–9239 (2023). https://doi.org/10.1007/s10570-023-05442-y
C. Li, A. Wu, R.G. Gilbert, Critical examination of the characterization techniques, and the evidence, for the existence of extra-long amylopectin chains. Compr. Rev. Food Sci. Food Saf. 22(5), 4053–4073 (2023). https://doi.org/10.1111/1541-4337.13212
M. Xie, L. Lian, X. Mu, Z. Luo, C.E. Garciamendez-Mijares et al., Volumetric additive manufacturing of pristine silk-based (bio)inks. Nat. Commun. 14(1), 210 (2023). https://doi.org/10.1038/s41467-023-35807-7
A. Khalid, D. Bai, A.N. Abraham, A. Jadhav, D. Linklater et al., Electrospun nanodiamond-silk fibroin membranes: a multifunctional platform for biosensing and wound-healing applications. ACS Appl. Mater. Interfaces 12(43), 48408–48419 (2020). https://doi.org/10.1021/acsami.0c15612
Z. Hao, D. Long, Y. Zhang, D. Umuhoza, J. Dai et al., New insight into the mechanism of in vivo fibroin self-assembly and secretion in the silkworm, Bombyx mori. Int. J. Biol. Macromol. 169, 473–479 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.132
E.S.X. Moh, N.H. Packer, Enzymatic azido-GalNAc-functionalized silk fibroin for click chemistry conjugation. Biomacromol 22(4), 1752–1755 (2021). https://doi.org/10.1021/acs.biomac.0c01791
J.K. Sahoo, O. Hasturk, T. Falcucci, D.L. Kaplan, Silk chemistry and biomedical material designs. Nat. Rev. Chem. 7(5), 302–318 (2023). https://doi.org/10.1038/s41570-023-00486-x
T. Inoue, T. Kurosaki, Memory B cells. Nat. Rev. Immunol. 24(1), 5–17 (2024). https://doi.org/10.1038/s41577-023-00897-3
R. Liu, F. Zhang, Y. Sang, I. Katouzian, S.M. Jafari et al., Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends Food Sci. Technol. 123, 355–375 (2022). https://doi.org/10.1016/j.tifs.2022.03.025
O. Tietz, F. Cortezon-Tamarit, R. Chalk, S. Able, K.A. Vallis, Tricyclic cell-penetrating peptides for efficient delivery of functional antibodies into cancer cells. Nat. Chem. 14, 284–293 (2022). https://doi.org/10.1038/s41557-021-00866-0
S. Qi, N. Duan, I.M. Khan, X. Dong, Y. Zhang et al., Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol. Adv. 55, 107902 (2022). https://doi.org/10.1016/j.biotechadv.2021.107902
Z. Zhang, H. Karimi-Maleh, Label-free electrochemical aptasensor based on gold nanops/titanium carbide MXene for lead detection with its reduction peak as index signal. Adv. Compos. Hybrid Mater. 6(2), 68 (2023). https://doi.org/10.1007/s42114-023-00652-1
P.S. Achanta, J. Brent Friesen, G. Harris, G.K. Webster, S.-N. Chen et al., Development of centrifugal partition chromatography for the purification of antibody-drug conjugates. Anal. Chem. 95(5), 2783–2788 (2023). https://doi.org/10.1021/acs.analchem.2c03919
B. Song, X. Fan, J. Shen, H. Gu, Ultra-stable and self-healing coordinated collagen-based multifunctional double-network organohydrogel e-skin for multimodal sensing monitoring of strain-resistance, bioelectrode, and self-powered triboelectric nanogenerator. Chem. Eng. J. 474, 145780 (2023). https://doi.org/10.1016/j.cej.2023.145780
S. Quan, J. Zhang, L. Zhang, N. Li, L. Zhu et al., Versatile triblock peptides mimicking ABC-type heterotrimeric collagen with stabilizing salt bridges. Int. J. Biol. Macromol. 272(Pt 1), 132446 (2024). https://doi.org/10.1016/j.ijbiomac.2024.132446
P. Wongrattanakamon, W. Yooin, B. Sirithunyalug, P. Nimmanpipug, S. Jiranusornkul, Tentative peptide-lipid bilayer models elucidating molecular behaviors and interactions driving passive cellular uptake of collagen-derived small peptides. Molecules 26(3), 710 (2021). https://doi.org/10.3390/molecules26030710
L. Wu, Q. Wang, Y. Li, M. Yang, M. Dong et al., A dopamine acrylamide molecule for promoting collagen biomimetic mineralization and regulating crystal growth direction. ACS Appl. Mater. Interfaces 13(33), 39142–39156 (2021). https://doi.org/10.1021/acsami.1c12412
R. Yang, G. Li, C. Zhuang, P. Yu, T. Ye et al., Gradient bimetallic ion-based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. Sci. Adv. 7(26), eabg3816 (2021). https://doi.org/10.1126/sciadv.abg3816
Y. You, Y. Tian, Z. Yang, J. Shi, K.J. Kwak et al., Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat. Biomed. Eng. 7(7), 887–900 (2023). https://doi.org/10.1038/s41551-022-00989-w
D.S. Liu, M. Nikoo, G. Boran, P. Zhou, J.M. Regenstein, Collagen and gelatin. Annu. Rev. Food Sci. Technol. 6, 527–557 (2015). https://doi.org/10.1146/annurev-food-031414-111800
C. Tang, K. Zhou, Y.C. Zhu, W.D. Zhang, Y. Xie, Z.M. Wang, H. Zhou, T.T. Yang, Q. Zhang, B.C. Xu, Collagen and its derivatives: from structure and properties to their applications in food industry. Food Hydrocoll. 131, 107748 (2022). https://doi.org/10.1016/j.foodhyd.2022.107748
V. Kriuchkovskaia, E.K. Eames, R.B. Riggins, B.A.C. Harley, Acquired temozolomide resistance instructs patterns of glioblastoma behavior in gelatin hydrogels. bioRxiv, 2023.11.14.567115 (2023). https://doi.org/10.1101/2023.11.14.567115
Y.-H. Zhu, C.-Y. Zhou, X. Peng, W. Wang, Z. Liu et al., Dialdehyde starch cross-linked aminated gelatin sponges with excellent hemostatic performance and biocompatibility. Carbohydr. Polym. 342, 122326 (2024). https://doi.org/10.1016/j.carbpol.2024.122326
E. Sharifi, S. Yousefiasl, N. Laderian, N. Rabiee, P. Makvandi et al., Cell-loaded genipin cross-linked collagen/gelatin skin substitute adorned with zinc-doped bioactive glass-ceramic for cutaneous wound regeneration. Int. J. Biol. Macromol. 251, 125898 (2023). https://doi.org/10.1016/j.ijbiomac.2023.125898
M. Nuerjiang, X. Bai, L. Sun, Q. Wang, X. Xia et al., Size effect of fish gelatin nanops on the mechanical properties of collagen film based on its hierarchical structure. Food Hydrocoll. 144, 108931 (2023). https://doi.org/10.1016/j.foodhyd.2023.108931
H.-Y. Wang, Y. Zhang, M. Zhang, Y.-Q. Zhang, Functional modification of silk fibroin from silkworms and its application to medical biomaterials: a review. Int. J. Biol. Macromol. 259(Pt 1), 129099 (2024). https://doi.org/10.1016/j.ijbiomac.2023.129099
P. Ratnatilaka Na Bhuket, Y. Li, S.M. Yu, From collagen mimetics to collagen hybridization and back. Acc. Chem. Res. 57(12), 1649–1657 (2024). https://doi.org/10.1021/acs.accounts.3c00772
K. Ahmad, Y. Meng, C. Fan, A.S.U. Din, Q. Jia et al., Collagen/gelatin and polysaccharide complexes enhance gastric retention and mucoadhesive properties. Int. J. Biol. Macromol. 266(Pt 2), 131034 (2024). https://doi.org/10.1016/j.ijbiomac.2024.131034
M.I. Ahmad, Y. Li, J. Pan, F. Liu, H. Dai et al., Collagen and gelatin: structure, properties, and applications in food industry. Int. J. Biol. Macromol. 254(Pt 3), 128037 (2024). https://doi.org/10.1016/j.ijbiomac.2023.128037
J. Liao, Y. Zhou, B. Hou, J. Zhang, H. Huang, Nano-chitin: preparation strategies and food biopolymer film reinforcement and applications. Carbohydr. Polym. 305, 120553 (2023). https://doi.org/10.1016/j.carbpol.2023.120553
L.G. Greca, A. Azpiazu, G. Reyes, O.J. Rojas, B.L. Tardy et al., Chitin-based pulps: Structure-property relationships and environmental sustainability. Carbohydr. Polym. 325, 121561 (2024). https://doi.org/10.1016/j.carbpol.2023.121561
J. Lv, X. Lv, M. Ma, D.-H. Oh, Z. Jiang et al., Chitin and chitin-based biomaterials: a review of advances in processing and food applications. Carbohydr. Polym. 299, 120142 (2023). https://doi.org/10.1016/j.carbpol.2022.120142
K. Kim, M. Ha, B. Choi, S.H. Joo, H.S. Kang et al., Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers. Nano Energy 48, 275–283 (2018). https://doi.org/10.1016/j.nanoen.2018.03.056
F. Gao, B.S. Zhang, J.H. Zhao, J.F. Huang, P.S. Jia et al., Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. Nat. Plants 5, 1167–1176 (2019). https://doi.org/10.1038/s41477-019-0527-4
F.D. Moghaddam, E.N. Zare, M. Hassanpour, F.R. Bertani, A. Serajian et al., Chitosan-based nanosystems for cancer diagnosis and therapy: stimuli-responsive, immune response, and clinical studies. Carbohydr. Polym. 330, 121839 (2024). https://doi.org/10.1016/j.carbpol.2024.121839
B. Jiang, H. Jiao, X. Guo, G. Chen, J. Guo et al., Lignin-based materials for additive manufacturing: chemistry, processing, structures, properties, and applications. Adv. Sci. 10(9), e2206055 (2023). https://doi.org/10.1002/advs.202206055
E. Subbotina, T. Rukkijakan, M.D. Marquez-Medina, X. Yu, M. Johnsson et al., Oxidative cleavage of C–C bonds in lignin. Nat. Chem. 13(11), 1118–1125 (2021). https://doi.org/10.1038/s41557-021-00783-2
S. Dabral, H. Wotruba, J.G. Hernández, C. Bolm, Mechanochemical oxidation and cleavage of lignin β-O-4 model compounds and lignin. ACS Sustain. Chem. Eng. 6(3), 3242–3254 (2018). https://doi.org/10.1021/acssuschemeng.7b03418
A. Kirui, W. Zhao, F. Deligey, H. Yang, X. Kang et al., Carbohydrate–aromatic interface and molecular architecture of lignocellulose. Nat. Commun. 13(1), 538 (2022). https://doi.org/10.1038/s41467-022-28165-3
G. Yang, Z. Gong, X. Luo, L. Chen, L. Shuai, Bonding wood with uncondensed lignins as adhesives. Nature 621(7979), 511–515 (2023). https://doi.org/10.1038/s41586-023-06507-5
M. Zhou, O.A. Fakayode, A.E. AhmedYagoub, Q. Ji, C. Zhou, Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization. Renew. Sustain. Energy Rev. 156, 111986 (2022). https://doi.org/10.1016/j.rser.2021.111986
A. El-Araby, W. Janati, R. Ullah, S. Ercisli, F. Errachidi, Chitosan, chitosan derivatives, and chitosan-based nanocomposites: eco-friendly materials for advanced applications (a review). Front. Chem. 11, 1327426 (2024). https://doi.org/10.3389/fchem.2023.1327426
Y. Cao, C. Zhang, D.C.W. Tsang, J. Fan, J.H. Clark et al., Hydrothermal liquefaction of lignin to aromatic chemicals: impact of lignin structure. Ind. Eng. Chem. Res. 59(39), 16957–16969 (2020). https://doi.org/10.1021/acs.iecr.0c01617
T.A. Shmool, P.J. Hooper, G.S. Kaminski Schierle, C.F. van der Walle, J.A. Zeitler, Terahertz spectroscopy: an investigation of the structural dynamics of freeze-dried poly lactic-co-glycolic acid microspheres. Pharmaceutics 11(6), 291 (2019). https://doi.org/10.3390/pharmaceutics11060291
C. Xu, Z. Ren, J. Wei, C. Lee, Reconfigurable terahertz metamaterials: from fundamental principles to advanced 6G applications. iScience 25(2), 103799 (2022). https://doi.org/10.1016/j.isci.2022.103799
J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain et al., Security and eavesdropping in terahertz wireless links. Nature 563(7729), 89–93 (2018). https://doi.org/10.1038/s41586-018-0609-x
S. Yang, Z. Lin, X. Wang, J. Huang, R. Yang et al., Stretchable, transparent, and ultra-broadband terahertz shielding thin films based on wrinkled MXene architectures. Nano-Micro Lett. 16(1), 165 (2024). https://doi.org/10.1007/s40820-024-01365-w
T. Zhao, P. Xie, H. Wan, T. Ding, M. Liu et al., Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band. Nat. Photonics 17(7), 622–628 (2023). https://doi.org/10.1038/s41566-023-01197-x
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
P.S. Pálvölgyi, D. Sebők, I. Szenti, E. Bozo, H. Ervasti et al., Lightweight porous silica foams with extreme-low dielectric permittivity and loss for future 6G wireless communication technologies. Nano Res. 14(5), 1450–1456 (2021). https://doi.org/10.1007/s12274-020-3201-2
Y. Yang, J.-R. Tao, D. Yang, Q.-M. He, X.-D. Chen et al., Improving dispersion and delamination of graphite in biodegradable starch materials via constructing cation-π interaction: towards microwave shielding enhancement. J. Mater. Sci. Technol. 129, 196–205 (2022). https://doi.org/10.1016/j.jmst.2022.04.045
F. Pan, L. Cai, Y. Dong, X. Zhu, Y. Shi et al., Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption. J. Mater. Sci. Technol. 101, 85–94 (2022). https://doi.org/10.1016/j.jmst.2021.05.066
J. Wang, X. Wu, Y. Wang, W. Zhao, Y. Zhao et al., Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nano-Micro Lett. 15(1), 11 (2022). https://doi.org/10.1007/s40820-022-00982-7
R. Haataja, S. Myllymäki, O. Laitinen, H. Jantunen, H. Liimatainen, Controlling the cell and surface architecture of cellulose nanofiber/PVA/Ti3C2TX MXene hybrid cryogels for optimized permittivity and EMI shielding performance. Mater. Des. 228, 111855 (2023). https://doi.org/10.1016/j.matdes.2023.111855
Y.-X. Sun, Q. Zou, J. Zhao, X.-Z. Li, H. Jiang et al., Eco-friendly silver nanops/chitosan/poly(vinyl alcohol) composites exhibit remarkable EMI shielding capabilities and outstanding thermal conductivities. ACS Appl. Mater. Interfaces 15(29), 35631–35638 (2023). https://doi.org/10.1021/acsami.3c04813
C. Liu, M. Han, J. Lin, W. Liu, J. Liu et al., Wood biomass-derived carbon for high-performance electromagnetic wave absorbing and shielding. Carbon 208, 255–276 (2023). https://doi.org/10.1016/j.carbon.2023.03.067
P.A. Drózdz, N. Xenidis, J. Campion, S. Smirnov, A. Przewloka et al., Highly efficient absorption of THz radiation using waveguide-integrated carbon nanotube/cellulose aerogels. Appl. Mater. Today 29, 101684 (2022). https://doi.org/10.1016/j.apmt.2022.101684
A. Naseer, M. Mumtaz, M. Raffi, I. Ahmad, S.D. Khan et al., Reinforcement of electromagnetic wave absorption characteristics in PVDF-PMMA nanocomposite by intercalation of carbon nanofibers. Electron. Mater. Lett. 15(2), 201–207 (2019). https://doi.org/10.1007/s13391-018-00104-9
T. Bai, Y. Guo, D. Wang, H. Liu, G. Song et al., A resilient and lightweight bacterial cellulose-derived C/rGO aerogel-based electromagnetic wave absorber integrated with multiple functions. J. Mater. Chem. A 9(9), 5566–5577 (2021). https://doi.org/10.1039/D0TA11122H
H.-D. Huang, C.-Y. Liu, D. Zhou, X. Jiang, G.-J. Zhong et al., Cellulose composite aerogel for highly efficient electromagnetic interference shielding. J. Mater. Chem. A 3(9), 4983–4991 (2015). https://doi.org/10.1039/c4ta05998k
X. Chen, S. Guo, S. Tan, J. Ma, T. Xu et al., An environmentally friendly chitosan-derived VO2/carbon aerogel for radar infrared compatible stealth. Carbon 213, 118313 (2023). https://doi.org/10.1016/j.carbon.2023.118313
N. Arooj, M. Mumtaz, A. Rehman, I. Ahmad, S. Khan et al., Optimizing electromagnetic interference shielding of carbon nanofibers reinforced nylon 6, 6 nanocomposite films in terahertz range. J. Appl. Polym. Sci. 140(18), e53790 (2023). https://doi.org/10.1002/app.53790
Y. Cai, Y. Cheng, Z. Wang, G. Fei, M. Lavorgna et al., Facile and scalable preparation of ultralight cobalt@graphene aerogel microspheres with strong and wide bandwidth microwave absorption. Chem. Eng. J. 457, 141102 (2023). https://doi.org/10.1016/j.cej.2022.141102
W. Wang, Z. Peng, Z. Ma, L. Zhang, X. Wang et al., High-efficiency electromagnetic interference shielding from highly aligned MXene porous composites via controlled directional freezing. ACS Appl. Mater. Interfaces 15(40), 47566–47576 (2023). https://doi.org/10.1021/acsami.3c10599
J. Quan, X. Lan, G.J.H. Lim, Y. Hou, Y. Yang et al., Hierarchical SiC fiber aerogel toward microwave attenuation and thermal insulation application. J. Alloys Compd. 911, 165097 (2022). https://doi.org/10.1016/j.jallcom.2022.165097
X. Li, R. Hu, Z. Xiong, D. Wang, Z. Zhang et al., Metal-organic gel leading to customized magnetic-coupling engineering in carbon aerogels for excellent radar stealth and thermal insulation performances. Nano-Micro Lett. 16(1), 42 (2023). https://doi.org/10.1007/s40820-023-01255-7
R. Wu, W. Li, Y. Wan, Z. Ren, X. Xu et al., Anisotropic terahertz response of stretch-aligned composite films based on carbon nanotube–SiC hybrid structures. RSC Adv. 5(34), 26985–26990 (2015). https://doi.org/10.1039/C4RA14871A
Q. Chang, C. Li, J. Sui, G.I.N. Waterhouse, Z.-M. Zhang et al., Ni/Ni3ZnC0.7 modified alginate-derived carbon composites with porous structures for electromagnetic wave absorption. Carbon 200, 166–177 (2022). https://doi.org/10.1016/j.carbon.2022.07.075
Z. Lou, Q. Wang, U.I. Kara, R.S. Mamtani, X. Zhou et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 14(1), 11 (2021). https://doi.org/10.1007/s40820-021-00750-z
N.R. Tanguy, M. Rana, A.A. Khan, X. Zhang, N. Tratnik et al., Natural lignocellulosic nanofibrils as tribonegative materials for self-powered wireless electronics. Nano Energy 98, 107337 (2022). https://doi.org/10.1016/j.nanoen.2022.107337
M.Y. Cui, Z.D. Wu, Y. Lu, X.H. Wei, L.L. Dai, Near-field mimo communications for 6G: fundamentals, challenges, potentials, and future directions. IEEE Commun. Mag. 61, 40–46 (2023). https://doi.org/10.1109/mcom.004.2200136
K. Myny, The development of flexible integrated circuits based on thin-film transistors. Nat. Electron. 1(1), 30–39 (2018). https://doi.org/10.1038/s41928-017-0008-6
L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe et al., Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev. 3(2), 021303 (2016). https://doi.org/10.1063/1.4953034
S. Wei, J. Jiang, L. Sun, J. Li, T.H. Tao et al., A hierarchically encoded data storage device with controlled transiency. Adv. Mater. 34(20), e2201035 (2022). https://doi.org/10.1002/adma.202201035
X. Cai, Z. Zhou, T.H. Tao, Photoinduced tunable and reconfigurable electronic and photonic devices using a silk-based diffractive optics platform. Adv. Sci. 7(14), 2000475 (2020). https://doi.org/10.1002/advs.202000475
Y. Tao, K. He, E. Zhang, J. Tan, H. Hao et al., Cellulose-derived wearable carbon nanoflake sensors customized by semiconductor laser photochemistry. Adv. Sens. Res. 2(3), 2200020 (2023). https://doi.org/10.1002/adsr.202200020
V.V. Gerasimov, A.K. Nikitin, A.G. Lemzyakov, I.A. Azarov, Evaluation of the efficiency of generation of terahertz surface plasmon polaritons by the end-fire coupling technique. Photonics 10(8), 917 (2023). https://doi.org/10.3390/photonics10080917
H. Wang, L. Xie, A. Albo, Y. Ying, W. Xu, Selective detection enabled by terahertz spectroscopy and plasmonics: principles and implementations. Trac Trends Anal. Chem. 180, 117917 (2024). https://doi.org/10.1016/j.trac.2024.117917
X.H. Yin, J.T. Li, H.C. Chen, Y.N. Luo, Terahertz absorption peaks formation mechanism of imidazole and pyrazole. Laser Optoelectron. Prog. 60, 0930005 (2023). https://doi.org/10.3788/lop221275
Y. Zhao, B. Miao, M.A. Nawaz, Q. Zhu, Q. Chen et al., Construction of cellulose nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers with gradient structure for efficient electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 7(2), 34 (2024). https://doi.org/10.1007/s42114-024-00839-0
V. Montes-García, P. Samorì, Humidity sensing with supramolecular nanostructures. Adv. Mater. 36(12), e2208766 (2024). https://doi.org/10.1002/adma.202208766
S. Ummartyotin, H. Manuspiya, A critical review on cellulose: from fundamental to an approach on sensor technology. Renew. Sustain. Energy Rev. 41, 402–412 (2015). https://doi.org/10.1016/j.rser.2014.08.050
W. Zhang, X. Chen, J. Zhao, X. Wang, X. Li et al., Cellulose template-based triboelectric nanogenerators for self-powered sensing at high humidity. Nano Energy 108, 108196 (2023). https://doi.org/10.1016/j.nanoen.2023.108196
X.R. Jin, T.T. Lang, A terahertz metamaterial humidity sensor based on silk fibroin. Acta Opt Sin. 43, aos230714 (2023). https://doi.org/10.3788/aos230714
Y.Y. Diao, X.Y. Liu, G.W. Toh, L. Shi, J. Zi, Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing. Adv. Funct. Mater. 23(43), 5373–5380 (2013). https://doi.org/10.1002/adfm.201203672
H.S. Kim, S.H. Cha, B. Roy, S. Kim, Y.H. Ahn, Humidity sensing using THz metamaterial with silk protein fibroin. Opt. Express 26(26), 33575–33581 (2018). https://doi.org/10.1364/OE.26.033575
B. You, C.-F. Huang, J.-Y. Lu, Terahertz humidity sensing based on surface-modified polymer mesh membranes with photografting PEGMA brush. Polymers 15(15), 3302 (2023). https://doi.org/10.3390/polym15153302
C. Lei, Y. Guo, W. Guan, H. Lu, W. Shi et al., Polyzwitterionic hydrogels for efficient atmospheric water harvesting. Angew. Chem. Int. Ed. 61(13), e202200271 (2022). https://doi.org/10.1002/anie.202200271
S.K. Chatterjee, S.N. Khan, Designing tunable narrowband parametric source in Chalcogenide-based dynamic fiber geometry. J. Opt. 23(1), 015503 (2021). https://doi.org/10.1088/2040-8986/abccfd
P. Zhu, Y. Kuang, Y. Wei, F. Li, H. Ou et al., Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability. Chem. Eng. J. 404, 127105 (2021). https://doi.org/10.1016/j.cej.2020.127105
G. AyissiEyebe, B. Bideau, N. Boubekeur, É. Loranger, F. Domingue, Environmentally-friendly cellulose nanofibre sheets for humidity sensing in microwave frequencies. Sens. Actuators B Chem. 245, 484–492 (2017). https://doi.org/10.1016/j.snb.2017.01.130
I.M. Garnica-Palafox, A.M. Velázquez-Benítez, F. Sánchez-Arevalo, N. Qureshi, Terahertz detection of acid blue 113 dye using hybrid hydrogels. J. Infrared Millim. Terahertz Waves 45, 300–321 (2024). https://doi.org/10.1007/s10762-024-00968-z
M.S. Abdelwahab, N.M. El Halfawy, M.Y. El-Naggar, Lead adsorption and antibacterial activity using modified magnetic biochar/sodium alginate nanocomposite. Int. J. Biol. Macromol. 206, 730–739 (2022). https://doi.org/10.1016/j.ijbiomac.2022.03.053
X.-H. Li, X. Li, K.-N. Liao, P. Min, T. Liu et al., Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 8(48), 33230–33239 (2016). https://doi.org/10.1021/acsami.6b12295
A.V. Andrianov, A.N. Aleshin, Terahertz absorption in composite films based on organometallic perovskite and mixed cellulose ester. Tech. Phys. Lett. 46(5), 510–513 (2020). https://doi.org/10.1134/s1063785020050181
C.C. Huang, Y.G. Zhang, L.J. Liang, H.Y. Yao, W.J. Liu, F. Qiu, Ultrasensitive terahertz biosensor based on graphene regulation near its dirac point and electromagnetically induced transparency. Laser Optoelectron. Prog. 60, 1517001 (2023). https://doi.org/10.3788/lop221769
H. Tao, L.R. Chieffo, M.A. Brenckle, S.M. Siebert, M. Liu et al., Metamaterials on paper as a sensing platform. Adv. Mater. 23(28), 3197–3201 (2011). https://doi.org/10.1002/adma.201100163
Z. Zeng, E. Mavrona, D. Sacré, N. Kummer, J. Cao et al., Terahertz birefringent biomimetic aerogels based on cellulose nanofibers and conductive nanomaterials. ACS Nano 15(4), 7451–7462 (2021). https://doi.org/10.1021/acsnano.1c00856
N. Horiuchi, Terahertz surprises. Nat. Photonics 12(3), 128–130 (2018). https://doi.org/10.1038/s41566-018-0115-6
E.-S. Yu, S.-H. Lee, G. Lee, Q.-H. Park, A.J. Chung et al., Nanoscale terahertz monitoring on multiphase dynamic assembly of nanops under aqueous environment. Adv. Sci. 8(11), e2004826 (2021). https://doi.org/10.1002/advs.202004826
Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong et al., Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon 115, 629–639 (2017). https://doi.org/10.1016/j.carbon.2017.01.054
T. Zhang, S. Zeng, H. Jiang, Z. Li, D. Bai et al., Leather solid waste/poly(vinyl alcohol)/polyaniline aerogel with mechanical robustness, flame retardancy, and enhanced electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13(9), 11332–11343 (2021). https://doi.org/10.1021/acsami.1c00880
P. Alonso-González, A.Y. Nikitin, Y. Gao, A. Woessner, M.B. Lundeberg et al., Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12(1), 31–35 (2017). https://doi.org/10.1038/nnano.2016.185
P.H. Malinowski, W.M. Ostachowicz, F. Touchard, M. Boustie, L. Chocinski-Arnault et al., Study of plant fibre composites with damage induced by laser and mechanical impacts. Compos. Part B Eng. 152, 209–219 (2018). https://doi.org/10.1016/j.compositesb.2018.07.004
R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang et al., Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures. Biosens. Bioelectron. 188, 113336 (2021). https://doi.org/10.1016/j.bios.2021.113336
R. Wang, W. Xu, D. Chen, R. Zhou, Q. Wang et al., Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials. ACS Appl. Mater. Interfaces 12(36), 40629–40634 (2020). https://doi.org/10.1021/acsami.0c06503
S.A. Yoon, S.H. Cha, S.W. Jun, S.J. Park, J.-Y. Park et al., Identifying different types of microorganisms with terahertz spectroscopy. Biomed. Opt. Express 11(1), 406–416 (2019). https://doi.org/10.1364/BOE.376584
S. Bakels, M.-P. Gaigeot, A.M. Rijs, Gas-phase infrared spectroscopy of neutral peptides: insights from the far-IR and THz domain. Chem. Rev. 120(7), 3233–3260 (2020). https://doi.org/10.1021/acs.chemrev.9b00547
J. Wang, K. Morita, M. Ando, S. Yoshida, H. Nagata et al., Terahertz aptasensor for dopamine neurochemical detection. Appl. Phys. Express 16(5), 052002 (2023). https://doi.org/10.35848/1882-0786/acd102
E.M. Hassan, A. Mohamed, M.C. DeRosa, W.G. Willmore, Y. Hanaoka et al., High-sensitivity detection of metastatic breast cancer cells via terahertz chemical microscopy using aptamers. Sens. Actuators B Chem. 287, 595–601 (2019). https://doi.org/10.1016/j.snb.2019.02.019
A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali et al., Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors. ACS Sens. 2(9), 1359–1368 (2017). https://doi.org/10.1021/acssensors.7b00478
H. Xiong, H. Sun, J. Zhou, H. Li, H. Zhang et al., Terahertz anisotropy in Fascia and lean meat tissues. Biomed. Opt. Express 13(5), 2605–2615 (2022). https://doi.org/10.1364/BOE.454338
H.-T. Chen, A.J. Taylor, N. Yu, A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79(7), 076401 (2016). https://doi.org/10.1088/0034-4885/79/7/076401
J. Zhou, X. Zhao, G. Huang, X. Yang, Y. Zhang et al., Molecule-specific terahertz biosensors based on an aptamer hydrogel-functionalized metamaterial for sensitive assays in aqueous environments. ACS Sens. 6(5), 1884–1890 (2021). https://doi.org/10.1021/acssensors.1c00174
S. Fan, B. Ung, E.P.J. Parrott, E. Pickwell-MacPherson, Gelatin embedding: a novel way to preserve biological samples for terahertz imaging and spectroscopy. Phys. Med. Biol. 60(7), 2703–2713 (2015). https://doi.org/10.1088/0031-9155/60/7/2703
T. Kiwa, A. Tenma, S. Takahashi, K. Sakai, K. Tsukada, Label free immune assay using terahertz chemical microscope. Sens. Actuators B Chem. 187, 8–11 (2013). https://doi.org/10.1016/j.snb.2012.08.051
R.D. Wang, L. Xu, L.J. Huang, X.B. Zhang, H. Ruan et al., Ultrasensitive terahertz biodetection enabled by quasi-BIC-based metasensors. Small 19, 2301165 (2023). https://doi.org/10.1002/smll.202301165
M. Zhang, Z. Yang, M. Tang, D. Wang, H. Wang et al., Terahertz spectroscopic signatures of microcystin aptamer solution probed with a microfluidic chip. Sensors 19(3), 534 (2019). https://doi.org/10.3390/s19030534
S. Lin, X. Xu, F. Hu, Z. Chen, Y. Wang et al., Using antibody modified terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen. IEEE J. Sel. Top. Quantum Electron. 27(4), 6900207 (2021). https://doi.org/10.1109/JSTQE.2020.3038308
C. Luo, T.T. CaiWei, Z. Fan, L. Chen, R. Singh et al., Terahertz Lattice enhanced Quasi-Anapole Immunosensor assisted by protein antibody and AuNPs. Sens. Actuators B Chem. 410, 135628 (2024). https://doi.org/10.1016/j.snb.2024.135628
K. Liu, R. Zhang, Y. Liu, X. Chen, K. Li et al., Gold nanop enhanced detection of EGFR with a terahertz metamaterial biosensor. Biomed. Opt. Express 12(3), 1559–1567 (2021). https://doi.org/10.1364/BOE.418859
W. Yu, J. Li, G. Huang, Z. He, H. Tian et al., Rapid and sensitive detection of Staphylococcus aureus using a THz metamaterial biosensor based on aptamer-functionalized Fe3O4@Au nanocomposites. Talanta 272, 125760 (2024). https://doi.org/10.1016/j.talanta.2024.125760
H. Tao, J.J. Amsden, A.C. Strikwerda, K. Fan, D.L. Kaplan et al., Metamaterial silk composites at terahertz frequencies. Adv. Mater. 22(32), 3527–3531 (2010). https://doi.org/10.1002/adma.201000412
L. Sun, Z. Zhou, J. Zhong, Z. Shi, Y. Mao et al., Implantable, degradable, therapeutic terahertz metamaterial devices. Small 16(17), e2000294 (2020). https://doi.org/10.1002/smll.202000294
R. Dong, J. AxelZeitler, Visualising liquid transport through coated pharmaceutical tablets using Terahertz pulsed imaging. Int. J. Pharm. 619, 121703 (2022). https://doi.org/10.1016/j.ijpharm.2022.121703
M. Ma, D. Powell, M. Nassar, J. Teckoe, D. Markl et al., Impact of immediate release film coating on the disintegration process of tablets. J. Control. Release 373, 533–546 (2024). https://doi.org/10.1016/j.jconrel.2024.07.037
H. Guerboukha, G. Yan, O. Skorobogata, M. Skorobogatiy, Silk foam terahertz waveguides. Adv. Opt. Mater. 2(12), 1181–1192 (2014). https://doi.org/10.1002/adom.201400228
A.V. Andrianov, A.N. Aleshin, A.K. Khripunov, V.N. Trukhin, Terahertz properties of bacterial cellulose films and its composite with conducting polymer PEDOT/PSS. Synth. Met. 205, 201–205 (2015). https://doi.org/10.1016/j.synthmet.2015.04.016
J.Y. Huang, D.W. Li, M. Zhao, H.Z. Ke, A. Mensah et al., Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors. Chem. Eng. J. 373, 1357–1366 (2019). https://doi.org/10.1016/j.cej.2019.05.136
L.A. Sterczewski, J. Westberg, Y. Yang, D. Burghoff, J. Reno et al., Terahertz hyperspectral imaging with dual chip-scale combs. Optica 6(6), 766 (2019). https://doi.org/10.1364/optica.6.000766
A. Ahmadivand, B. Gerislioglu, Z. Ramezani, A. Kaushik, P. Manickam et al., Functionalized terahertz plasmonic metasensors: femtomolar-level detection of SARS-CoV-2 spike proteins. Biosens. Bioelectron. 177, 112971 (2021). https://doi.org/10.1016/j.bios.2021.112971
X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu et al., Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 34(10), 810–824 (2016). https://doi.org/10.1016/j.tibtech.2016.04.008
W.J. Choi, K. Yano, M. Cha, F.M. Colombari, J.-Y. Kim et al., Chiral phonons in microcrystals and nanofibrils of biomolecules. Nat. Photon. 16(5), 366–373 (2022). https://doi.org/10.1038/s41566-022-00969-1
W. Shi, F. Fan, S. Li, L. Ma, Y.-M. Wang et al., Enhanced terahertz specific sensing for Alzheimer’s marker by metasurface-analyte union modification on microfluidic sensor. IEEE Sens. J. 24(6), 7690–7699 (2024). https://doi.org/10.1109/JSEN.2024.3358959
Z. Su, S. Xu, L. Xie, Terahertz metamaterial immunosensor based on nano Au film structure for detecting trace of chloramphenicol in milk. J. Food Meas. Charact. 18(6), 4108–4119 (2024). https://doi.org/10.1007/s11694-024-02479-w
Z. Zhang, R. Zhao, M. Cong, J. Qiu, Developments of terahertz metasurface biosensors: a literature review. Nanotechnol. Rev. 13(1), 20230182 (2024). https://doi.org/10.1515/ntrev-2023-0182
M.A. Ali, C. Hu, B. Yuan, S. Jahan, M.S. Saleh et al., Breaking the barrier to biomolecule limit-of-detection via 3D printed multi-length-scale graphene-coated electrodes. Nat. Commun. 12(1), 7077 (2021). https://doi.org/10.1038/s41467-021-27361-x
H. Tao, A.C. Strikwerda, M. Liu, J.P. Mondia, E. Ekmekci et al., Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications. Appl. Phys. Lett. 97(26), 261909 (2010). https://doi.org/10.1063/1.3533367
Y. Roh, T. Kim, G. Lee, M. Seo, E.-S. Yu, Advances in terahertz biosensors toward photon-molecule interplay. Trac Trends Anal. Chem. 175, 117715 (2024). https://doi.org/10.1016/j.trac.2024.117715
R. Degl’Innocenti, H.Y. Lin, M. Navarro-Cía, Recent progress in terahertz metamaterial modulators. Nanophotonics 11, 1485–1514 (2022). https://doi.org/10.1515/nanoph-2021-0803
C.-L. Luo, M.-L. Huang, C. Sun, K.-Y. Zhao, H. Guo et al., Anisotropic electromagnetic wave shielding performance in Janus cellulose nanofiber composite films. Mater. Today Phys. 44, 101440 (2024). https://doi.org/10.1016/j.mtphys.2024.101440
Y. Dong, W. An, Z. Wang, D. Zhang, An artificial intelligence-assisted flexible and wearable mechanoluminescent strain sensor system. Nano-Micro Lett. 17(1), 62 (2024). https://doi.org/10.1007/s40820-024-01572-5
H. Xia, L. Wang, H. Zhang, Z. Wang, L. Zhu et al., MXene/PPy@PDMS sponge-based flexible pressure sensor for human posture recognition with the assistance of a convolutional neural network in deep learning. Microsyst. Nanoeng. 9, 155 (2023). https://doi.org/10.1038/s41378-023-00605-0
C. Yang, D. Zhang, W. Wang, H. Zhang, L. Zhou, Multi-functional MXene/helical multi-walled carbon nanotubes flexible sensor for tire pressure detection and speech recognition enabled by machine learning. Chem. Eng. J. 505, 159157 (2025). https://doi.org/10.1016/j.cej.2024.159157
H. Zhang, D. Zhang, R. Mao, L. Zhou, C. Yang et al., MoS2-based charge trapping layer enabled triboelectric nanogenerator with assistance of CNN-GRU model for intelligent perception. Nano Energy 127, 109753 (2024). https://doi.org/10.1016/j.nanoen.2024.109753
L. Yang, H. Liu, S. Ding, J. Wu, Y. Zhang et al., Superabsorbent fibers for comfortable disposable medical protective clothing. Adv. Fiber Mater. 2(3), 140–149 (2020). https://doi.org/10.1007/s42765-020-00044-w