Implantable Electrochemical Microsensors for In Vivo Monitoring of Animal Physiological Information
Corresponding Author: Yuxiang Pan
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 49
Abstract
In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases. Currently, implantable electrochemical microsensors have emerged as a prominent area of research. These microsensors not only fulfill the technical requirements for monitoring animal physiological information but also offer an ideal platform for integration. They have been extensively studied for their ability to monitor animal physiological information in a minimally invasive manner, characterized by their bloodless, painless features, and exceptional performance. The development of implantable electrochemical microsensors for in vivo monitoring of animal physiological information has witnessed significant scientific and technological advancements through dedicated efforts. This review commenced with a comprehensive discussion of the construction of microsensors, including the materials utilized and the methods employed for fabrication. Following this, we proceeded to explore the various implantation technologies employed for electrochemical microsensors. In addition, a comprehensive overview was provided of the various applications of implantable electrochemical microsensors, specifically in the monitoring of diseases and the investigation of disease mechanisms. Lastly, a concise conclusion was conducted on the recent advancements and significant obstacles pertaining to the practical implementation of implantable electrochemical microsensors.
Highlights:
1 The materials, fabrication methods, implantation technologies, and applications of implantable electrochemical microsensors for animals were summarized.
2 The implantable electrochemical microsensors for monitoring diseases and exploring disease mechanisms were discussed.
3 The current status, ongoing challenges, and future development prospects of implantable electrochemical microsensors in monitoring animal physiological information were highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Neethirajan, S.K. Tuteja, S.T. Huang, D. Kelton, Recent advancement in biosensors technology for animal and livestock health management. Biosens. Bioelectron. 98, 398–407 (2017). https://doi.org/10.1016/j.bios.2017.07.015
- D. Giansanti, G. Maccioni, The mhealth in the canine assisted therapy: the proposal of a conceptual model for the wearable monitoring. Mhealth 5, 51 (2019). https://doi.org/10.21037/mhealth.2019.09.08
- M. Mostafa, A. Barhoum, E. Sehit, H. Gewaid, E. Mostafa et al., Current trends in covid-19 diagnosis and its new variants in physiological fluids: surface antigens, antibodies, nucleic acids, and RNA sequencing. Trends Analyt. Chem. 157, 116750 (2022). https://doi.org/10.1016/j.trac.2022.116750
- J. Min, J.R. Sempionatto, H. Teymourian, J. Wang, W. Gao, Wearable electrochemical biosensors in North America. Biosens. Bioelectron. 172, 112750 (2021). https://doi.org/10.1016/j.bios.2020.112750
- P. Pulugu, S. Ghosh, S. Rokade, K. Choudhury, N. Arya et al., A perspective on implantable biomedical materials and devices for diagnostic applications. Curr. Opin. Biomed. Eng. 18, 100287 (2021). https://doi.org/10.1016/j.cobme.2021.100287
- C. Steiger, A. Abramson, P. Nadeau, A.P. Chandrakasan, R. Langer et al., Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4(2), 83–98 (2019). https://doi.org/10.1038/s41578-018-0070-3
- A.J. Bandodkar, J. Wang, Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32(7), 363–371 (2014). https://doi.org/10.1016/j.tibtech.2014.04.005
- M. De Santis, I. Cacciotti, Wireless implantable and biodegradable sensors for postsurgery monitoring: current status and future perspectives. Nanotechnology 31(25), 252001 (2020). https://doi.org/10.1088/1361-6528/ab7a2d
- A. Zebda, S. Cosnier, J.P. Alcaraz, M. Holzinger, A. Le Goff et al., Single glucose biofuel cells implanted in rats power electronic devices. Sci. Rep. 3(1), 1516 (2013). https://doi.org/10.1038/srep01516
- H. Teymourian, A. Barfidokht, J. Wang, Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Sci. Rev. 49(21), 7671–7709 (2020). https://doi.org/10.1039/d0cs00304b
- W. Zhang, L. Zhang, H. Gao, W. Yang, S. Wang et al., Self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Nano-Micro Lett. 10(2), 32 (2018). https://doi.org/10.1007/s40820-017-0185-x
- B. Yang, X. Fang, J. Kong, Engineered microneedles for interstitial fluid cell-free DNA capture and sensing using iontophoretic dual-extraction wearable patch. Adv. Funct. Mater. 30(24), 2000591 (2020). https://doi.org/10.1002/adfm.202000591
- W. Lee, S.-H. Jeong, Y.-W. Lim, H. Lee, J. Kang et al., Conformable microneedle pH sensors via the integration of two different siloxane polymers for mapping peripheral artery disease. Sci. Adv. 7(48), eabi6290 (2021). https://doi.org/10.1126/sciadv.abi6290
- X. Li, X. Huang, J. Mo, H. Wang, Q. Huang et al., A fully integrated closed-loop system based on mesoporous microneedles-iontophoresis for diabetes treatment. Adv. Sci. 8(16), 2100827 (2021). https://doi.org/10.1002/advs.202100827
- J. Li, Y. Liu, L. Yuan, B. Zhang, E.S. Bishop et al., A tissue-like neurotransmitter sensor for the brain and gut. Nature 606(7912), 94–101 (2022). https://doi.org/10.1038/s41586-022-04615-2
- F. Tehrani, H. Teymourian, B. Wuerstle, J. Kavner, R. Patel et al., An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6, 1214–1224 (2022). https://doi.org/10.1038/s41551-022-00887-1
- H.C. Ates, P.Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narvaez, F. Guder et al., End-to-end design of wearable sensors. Nat. Rev. Mater. 7(11), 887–907 (2022). https://doi.org/10.1038/s41578-022-00460-x
- M. Dervisevic, M. Alba, L. Yan, M. Senel, T.R. Gengenbach et al., Transdermal electrochemical monitoring of glucose via high-density silicon microneedle array patch. Adv. Funct. Mater. 32(3), 2009850 (2022). https://doi.org/10.1002/adfm.202009850
- S. Liu, M.-N. Jin, Y.-S. Quan, F. Kamiyama, H. Katsumi et al., The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J. Controll. Release 161(3), 933–941 (2012). https://doi.org/10.1016/j.jconrel.2012.05.030
- Y. Zhou, B. Liu, Y. Lei, L. Tang, T. Li et al., Acupuncture needle-based transistor neuroprobe for in vivo monitoring of neurotransmitter. Small 18(52), 2204142 (2022). https://doi.org/10.1002/smll.202204142
- Y. Zhou, F. Ding, G.-J. Zhang, L.-N. Tang, Y.-T. Li, Micro-needle electrode for real-time monitoring of norepinephrine in rat central nervous system. Chin. J. Anal. Chem. 49(11), 35–40 (2021). https://doi.org/10.1016/j.cjac.2021.07.006
- J.-X. Zhou, F. Ding, L.-N. Tang, T. Li, Y.-H. Li et al., Monitoring of pH changes in a live rat brain with MoS /PAN functionalized microneedles. Analyst 143(18), 4469–4475 (2018). https://doi.org/10.1039/C8AN01149D
- L. Tang, Y. Li, H. Xie, Q. Shu, F. Yang et al., A sensitive acupuncture needle microsensor for real-time monitoring of nitric oxide in acupoints of rats. Sci. Rep. 7(1), 6446 (2017). https://doi.org/10.1038/s41598-017-06657-3
- T. Lin, Y. Xu, A. Zhao, W. He, F. Xiao, Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: a review. Anal. Chim. Acta 1207, 339461 (2022). https://doi.org/10.1016/j.aca.2022.339461
- C. Wei, Y. Wang, W. Pei, X. Han, L. Lin et al., Distributed implantation of a flexible microelectrode array for neural recording. Microsyst. Nanoeng. (2022). https://doi.org/10.1038/s41378-022-00366-2
- X. Jin, G. Li, T. Xu, L. Su, D. Yan et al., Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosens. Bioelectron. 196, 113760 (2022). https://doi.org/10.1016/j.bios.2021.113760
- W. Ling, G. Liew, Y. Li, Y. Hao, H. Pan et al., Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal–organic frameworks. Adv. Mater. 30(23), 1800917 (2018). https://doi.org/10.1002/adma.201800917
- B. Yang, J. Kong, X. Fang, Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA. Nat. Commun. 13(1), 3999 (2022). https://doi.org/10.1038/s41467-022-31740-3
- S. Correa, A.K. Grosskopf, H.L. Hernandez, D. Chan, A.C. Yu et al., Translational applications of hydrogels. Chem. Rev. 121(18), 11385–11457 (2021). https://doi.org/10.1021/acs.chemrev.0c01177
- S. Wang, Y. Liu, A. Zhu, Y. Tian, In vivo electrochemical biosensors: recent advances in molecular design, electrode materials, and electrochemical devices. Anal. Chem. 95(1), 388–406 (2023). https://doi.org/10.1021/acs.analchem.2c04541
- S. Moussa, J. Mauzeroll, Review—microelectrodes: an overview of probe development and bioelectrochemistry applications from 2013 to 2018. J. Electrochem. Soc. 166(6), G25–G38 (2019). https://doi.org/10.1149/2.0741906jes
- H. Zeng, N. Gao, Y. Yin, M. Zhang, Recent progress in improving the performance of in vivo electrochemical microsensor based on materials. Curr. Opin. Electrochem. 33, 100957 (2022). https://doi.org/10.1016/j.coelec.2022.100957
- R. Liu, Z.-Y. Feng, D. Li, B. Jin, Y. Lan et al., Recent trends in carbon-based microelectrodes as electrochemical sensors for neurotransmitter detection: a review. Trends Analyt. Chem. 148, 116541 (2022). https://doi.org/10.1016/j.trac.2022.116541
- S. Ding, G. Shi, A. Zhu, Stimuli-responsive polymers for interface engineering toward enhanced electrochemical analysis of neurochemicals. Chem. Commun 58(95), 13171–13187 (2022). https://doi.org/10.1039/d2cc04506k
- S. Tajik, H. Beitollahi, F.G. Nejad, I.S. Shoaie, M.A. Khalilzadeh et al., Recent developments in conducting polymers: applications for electrochemistry. RSC Adv. 10(62), 37834–37856 (2020). https://doi.org/10.1039/D0RA06160C
- S. Wang, J.Y. Oh, J. Xu, H. Tran, Z. Bao, Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51(5), 1033–1045 (2018). https://doi.org/10.1021/acs.accounts.8b00015
- N. Ashammakhi, A.L. Hernandez, B.D. Unluturk, S.A. Quintero, N.R. Barros et al., Biodegradable implantable sensors: materials design, fabrication, and applications. Adv. Funct. Mater. 31(49), 2104149 (2021). https://doi.org/10.1002/adfm.202104149
- W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert et al., Fabrication of photonic crystals in silicon-on-insulator using 248 nm deep UV lithography. IEEE J. Sel. Top. Quantum Electron. 8(4), 928–934 (2002). https://doi.org/10.1109/JSTQE.2002.800845
- N. Harpak, E. Borberg, A. Raz, F. Patolsky, The “bloodless” blood test: intradermal prick nanoelectronics for the blood extraction-free multiplex detection of protein biomarkers. ACS Nano 16(9), 13800–13813 (2022). https://doi.org/10.1021/acsnano.2c01793
- C. Wei, Y. Wang, W. Pei, X. Han, L. Lin et al., Distributed implantation of a flexible microelectrode array for neural recording. Microsyst. Nanoeng. 8(1), 50 (2022). https://doi.org/10.1038/s41378-022-00366-2
- K. Lee, H.C. Lee, D.S. Lee, H. Jung, Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv. Mater. 22(4), 483–486 (2010). https://doi.org/10.1002/adma.200902418
- Z. Chen, L. Ren, J. Li, L. Yao, Y. Chen et al., Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomater. 65, 283–291 (2018). https://doi.org/10.1016/j.actbio.2017.10.030
- Z. Chen, Y. Lin, W. Lee, L. Ren, B. Liu et al., Additive manufacturing of honeybee-inspired microneedle for easy skin insertion and difficult removal. ACS Appl. Mater. Interfaces 10(35), 29338–29346 (2018). https://doi.org/10.1021/acsami.8b09563
- R. Herbert, H.R. Lim, S. Park, J.H. Kim, W.H. Yeo, Recent advances in printing technologies of nanomaterials for implantable wireless systems in health monitoring and diagnosis. Adv. Healthc. Mater. 10(17), e2100158 (2021). https://doi.org/10.1002/adhm.202100158
- M.A. Shah, D.-G. Lee, B.-Y. Lee, S. Hur, Classifications and applications of inkjet printing technology: a review. IEEE Access 9, 140079–140102 (2021). https://doi.org/10.1109/access.2021.3119219
- Z. Pu, J. Tu, R. Han, X. Zhang, J. Wu et al., A flexible enzyme-electrode sensor with cylindrical working electrode modified with a 3d nanostructure for implantable continuous glucose monitoring. Lab Chip 18(23), 3570–3577 (2018). https://doi.org/10.1039/c8lc00908b
- Q. Huang, Y. Zhu, Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications. Adv. Mater. Technol. 4(5), 1800546 (2019). https://doi.org/10.1002/admt.201800546
- V.P. Rachim, S.-M. Park, Review of 3D-printing technologies for wearable and implantable bio-integrated sensors. Essays Biochem. 65, 491–502 (2021). https://doi.org/10.1042/EBC20200131
- Y. Liu, Q. Yu, X. Luo, L. Yang, Y. Cui, Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing. Microsyst. Nanoeng. 7(1), 75 (2021). https://doi.org/10.1038/s41378-021-00302-w
- Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen et al., Polymer-based device fabrication and applications using direct laser writing technology. Polymers 11(3), 553 (2019). https://doi.org/10.3390/polym11030553
- M.A. Ali, C. Hu, E.A. Yttri, R. Panat, Panat, Recent advances in 3D printing of biomedical sensing devices. Adv. Funct. Mater. 32(9), 2107671 (2022). https://doi.org/10.1002/adfm.202107671
- M.S. Saleh, S.M. Ritchie, M.A. Nicholas, H.L. Gordon, C. Hu et al., CMU array: a 3d nanoprinted, fully customizable highdensity microelectrode array platform. Sci. Adv. 8(40), eabj4853 (2022). https://doi.org/10.1126/sciadv.abj4853
- Z. Sartawi, C. Blackshields, W. Faisal, Dissolving microneedles: applications and growing therapeutic potential. J. Controll. Release 348, 186–205 (2022). https://doi.org/10.1016/j.jconrel.2022.05.045
- P. GhavamiNejad, A. GhavamiNejad, H. Zheng, K. Dhingra, M. Samarikhalaj et al., A conductive hydrogel microneedle-based assay integrating pedot: pss and ag-pt nanops for real-time, enzyme-less, and electrochemical sensing of glucose. Adv. Healthc. Mater. 12(1), e2202362 (2023). https://doi.org/10.1002/adhm.202202362
- E. García-López, H.R. Siller, C.A. Rodríguez, Study of the fabrication of aisi 316l microneedle arrays. Proc. Manuf. 26, 117–124 (2018). https://doi.org/10.1016/j.promfg.2018.07.014
- D. Rodrigues, A.I. Barbosa, R. Rebelo, I.K. Kwon, R.L. Reis et al., Skin-integrated wearable systems and implantable biosensors: a comprehensive review. Biosensors 10(7), 79 (2020). https://doi.org/10.3390/bios10070079
- A.M. Stiller, B.J. Black, C. Kung, A. Ashok, S.F. Cogan et al., A meta-analysis of intracortical device stiffness and its correlation with histological outcomes. Micromachines 9(9), 443 (2018). https://doi.org/10.3390/mi9090443
- R. Fiáth, A.L. Márton, F. Mátyás, D. Pinke, G. Márton et al., Slow insertion of silicon probes improves the quality of acute neuronal recordings. Sci. Rep. 9(1), 111 (2019). https://doi.org/10.1038/s41598-018-36816-z
- P.H. Kvist, T. Iburg, B. Aalbaek, M. Gerstenberg, C. Schoier et al., Biocompatibility of an enzyme-based, electrochemical glucose sensor for short-term implantation in the subcutis. Diabetes Technol. Ther. 8(5), 546–559 (2006). https://doi.org/10.1089/dia.2006.8.546
- A. Molinero-Fernandez, A. Casanova, Q. Wang, M. Cuartero, G.A. Crespo, In vivo transdermal multi-ion monitoring with a potentiometric microneedle-based sensor patch. ACS Sens. 8(1), 158–166 (2023). https://doi.org/10.1021/acssensors.2c01907
- F. Ribet, G. Stemme, N. Roxhed, Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system. Biomed. Microdevices 20(4), 101 (2018). https://doi.org/10.1007/s10544-018-0349-6
- P. Zan, A. Than, P.K. Duong, J. Song, C. Xu et al., Antimicrobial microneedle patch for treating deep cutaneous fungal infection. Adv. Ther. 2(10), 1900064 (2019). https://doi.org/10.1002/adtp.201900064
- Z.S. Miripour, P. Aghaee, F. Abbasvandi, P. Hoseinpour, H. Ghafari et al., Electrically guided interventional radiology, in-vivo electrochemical tracing of suspicious lesions to breast cancer prior to core needle biopsy. Biosens. Bioelectron. 161, 112209 (2020). https://doi.org/10.1016/j.bios.2020.112209
- P.J. Rousche, R.A. Normann, A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann. Biomed. Eng. 20(4), 413–422 (1992). https://doi.org/10.1007/BF02368133
- L. Chauvière, F. Pothof, K.S. Gansel, J. Klon-Lipok, A.A.A. Aarts et al., In vivo recording quality of mechanically decoupled floating versus skull-fixed silicon-based neural probes. Front. Neurosci. 13, 464 (2019). https://doi.org/10.3389/fnins.2019.00464
- D. Atkinson, T. D’Souza, J.S. Rajput, N. Tasnim, J. Muthuswamy et al., Advances in implantable microelectrode array insertion and positioning. Neuromodulation 25, 789–795 (2022). https://doi.org/10.1111/ner.13355
- L. Gao, J. Wang, S. Guan, M. Du, K. Wu et al., Magnetic actuation of flexible microelectrode arrays for neural activity recordings. Nano Lett. 19(11), 8032–8039 (2019). https://doi.org/10.1021/acs.nanolett.9b03232
- M.S. Fee, A. Leonardo, Miniature motorized microdrive and commutator system for chronic neural recording in small animals. J. Neurosci. Methods 112(2), 83–94 (2001). https://doi.org/10.1016/S0165-0270(01)00426-5
- C. Pang, Y.C. Tai, J.W. Burdick, R.A. Andersen, Electrolysis-based parylene balloon actuators for movable neural probes. 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems 913–916 (2007). https://doi.org/10.1109/NEMS.2007.352166
- F. Vitale, D.G. Vercosa, A.V. Rodriguez, S.S. Pamulapati, F. Seibt et al., Fluidic microactuation of flexible electrodes for neural recording. Nano Lett. 18(1), 326–335 (2018). https://doi.org/10.1021/acs.nanolett.7b04184
- T. Naghdi, S. Ardalan, Z. Asghari Adib, A.R. Sharifi, H. Golmohammadi, Moving toward smart biomedical sensing. Biosens. Bioelectron. 223, 115009 (2022). https://doi.org/10.1016/j.bios.2022.115009
- A.K. Yadav, D. Verma, R.K. Sajwan, M. Poddar, S.K. Yadav et al., Nanomaterial-based electrochemical nanodiagnostics for human and gut metabolites diagnostics: recent advances and challenges. Biosensors 12(9), 733 (2022). https://doi.org/10.3390/bios12090733
- C. Keibl, M. Kerbl, C.J. Schlimp, Comparison of ringer’s solution with 0.4% glucose or without in intraoperative infusion regimens for the prevention of hypoglycemia in juvenile pigs. Lab. Anim. 48(2), 170–176 (2014). https://doi.org/10.1177/0023677213519088
- C. Shaefer, D. Hinnen, C. Sadler, Hypoglycemia and diabetes: increased need for awareness. Curr. Med. Res. Opin. 32(9), 1479–1486 (2016). https://doi.org/10.1185/03007995.2016.1163255
- O. Mosenzon, A.Y.Y. Cheng, A.A. Rabinstein, S. Sacco, Diabetes and stroke: what are the connections? J. Stroke 25(1), 26–38 (2023). https://doi.org/10.5853/jos.2022.02306
- B.W.C. Bongaerts, W. Rathmann, B. Kowall, C. Herder, D. Stöckl et al., Postchallenge hyperglycemia is positively associated with diabetic polyneuropathy: the kora f4 study. Diabetes Care 35(9), 1891–1893 (2012). https://doi.org/10.2337/dc11-2028
- A.V.A. Mariadoss, A.S. Sivakumar, C.-H. Lee, S.J. Kim, Diabetes mellitus and diabetic foot ulcer: etiology, biochemical and molecular based treatment strategies via gene and nanotherapy. Biomed. Pharmacother. 151, 113134 (2022). https://doi.org/10.1016/j.biopha.2022.113134
- L. Johnston, G. Wang, K. Hu, C. Qian, G. Liu, Advances in biosensors for continuous glucose monitoring towards wearables. Front. Bioeng. Biotechnol. 9, 733810 (2021). https://doi.org/10.3389/fbioe.2021.733810
- L. Heinemann, A. Stuhr, A. Brown, G. Freckmann, M.D. Breton et al., Self-measurement of blood glucose and continuous glucose monitoring—is there only one future? Eur. Endocrinol. 14(2), 24–29 (2018). https://doi.org/10.17925/EE.2018.14.2.24
- M.N. Chien, Y.J. Chen, C.H. Bai, J.T. Huang, Continuous glucose monitoring system based on percutaneous microneedle array. Micromachines 13(3), 478 (2022). https://doi.org/10.3390/mi13030478
- Y. Zou, Z. Chu, J. Guo, S. Liu, X. Ma et al., Minimally invasive electrochemical continuous glucose monitoring sensors: recent progress and perspective. Biosens. Bioelectron. 225, 115103 (2023). https://doi.org/10.1016/j.bios.2023.115103
- M.H. Hassan, C. Vyas, B. Grieve, P. Bartolo, Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing. Sensors 21(14), 4672 (2021). https://doi.org/10.3390/s21144672
- K.B. Kim, W.-C. Lee, C.-H. Cho, D.-S. Park, S.J. Cho et al., Continuous glucose monitoring using a microneedle array sensor coupled with a wireless signal transmitter. Sens. Actuators B Chem. 281, 14–21 (2019). https://doi.org/10.1016/j.snb.2018.10.081
- Y. Cheng, X. Gong, J. Yang, G. Zheng, Y. Zheng et al., A touch-actuated glucose sensor fully integrated with microneedle array and reverse iontophoresis for diabetes monitoring. Biosens. Bioelectron. 203, 114026 (2022). https://doi.org/10.1016/j.bios.2022.114026
- K. Tian, M. Prestgard, A. Tiwari, A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng. C 41, 100–118 (2014). https://doi.org/10.1016/j.msec.2014.04.013
- G. Wang, X. He, L. Wang, A. Gu, Y. Huang et al., Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 180(3), 161–186 (2013). https://doi.org/10.1007/s00604-012-0923-1
- S.R. Chinnadayyala, J. Park, A.T. Satti, D. Kim, S. Cho, Minimally invasive and continuous glucose monitoring sensor based on non-enzymatic porous platinum black-coated gold microneedles. Electrochim. Acta 369, 137691 (2021). https://doi.org/10.1016/j.electacta.2020.137691
- J. Wang, Z. Lu, R. Cai, H. Zheng, J. Yu et al., Microneedle-based transdermal detection and sensing devices. Lab Chip 23, 869–887 (2023). https://doi.org/10.1039/d2lc00790h
- A.E. Jones, M.A. Puskarich, Sepsis-induced tissue hypoperfusion. Crit. Care Clin. 25(4), 769–779 (2009). https://doi.org/10.1016/j.ccc.2009.06.003
- P. Bollella, S. Sharma, A.E.G. Cass, R. Antiochia, Microneedle-based biosensor for minimally-invasive lactate detection. Biosens. Bioelectron. 123, 152–159 (2019). https://doi.org/10.1016/j.bios.2018.08.010
- M. Braendlein, A.-M. Pappa, M. Ferro, A. Lopresti, C. Acquaviva et al., Lactate detection in tumor cell cultures using organic transistor circuits. Adv. Mater. 29(13), 1605744 (2017). https://doi.org/10.1002/adma.201605744
- Q. Li, Y. Zhang, H. Fan, Y. Gong, Y. Xu et al., In vitro and in vivo detection of lactate with nanohybrid-functionalized pt microelectrode facilitating assessment of tumor development. Biosens. Bioelectron. 191, 113474 (2021). https://doi.org/10.1016/j.bios.2021.113474
- P. Yanez-Sedeno, S. Campuzano, J.M. Pingarron, Multiplexed electrochemical immunosensors for clinical biomarkers. Sensors 17(5), 965 (2017). https://doi.org/10.3390/s17050965
- J. Gao, W. Huang, Z. Chen, C. Yi, L. Jiang, Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sens. Actuators B Chem. 287, 102–110 (2019). https://doi.org/10.1016/j.snb.2019.02.020
- Y. Xiang, C. Hu, G. Wu, S. Xu, Y. Li, Nanomaterial-based microfluidic systems for cancer biomarker detection: recent applications and future perspectives. Trends Analyt. Chem. 158, 116835 (2023). https://doi.org/10.1016/j.trac.2022.116835
- A. Koklu, D. Ohayon, S. Wustoni, V. Druet, A. Saleh et al., Organic bioelectronic devices for metabolite sensing. Chem. Rev. 122(4), 4581–4635 (2022). https://doi.org/10.1021/acs.chemrev.1c00395
- B. Ciui, A. Martin, R.K. Mishra, B. Brunetti, T. Nakagawa et al., Wearable wireless tyrosinase bandage and microneedle sensors: toward melanoma screening. Adv. Healthc. Mater. 7(7), e1701264 (2018). https://doi.org/10.1002/adhm.201701264
- M. Dervisevic, M. Alba, T.E. Adams, B. Prieto-Simon, N.H. Voelcker, Electrochemical immunosensor for breast cancer biomarker detection using high-density silicon microneedle array. Biosens. Bioelectron. 192, 113496 (2021). https://doi.org/10.1016/j.bios.2021.113496
- Z. Zhang, P. Sen, B.R. Adhikari, Y. Li, L. Soleymani, Development of nucleic-acid-based electrochemical biosensors for clinical applications. Angew. Chem. Int. Ed. 61(50), e202212496 (2022). https://doi.org/10.1002/anie.202212496
- A.V. Anzalone, L.W. Koblan, D.R. Liu, Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38(7), 824–844 (2020). https://doi.org/10.1038/s41587-020-0561-9
- K. Fijorek, M. Puskulluoglu, D. Tomaszewska, R. Tomaszewski, A. Glinka et al., Serum potassium, sodium and calcium levels in healthy individuals—literature review and data analysis. Folia Med. Cracov. 54(1), 53–70 (2014)
- G.J. Casimir, N. Lefevre, F. Corazza, J. Duchateau, M. Chamekh, The acid-base balance and gender in inflammation: a mini-review. Front. Immunol. 9, 475 (2018). https://doi.org/10.3389/fimmu.2018.00475
- S. Odinotski, K. Dhingra, A. GhavamiNejad, H. Zheng, P. GhavamiNejad et al., A conductive hydrogel-based microneedle platform for real-time pH measurement in live animals. Small 18(45), 2200201 (2022). https://doi.org/10.1002/smll.202200201
- C. Li, Y. Zhuo, X. Xiao, S. Li, K. Han et al., Facile electrochemical microbiosensor based on in situ self-assembly of Ag nanops coated on Ti(3)C(2)T(x) for in vivo measurements of chloride ions in the Pd mouse brain. Anal. Chem. 93(21), 7647–7656 (2021). https://doi.org/10.1021/acs.analchem.1c00342
- D. Bennet, Y. Khorsandian, J. Pelusi, A. Mirabella, P. Pirrotte et al., Molecular and physical technologies for monitoring fluid and electrolyte imbalance: a focus on cancer population. Clin. Transl. Med. 11(6), e461 (2021). https://doi.org/10.1002/ctm2.461
- F. Zhao, G.-Y. Shi, Y. Tian, Simultaneous determination of glutamate and calcium ion in rat brain during spreading depression and ischemia processes. Chin. J. Anal. Chem. 47(3), 347–354 (2019). https://doi.org/10.1016/s1872-2040(19)61146-1
- D.D. Zhu, Y.R. Tan, L.W. Zheng, J.Z. Lao, J.Y. Liu et al., Microneedle-coupled epidermal sensors for in-situ-multiplexed ion detection in interstitial fluids. ACS Appl. Mater. Interfaces 15, 14146–14154 (2023). https://doi.org/10.1021/acsami.3c00573
- Y. Zhang, K. Chi, J. Xiao, Y. Xu, A. Zhao et al., Coral-like hierarchical structured carbon nanoscaffold with improved sensitivity for biomolecular detection in cancer tissue. Biosens. Bioelectron. 150, 111924 (2020). https://doi.org/10.1016/j.bios.2019.111924
- Y. Da, S. Luo, Y. Tian, Real-time monitoring of neurotransmitters in the brain of living animals. ACS Appl. Mater. Interfaces 15(1), 138–157 (2023). https://doi.org/10.1021/acsami.2c02740
- Z.-Z. Si, C.-J. Zou, X. Mei, X.-F. Li, H. Luo et al., Targeting neuroinflammation in alzheimer’s disease: from mechanisms to clinical applications. Neural Regen. Res. 18(4), 708–715 (2023). https://doi.org/10.4103/1673-5374.353484
- L.F. Burbulla, P. Song, J.R. Mazzulli, E. Zampese, Y.C. Wong et al., Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in parkinson’s disease. Science 357(6357), 1255 (2017). https://doi.org/10.1126/science.aam9080
- R.I. Teleanu, A.G. Niculescu, E. Roza, O. Vladacenco, A.M. Grumezescu et al., Neurotransmitters-key factors in neurological and neurodegenerative disorders of the central nervous system. Int. J. Mol. Sci. 23(11), 5954 (2022). https://doi.org/10.3390/ijms23115954
- A.N. Vaneev, R.V. Timoshenko, P.V. Gorelkin, N.L. Klyachko, Y.E. Korchev et al., Nano- and microsensors for in vivo real-time electrochemical analysis: present and future perspectives. Nanomaterials 12(21), 3736 (2022). https://doi.org/10.3390/nano12213736
- K. Guzman-Ramos, D. Osorio-Gomez, F. Bermudez-Rattoni, Cognitive impairment in alzheimer’s and metabolic diseases: a catecholaminergic hypothesis. Neuroscience 497, 308–323 (2022). https://doi.org/10.1016/j.neuroscience.2022.05.031
- A.K. Hurben, N.Y. Tretyakova, Role of protein damage inflicted by dopamine metabolites in parkinson’s disease: evidence, tools, and outlook. Chem. Res. Toxicol. 35(10), 1789–1804 (2022). https://doi.org/10.1021/acs.chemrestox.2c00193
- G. Novak, M.V. Seeman, Dopamine, psychosis, and symptom fluctuation: a narrative review. Healthcare (2022). https://doi.org/10.3390/healthcare10091713
- Y. Tang, X.K. Yang, X.W. Zhang, W.T. Wu, F.L. Zhang et al., Harpagide, a natural product, promotes synaptic vesicle release as measured by nanoelectrode amperometry. Chem. Sci. 11(3), 778–785 (2019). https://doi.org/10.1039/c9sc05538j
- C. He, M. Tao, C. Zhang, Y. He, W. Xu et al., Microelectrode-based electrochemical sensing technology for in vivo detection of dopamine: recent developments and future prospects. Crit. Rev. Anal. Chem. 52(3), 544–554 (2022). https://doi.org/10.1080/10408347.2020.1811946
- T. Feng, W. Ji, Q. Tang, H. Wei, S. Zhang et al., Low-fouling nanoporous conductive polymer-coated microelectrode for in vivo monitoring of dopamine in the rat brain. Anal. Chem. 91(16), 10786–10791 (2019). https://doi.org/10.1021/acs.analchem.9b02386
- Z. Hsine, R. Mlika, N. Jaffrezic-Renault, H. Korri-Youssoufi, Review—recent progress in graphene based modified electrodes for electrochemical detection of dopamine. Chemosensors 10(7), 249 (2022). https://doi.org/10.3390/chemosensors10070249
- I.M. Taylor, N.A. Patel, N.C. Freedman, E. Castagnola, X.T. Cui, Direct in vivo electrochemical detection of resting dopamine using poly(3,4-ethylenedioxythiophene)/carbon nanotube functionalized microelectrodes. Anal. Chem. 91(20), 12917–12927 (2019). https://doi.org/10.1021/acs.analchem.9b02904
- X. Chen, J. Chen, H. Dong, Q. Yu, S. Zhang et al., Sensitive detection of dopamine using a platinum microelectrode modified by reduced graphene oxide and gold nanops. J. Electroanal. Chem. 848, 113244 (2019). https://doi.org/10.1016/j.jelechem.2019.113244
- P. Puthongkham, B.J. Venton, Recent advances in fast-scan cyclic voltammetry. Analyst 145(4), 1087–1102 (2020). https://doi.org/10.1039/c9an01925a
- A. Abdalla, A. West, Y. Jin, R.A. Saylor, B. Qiang et al., Fast serotonin voltammetry as a versatile tool for mapping dynamic tissue architecture: I. responses at carbon fibers describe local tissue physiology. J. Neurochem. 153(1), 33–50 (2020). https://doi.org/10.1111/jnc.14854
- Y. Sun, T.N.H. Nguyen, A. Anderson, X. Cheng, T.E. Gage et al., In vivo glutamate sensing inside the mouse brain with perovskite nickelate-nafion heterostructures. ACS Appl. Mater. Interfaces 12(22), 24564–24574 (2020). https://doi.org/10.1021/acsami.0c02826
- S.S. Chu, H.A. Nguyen, D. Lin, M. Bhatti, C.E. Jones-Tinsley et al., Development of highly sensitive, flexible dual l-glutamate and gaba microsensors for in vivo brain sensing. Biosens. Bioelectron. 222, 114941 (2023). https://doi.org/10.1016/j.bios.2022.114941
- X. Wang, T. Xu, Y. Zhang, N. Gao, T. Feng et al., In vivo detection of redox-inactive neurochemicals in the rat brain with an ion transfer microsensor. ACS Sens. 6(7), 2757–2762 (2021). https://doi.org/10.1021/acssensors.1c00978
- Y. Luo, R. Lin, Y. Zuo, Z. Zhang, Y. Zhuo et al., Efficient electrochemical microsensor for in vivo monitoring of H2 O2 in PD mouse brain: rational design and synthesis of recognition molecules. Anal. Chem. 94(25), 9130–9139 (2022). https://doi.org/10.1021/acs.analchem.2c01570
- L. Liu, L. Zhang, Z. Dai, Y. Tian, A simple functional carbon nanotube fiber for in vivo monitoring of NO in a rat brain following cerebral ischemia. Analyst 142(9), 1452–1458 (2017). https://doi.org/10.1039/c7an00138j
- A. Meiller, E. Sequeira, S. Marinesco, Electrochemical nitric oxide microsensors based on a fluorinated xerogel screening layer for in vivo brain monitoring. Anal. Chem. 92(2), 1804–1810 (2020). https://doi.org/10.1021/acs.analchem.9b03621
- A. Polak-Szabela, I. Dziembowska, M. Bracha, A. Pedrycz-Wieczorska, K. Kedziora-Kornatowska et al., The analysis of oxidative stress markers may increase the accuracy of the differential diagnosis of alzheimer’s disease with and without depression. Clin. Interv. Aging 16, 1105–1117 (2021). https://doi.org/10.2147/CIA.S310750
- Q. Peng, X. Yan, X. Shi, S. Ou, H. Gu et al., In vivo monitoring of superoxide anion from alzheimer’s rat brains with functionalized ionic liquid polymer decorated microsensor. Biosens. Bioelectron. 144, 111665 (2019). https://doi.org/10.1016/j.bios.2019.111665
- C. Szabo, K. Modis, Pathophysiological roles of peroxynitrite in circulatory shock. Shock 34, 4–14 (2010). https://doi.org/10.1097/SHK.0b013e3181e7e9ba
- F. Liu, H. Dong, Y. Tian, Real-time monitoring of peroxynitrite (ONOO−) in the rat brain by developing a ratiometric electrochemical biosensor. Analyst 144(6), 2150–2157 (2019). https://doi.org/10.1039/c9an00079h
- J.K. Thompson, M.R. Peterson, R.D. Freeman, Single-neuron activity and tissue oxygenation in the cerebral cortex. Science 299(5609), 1070–1072 (2003). https://doi.org/10.1126/science.1079220
- Y. Cao, W. Ma, W. Ji, P. Yu, F. Wu et al., Electrophoretically sheathed carbon fiber microelectrodes with metal/nitrogen/carbon electrocatalyst for electrochemical monitoring of oxygen in vivo. ACS Appl. Bio Mater. 2(3), 1376–1383 (2019). https://doi.org/10.1021/acsabm.9b00100
- L. Zhou, X. Li, B. Su, Spatial regulation control of oxygen metabolic consumption in mouse brain. Adv. Sci. 9(34), e2204468 (2022). https://doi.org/10.1002/advs.202204468
- K.Y. Goud, C. Moonla, R.K. Mishra, C. Yu, R. Narayan et al., Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward parkinson management. ACS Sens. 4(8), 2196–2204 (2019). https://doi.org/10.1021/acssensors.9b01127
- P. Joshi, P.R. Riley, R. Mishra, S. Azizi Machekposhti, R. Narayan, Transdermal polymeric microneedle sensing platform for fentanyl detection in biofluid. Biosensors 12(4), 198 (2022). https://doi.org/10.3390/bios12040198
- M.M. Sabzehmeidani, M. Kazemzad, Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: a review. Sci. Total. Environ. 810, 151997 (2022). https://doi.org/10.1016/j.scitotenv.2021.151997
- M. Regiart, A. Ledo, E. Fernandes, G.A. Messina, C.M.A. Brett et al., Highly sensitive and selective nanostructured microbiosensors for glucose and lactate simultaneous measurements in blood serum and in vivo in brain tissue. Biosens. Bioelectron. 199, 113874 (2022). https://doi.org/10.1016/j.bios.2021.113874
- X. Xie, J.C. Doloff, V. Yesilyurt, A. Sadraei, J.J. McGarrigle et al., Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat. Biomed. Eng. 2(12), 894–906 (2018). https://doi.org/10.1038/s41551-018-0273-3
- B. Liu, X. Liu, S. Shi, R. Huang, R. Su et al., Design and mechanisms of antifouling materials for surface plasmon resonance sensors. Acta Biomater. 40, 100–118 (2016). https://doi.org/10.1016/j.actbio.2016.02.035
- D. Chan, J.C. Chien, E. Axpe, L. Blankemeier, S.W. Baker et al., Combinatorial polyacrylamide hydrogels for preventing biofouling on implantable biosensors. Adv. Mater. 34(24), e2109764 (2022). https://doi.org/10.1002/adma.202109764
- K. Sato, T. Konno, Carbon nanotube immobilized electrode using amphiphilic phospholipid polymer with anti-fouling and dispersion property for electrochemical analysis. Electroanalysis 32(5), 898–901 (2020). https://doi.org/10.1002/elan.201900549
- L. Fang, B. Liang, G. Yang, Y. Hu, Q. Zhu et al., A needle-type glucose biosensor based on PANI nanofibers and PU/E-PU membrane for long-term invasive continuous monitoring. Biosens. Bioelectron. 97, 196–202 (2017). https://doi.org/10.1016/j.bios.2017.04.043
- S.-Y. Yang, V. Sencadas, S.S. You, N.Z.-X. Jia, S.S. Srinivasan et al., Powering implantable and ingestible electronics. Adv. Funct. Mater. 31(44), 2009289 (2021). https://doi.org/10.1002/adfm.202009289
- X. Chen, X. Xie, Y. Liu, C. Zhao, M. Wen et al., Advances in healthcare electronics enabled by triboelectric nanogenerators. Adv. Funct. Mater. 30(43), 2004673 (2020). https://doi.org/10.1002/adfm.202004673
- L. Barelli, G. Bidini, D. Pelosi, E. Sisani, Enzymatic biofuel cells: a review on flow designs. Energies (2021). https://doi.org/10.3390/en14040910
- S. El Ichi-Ribault, J.-P. Alcaraz, F. Boucher, B. Boutaud, R. Dalmolin et al., Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months. Electrochim. Acta 269, 360–366 (2018). https://doi.org/10.1016/j.electacta.2018.02.156
References
S. Neethirajan, S.K. Tuteja, S.T. Huang, D. Kelton, Recent advancement in biosensors technology for animal and livestock health management. Biosens. Bioelectron. 98, 398–407 (2017). https://doi.org/10.1016/j.bios.2017.07.015
D. Giansanti, G. Maccioni, The mhealth in the canine assisted therapy: the proposal of a conceptual model for the wearable monitoring. Mhealth 5, 51 (2019). https://doi.org/10.21037/mhealth.2019.09.08
M. Mostafa, A. Barhoum, E. Sehit, H. Gewaid, E. Mostafa et al., Current trends in covid-19 diagnosis and its new variants in physiological fluids: surface antigens, antibodies, nucleic acids, and RNA sequencing. Trends Analyt. Chem. 157, 116750 (2022). https://doi.org/10.1016/j.trac.2022.116750
J. Min, J.R. Sempionatto, H. Teymourian, J. Wang, W. Gao, Wearable electrochemical biosensors in North America. Biosens. Bioelectron. 172, 112750 (2021). https://doi.org/10.1016/j.bios.2020.112750
P. Pulugu, S. Ghosh, S. Rokade, K. Choudhury, N. Arya et al., A perspective on implantable biomedical materials and devices for diagnostic applications. Curr. Opin. Biomed. Eng. 18, 100287 (2021). https://doi.org/10.1016/j.cobme.2021.100287
C. Steiger, A. Abramson, P. Nadeau, A.P. Chandrakasan, R. Langer et al., Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4(2), 83–98 (2019). https://doi.org/10.1038/s41578-018-0070-3
A.J. Bandodkar, J. Wang, Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32(7), 363–371 (2014). https://doi.org/10.1016/j.tibtech.2014.04.005
M. De Santis, I. Cacciotti, Wireless implantable and biodegradable sensors for postsurgery monitoring: current status and future perspectives. Nanotechnology 31(25), 252001 (2020). https://doi.org/10.1088/1361-6528/ab7a2d
A. Zebda, S. Cosnier, J.P. Alcaraz, M. Holzinger, A. Le Goff et al., Single glucose biofuel cells implanted in rats power electronic devices. Sci. Rep. 3(1), 1516 (2013). https://doi.org/10.1038/srep01516
H. Teymourian, A. Barfidokht, J. Wang, Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Sci. Rev. 49(21), 7671–7709 (2020). https://doi.org/10.1039/d0cs00304b
W. Zhang, L. Zhang, H. Gao, W. Yang, S. Wang et al., Self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Nano-Micro Lett. 10(2), 32 (2018). https://doi.org/10.1007/s40820-017-0185-x
B. Yang, X. Fang, J. Kong, Engineered microneedles for interstitial fluid cell-free DNA capture and sensing using iontophoretic dual-extraction wearable patch. Adv. Funct. Mater. 30(24), 2000591 (2020). https://doi.org/10.1002/adfm.202000591
W. Lee, S.-H. Jeong, Y.-W. Lim, H. Lee, J. Kang et al., Conformable microneedle pH sensors via the integration of two different siloxane polymers for mapping peripheral artery disease. Sci. Adv. 7(48), eabi6290 (2021). https://doi.org/10.1126/sciadv.abi6290
X. Li, X. Huang, J. Mo, H. Wang, Q. Huang et al., A fully integrated closed-loop system based on mesoporous microneedles-iontophoresis for diabetes treatment. Adv. Sci. 8(16), 2100827 (2021). https://doi.org/10.1002/advs.202100827
J. Li, Y. Liu, L. Yuan, B. Zhang, E.S. Bishop et al., A tissue-like neurotransmitter sensor for the brain and gut. Nature 606(7912), 94–101 (2022). https://doi.org/10.1038/s41586-022-04615-2
F. Tehrani, H. Teymourian, B. Wuerstle, J. Kavner, R. Patel et al., An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6, 1214–1224 (2022). https://doi.org/10.1038/s41551-022-00887-1
H.C. Ates, P.Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narvaez, F. Guder et al., End-to-end design of wearable sensors. Nat. Rev. Mater. 7(11), 887–907 (2022). https://doi.org/10.1038/s41578-022-00460-x
M. Dervisevic, M. Alba, L. Yan, M. Senel, T.R. Gengenbach et al., Transdermal electrochemical monitoring of glucose via high-density silicon microneedle array patch. Adv. Funct. Mater. 32(3), 2009850 (2022). https://doi.org/10.1002/adfm.202009850
S. Liu, M.-N. Jin, Y.-S. Quan, F. Kamiyama, H. Katsumi et al., The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J. Controll. Release 161(3), 933–941 (2012). https://doi.org/10.1016/j.jconrel.2012.05.030
Y. Zhou, B. Liu, Y. Lei, L. Tang, T. Li et al., Acupuncture needle-based transistor neuroprobe for in vivo monitoring of neurotransmitter. Small 18(52), 2204142 (2022). https://doi.org/10.1002/smll.202204142
Y. Zhou, F. Ding, G.-J. Zhang, L.-N. Tang, Y.-T. Li, Micro-needle electrode for real-time monitoring of norepinephrine in rat central nervous system. Chin. J. Anal. Chem. 49(11), 35–40 (2021). https://doi.org/10.1016/j.cjac.2021.07.006
J.-X. Zhou, F. Ding, L.-N. Tang, T. Li, Y.-H. Li et al., Monitoring of pH changes in a live rat brain with MoS /PAN functionalized microneedles. Analyst 143(18), 4469–4475 (2018). https://doi.org/10.1039/C8AN01149D
L. Tang, Y. Li, H. Xie, Q. Shu, F. Yang et al., A sensitive acupuncture needle microsensor for real-time monitoring of nitric oxide in acupoints of rats. Sci. Rep. 7(1), 6446 (2017). https://doi.org/10.1038/s41598-017-06657-3
T. Lin, Y. Xu, A. Zhao, W. He, F. Xiao, Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: a review. Anal. Chim. Acta 1207, 339461 (2022). https://doi.org/10.1016/j.aca.2022.339461
C. Wei, Y. Wang, W. Pei, X. Han, L. Lin et al., Distributed implantation of a flexible microelectrode array for neural recording. Microsyst. Nanoeng. (2022). https://doi.org/10.1038/s41378-022-00366-2
X. Jin, G. Li, T. Xu, L. Su, D. Yan et al., Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosens. Bioelectron. 196, 113760 (2022). https://doi.org/10.1016/j.bios.2021.113760
W. Ling, G. Liew, Y. Li, Y. Hao, H. Pan et al., Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal–organic frameworks. Adv. Mater. 30(23), 1800917 (2018). https://doi.org/10.1002/adma.201800917
B. Yang, J. Kong, X. Fang, Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA. Nat. Commun. 13(1), 3999 (2022). https://doi.org/10.1038/s41467-022-31740-3
S. Correa, A.K. Grosskopf, H.L. Hernandez, D. Chan, A.C. Yu et al., Translational applications of hydrogels. Chem. Rev. 121(18), 11385–11457 (2021). https://doi.org/10.1021/acs.chemrev.0c01177
S. Wang, Y. Liu, A. Zhu, Y. Tian, In vivo electrochemical biosensors: recent advances in molecular design, electrode materials, and electrochemical devices. Anal. Chem. 95(1), 388–406 (2023). https://doi.org/10.1021/acs.analchem.2c04541
S. Moussa, J. Mauzeroll, Review—microelectrodes: an overview of probe development and bioelectrochemistry applications from 2013 to 2018. J. Electrochem. Soc. 166(6), G25–G38 (2019). https://doi.org/10.1149/2.0741906jes
H. Zeng, N. Gao, Y. Yin, M. Zhang, Recent progress in improving the performance of in vivo electrochemical microsensor based on materials. Curr. Opin. Electrochem. 33, 100957 (2022). https://doi.org/10.1016/j.coelec.2022.100957
R. Liu, Z.-Y. Feng, D. Li, B. Jin, Y. Lan et al., Recent trends in carbon-based microelectrodes as electrochemical sensors for neurotransmitter detection: a review. Trends Analyt. Chem. 148, 116541 (2022). https://doi.org/10.1016/j.trac.2022.116541
S. Ding, G. Shi, A. Zhu, Stimuli-responsive polymers for interface engineering toward enhanced electrochemical analysis of neurochemicals. Chem. Commun 58(95), 13171–13187 (2022). https://doi.org/10.1039/d2cc04506k
S. Tajik, H. Beitollahi, F.G. Nejad, I.S. Shoaie, M.A. Khalilzadeh et al., Recent developments in conducting polymers: applications for electrochemistry. RSC Adv. 10(62), 37834–37856 (2020). https://doi.org/10.1039/D0RA06160C
S. Wang, J.Y. Oh, J. Xu, H. Tran, Z. Bao, Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51(5), 1033–1045 (2018). https://doi.org/10.1021/acs.accounts.8b00015
N. Ashammakhi, A.L. Hernandez, B.D. Unluturk, S.A. Quintero, N.R. Barros et al., Biodegradable implantable sensors: materials design, fabrication, and applications. Adv. Funct. Mater. 31(49), 2104149 (2021). https://doi.org/10.1002/adfm.202104149
W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert et al., Fabrication of photonic crystals in silicon-on-insulator using 248 nm deep UV lithography. IEEE J. Sel. Top. Quantum Electron. 8(4), 928–934 (2002). https://doi.org/10.1109/JSTQE.2002.800845
N. Harpak, E. Borberg, A. Raz, F. Patolsky, The “bloodless” blood test: intradermal prick nanoelectronics for the blood extraction-free multiplex detection of protein biomarkers. ACS Nano 16(9), 13800–13813 (2022). https://doi.org/10.1021/acsnano.2c01793
C. Wei, Y. Wang, W. Pei, X. Han, L. Lin et al., Distributed implantation of a flexible microelectrode array for neural recording. Microsyst. Nanoeng. 8(1), 50 (2022). https://doi.org/10.1038/s41378-022-00366-2
K. Lee, H.C. Lee, D.S. Lee, H. Jung, Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv. Mater. 22(4), 483–486 (2010). https://doi.org/10.1002/adma.200902418
Z. Chen, L. Ren, J. Li, L. Yao, Y. Chen et al., Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomater. 65, 283–291 (2018). https://doi.org/10.1016/j.actbio.2017.10.030
Z. Chen, Y. Lin, W. Lee, L. Ren, B. Liu et al., Additive manufacturing of honeybee-inspired microneedle for easy skin insertion and difficult removal. ACS Appl. Mater. Interfaces 10(35), 29338–29346 (2018). https://doi.org/10.1021/acsami.8b09563
R. Herbert, H.R. Lim, S. Park, J.H. Kim, W.H. Yeo, Recent advances in printing technologies of nanomaterials for implantable wireless systems in health monitoring and diagnosis. Adv. Healthc. Mater. 10(17), e2100158 (2021). https://doi.org/10.1002/adhm.202100158
M.A. Shah, D.-G. Lee, B.-Y. Lee, S. Hur, Classifications and applications of inkjet printing technology: a review. IEEE Access 9, 140079–140102 (2021). https://doi.org/10.1109/access.2021.3119219
Z. Pu, J. Tu, R. Han, X. Zhang, J. Wu et al., A flexible enzyme-electrode sensor with cylindrical working electrode modified with a 3d nanostructure for implantable continuous glucose monitoring. Lab Chip 18(23), 3570–3577 (2018). https://doi.org/10.1039/c8lc00908b
Q. Huang, Y. Zhu, Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications. Adv. Mater. Technol. 4(5), 1800546 (2019). https://doi.org/10.1002/admt.201800546
V.P. Rachim, S.-M. Park, Review of 3D-printing technologies for wearable and implantable bio-integrated sensors. Essays Biochem. 65, 491–502 (2021). https://doi.org/10.1042/EBC20200131
Y. Liu, Q. Yu, X. Luo, L. Yang, Y. Cui, Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing. Microsyst. Nanoeng. 7(1), 75 (2021). https://doi.org/10.1038/s41378-021-00302-w
Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen et al., Polymer-based device fabrication and applications using direct laser writing technology. Polymers 11(3), 553 (2019). https://doi.org/10.3390/polym11030553
M.A. Ali, C. Hu, E.A. Yttri, R. Panat, Panat, Recent advances in 3D printing of biomedical sensing devices. Adv. Funct. Mater. 32(9), 2107671 (2022). https://doi.org/10.1002/adfm.202107671
M.S. Saleh, S.M. Ritchie, M.A. Nicholas, H.L. Gordon, C. Hu et al., CMU array: a 3d nanoprinted, fully customizable highdensity microelectrode array platform. Sci. Adv. 8(40), eabj4853 (2022). https://doi.org/10.1126/sciadv.abj4853
Z. Sartawi, C. Blackshields, W. Faisal, Dissolving microneedles: applications and growing therapeutic potential. J. Controll. Release 348, 186–205 (2022). https://doi.org/10.1016/j.jconrel.2022.05.045
P. GhavamiNejad, A. GhavamiNejad, H. Zheng, K. Dhingra, M. Samarikhalaj et al., A conductive hydrogel microneedle-based assay integrating pedot: pss and ag-pt nanops for real-time, enzyme-less, and electrochemical sensing of glucose. Adv. Healthc. Mater. 12(1), e2202362 (2023). https://doi.org/10.1002/adhm.202202362
E. García-López, H.R. Siller, C.A. Rodríguez, Study of the fabrication of aisi 316l microneedle arrays. Proc. Manuf. 26, 117–124 (2018). https://doi.org/10.1016/j.promfg.2018.07.014
D. Rodrigues, A.I. Barbosa, R. Rebelo, I.K. Kwon, R.L. Reis et al., Skin-integrated wearable systems and implantable biosensors: a comprehensive review. Biosensors 10(7), 79 (2020). https://doi.org/10.3390/bios10070079
A.M. Stiller, B.J. Black, C. Kung, A. Ashok, S.F. Cogan et al., A meta-analysis of intracortical device stiffness and its correlation with histological outcomes. Micromachines 9(9), 443 (2018). https://doi.org/10.3390/mi9090443
R. Fiáth, A.L. Márton, F. Mátyás, D. Pinke, G. Márton et al., Slow insertion of silicon probes improves the quality of acute neuronal recordings. Sci. Rep. 9(1), 111 (2019). https://doi.org/10.1038/s41598-018-36816-z
P.H. Kvist, T. Iburg, B. Aalbaek, M. Gerstenberg, C. Schoier et al., Biocompatibility of an enzyme-based, electrochemical glucose sensor for short-term implantation in the subcutis. Diabetes Technol. Ther. 8(5), 546–559 (2006). https://doi.org/10.1089/dia.2006.8.546
A. Molinero-Fernandez, A. Casanova, Q. Wang, M. Cuartero, G.A. Crespo, In vivo transdermal multi-ion monitoring with a potentiometric microneedle-based sensor patch. ACS Sens. 8(1), 158–166 (2023). https://doi.org/10.1021/acssensors.2c01907
F. Ribet, G. Stemme, N. Roxhed, Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system. Biomed. Microdevices 20(4), 101 (2018). https://doi.org/10.1007/s10544-018-0349-6
P. Zan, A. Than, P.K. Duong, J. Song, C. Xu et al., Antimicrobial microneedle patch for treating deep cutaneous fungal infection. Adv. Ther. 2(10), 1900064 (2019). https://doi.org/10.1002/adtp.201900064
Z.S. Miripour, P. Aghaee, F. Abbasvandi, P. Hoseinpour, H. Ghafari et al., Electrically guided interventional radiology, in-vivo electrochemical tracing of suspicious lesions to breast cancer prior to core needle biopsy. Biosens. Bioelectron. 161, 112209 (2020). https://doi.org/10.1016/j.bios.2020.112209
P.J. Rousche, R.A. Normann, A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann. Biomed. Eng. 20(4), 413–422 (1992). https://doi.org/10.1007/BF02368133
L. Chauvière, F. Pothof, K.S. Gansel, J. Klon-Lipok, A.A.A. Aarts et al., In vivo recording quality of mechanically decoupled floating versus skull-fixed silicon-based neural probes. Front. Neurosci. 13, 464 (2019). https://doi.org/10.3389/fnins.2019.00464
D. Atkinson, T. D’Souza, J.S. Rajput, N. Tasnim, J. Muthuswamy et al., Advances in implantable microelectrode array insertion and positioning. Neuromodulation 25, 789–795 (2022). https://doi.org/10.1111/ner.13355
L. Gao, J. Wang, S. Guan, M. Du, K. Wu et al., Magnetic actuation of flexible microelectrode arrays for neural activity recordings. Nano Lett. 19(11), 8032–8039 (2019). https://doi.org/10.1021/acs.nanolett.9b03232
M.S. Fee, A. Leonardo, Miniature motorized microdrive and commutator system for chronic neural recording in small animals. J. Neurosci. Methods 112(2), 83–94 (2001). https://doi.org/10.1016/S0165-0270(01)00426-5
C. Pang, Y.C. Tai, J.W. Burdick, R.A. Andersen, Electrolysis-based parylene balloon actuators for movable neural probes. 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems 913–916 (2007). https://doi.org/10.1109/NEMS.2007.352166
F. Vitale, D.G. Vercosa, A.V. Rodriguez, S.S. Pamulapati, F. Seibt et al., Fluidic microactuation of flexible electrodes for neural recording. Nano Lett. 18(1), 326–335 (2018). https://doi.org/10.1021/acs.nanolett.7b04184
T. Naghdi, S. Ardalan, Z. Asghari Adib, A.R. Sharifi, H. Golmohammadi, Moving toward smart biomedical sensing. Biosens. Bioelectron. 223, 115009 (2022). https://doi.org/10.1016/j.bios.2022.115009
A.K. Yadav, D. Verma, R.K. Sajwan, M. Poddar, S.K. Yadav et al., Nanomaterial-based electrochemical nanodiagnostics for human and gut metabolites diagnostics: recent advances and challenges. Biosensors 12(9), 733 (2022). https://doi.org/10.3390/bios12090733
C. Keibl, M. Kerbl, C.J. Schlimp, Comparison of ringer’s solution with 0.4% glucose or without in intraoperative infusion regimens for the prevention of hypoglycemia in juvenile pigs. Lab. Anim. 48(2), 170–176 (2014). https://doi.org/10.1177/0023677213519088
C. Shaefer, D. Hinnen, C. Sadler, Hypoglycemia and diabetes: increased need for awareness. Curr. Med. Res. Opin. 32(9), 1479–1486 (2016). https://doi.org/10.1185/03007995.2016.1163255
O. Mosenzon, A.Y.Y. Cheng, A.A. Rabinstein, S. Sacco, Diabetes and stroke: what are the connections? J. Stroke 25(1), 26–38 (2023). https://doi.org/10.5853/jos.2022.02306
B.W.C. Bongaerts, W. Rathmann, B. Kowall, C. Herder, D. Stöckl et al., Postchallenge hyperglycemia is positively associated with diabetic polyneuropathy: the kora f4 study. Diabetes Care 35(9), 1891–1893 (2012). https://doi.org/10.2337/dc11-2028
A.V.A. Mariadoss, A.S. Sivakumar, C.-H. Lee, S.J. Kim, Diabetes mellitus and diabetic foot ulcer: etiology, biochemical and molecular based treatment strategies via gene and nanotherapy. Biomed. Pharmacother. 151, 113134 (2022). https://doi.org/10.1016/j.biopha.2022.113134
L. Johnston, G. Wang, K. Hu, C. Qian, G. Liu, Advances in biosensors for continuous glucose monitoring towards wearables. Front. Bioeng. Biotechnol. 9, 733810 (2021). https://doi.org/10.3389/fbioe.2021.733810
L. Heinemann, A. Stuhr, A. Brown, G. Freckmann, M.D. Breton et al., Self-measurement of blood glucose and continuous glucose monitoring—is there only one future? Eur. Endocrinol. 14(2), 24–29 (2018). https://doi.org/10.17925/EE.2018.14.2.24
M.N. Chien, Y.J. Chen, C.H. Bai, J.T. Huang, Continuous glucose monitoring system based on percutaneous microneedle array. Micromachines 13(3), 478 (2022). https://doi.org/10.3390/mi13030478
Y. Zou, Z. Chu, J. Guo, S. Liu, X. Ma et al., Minimally invasive electrochemical continuous glucose monitoring sensors: recent progress and perspective. Biosens. Bioelectron. 225, 115103 (2023). https://doi.org/10.1016/j.bios.2023.115103
M.H. Hassan, C. Vyas, B. Grieve, P. Bartolo, Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing. Sensors 21(14), 4672 (2021). https://doi.org/10.3390/s21144672
K.B. Kim, W.-C. Lee, C.-H. Cho, D.-S. Park, S.J. Cho et al., Continuous glucose monitoring using a microneedle array sensor coupled with a wireless signal transmitter. Sens. Actuators B Chem. 281, 14–21 (2019). https://doi.org/10.1016/j.snb.2018.10.081
Y. Cheng, X. Gong, J. Yang, G. Zheng, Y. Zheng et al., A touch-actuated glucose sensor fully integrated with microneedle array and reverse iontophoresis for diabetes monitoring. Biosens. Bioelectron. 203, 114026 (2022). https://doi.org/10.1016/j.bios.2022.114026
K. Tian, M. Prestgard, A. Tiwari, A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng. C 41, 100–118 (2014). https://doi.org/10.1016/j.msec.2014.04.013
G. Wang, X. He, L. Wang, A. Gu, Y. Huang et al., Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 180(3), 161–186 (2013). https://doi.org/10.1007/s00604-012-0923-1
S.R. Chinnadayyala, J. Park, A.T. Satti, D. Kim, S. Cho, Minimally invasive and continuous glucose monitoring sensor based on non-enzymatic porous platinum black-coated gold microneedles. Electrochim. Acta 369, 137691 (2021). https://doi.org/10.1016/j.electacta.2020.137691
J. Wang, Z. Lu, R. Cai, H. Zheng, J. Yu et al., Microneedle-based transdermal detection and sensing devices. Lab Chip 23, 869–887 (2023). https://doi.org/10.1039/d2lc00790h
A.E. Jones, M.A. Puskarich, Sepsis-induced tissue hypoperfusion. Crit. Care Clin. 25(4), 769–779 (2009). https://doi.org/10.1016/j.ccc.2009.06.003
P. Bollella, S. Sharma, A.E.G. Cass, R. Antiochia, Microneedle-based biosensor for minimally-invasive lactate detection. Biosens. Bioelectron. 123, 152–159 (2019). https://doi.org/10.1016/j.bios.2018.08.010
M. Braendlein, A.-M. Pappa, M. Ferro, A. Lopresti, C. Acquaviva et al., Lactate detection in tumor cell cultures using organic transistor circuits. Adv. Mater. 29(13), 1605744 (2017). https://doi.org/10.1002/adma.201605744
Q. Li, Y. Zhang, H. Fan, Y. Gong, Y. Xu et al., In vitro and in vivo detection of lactate with nanohybrid-functionalized pt microelectrode facilitating assessment of tumor development. Biosens. Bioelectron. 191, 113474 (2021). https://doi.org/10.1016/j.bios.2021.113474
P. Yanez-Sedeno, S. Campuzano, J.M. Pingarron, Multiplexed electrochemical immunosensors for clinical biomarkers. Sensors 17(5), 965 (2017). https://doi.org/10.3390/s17050965
J. Gao, W. Huang, Z. Chen, C. Yi, L. Jiang, Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sens. Actuators B Chem. 287, 102–110 (2019). https://doi.org/10.1016/j.snb.2019.02.020
Y. Xiang, C. Hu, G. Wu, S. Xu, Y. Li, Nanomaterial-based microfluidic systems for cancer biomarker detection: recent applications and future perspectives. Trends Analyt. Chem. 158, 116835 (2023). https://doi.org/10.1016/j.trac.2022.116835
A. Koklu, D. Ohayon, S. Wustoni, V. Druet, A. Saleh et al., Organic bioelectronic devices for metabolite sensing. Chem. Rev. 122(4), 4581–4635 (2022). https://doi.org/10.1021/acs.chemrev.1c00395
B. Ciui, A. Martin, R.K. Mishra, B. Brunetti, T. Nakagawa et al., Wearable wireless tyrosinase bandage and microneedle sensors: toward melanoma screening. Adv. Healthc. Mater. 7(7), e1701264 (2018). https://doi.org/10.1002/adhm.201701264
M. Dervisevic, M. Alba, T.E. Adams, B. Prieto-Simon, N.H. Voelcker, Electrochemical immunosensor for breast cancer biomarker detection using high-density silicon microneedle array. Biosens. Bioelectron. 192, 113496 (2021). https://doi.org/10.1016/j.bios.2021.113496
Z. Zhang, P. Sen, B.R. Adhikari, Y. Li, L. Soleymani, Development of nucleic-acid-based electrochemical biosensors for clinical applications. Angew. Chem. Int. Ed. 61(50), e202212496 (2022). https://doi.org/10.1002/anie.202212496
A.V. Anzalone, L.W. Koblan, D.R. Liu, Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38(7), 824–844 (2020). https://doi.org/10.1038/s41587-020-0561-9
K. Fijorek, M. Puskulluoglu, D. Tomaszewska, R. Tomaszewski, A. Glinka et al., Serum potassium, sodium and calcium levels in healthy individuals—literature review and data analysis. Folia Med. Cracov. 54(1), 53–70 (2014)
G.J. Casimir, N. Lefevre, F. Corazza, J. Duchateau, M. Chamekh, The acid-base balance and gender in inflammation: a mini-review. Front. Immunol. 9, 475 (2018). https://doi.org/10.3389/fimmu.2018.00475
S. Odinotski, K. Dhingra, A. GhavamiNejad, H. Zheng, P. GhavamiNejad et al., A conductive hydrogel-based microneedle platform for real-time pH measurement in live animals. Small 18(45), 2200201 (2022). https://doi.org/10.1002/smll.202200201
C. Li, Y. Zhuo, X. Xiao, S. Li, K. Han et al., Facile electrochemical microbiosensor based on in situ self-assembly of Ag nanops coated on Ti(3)C(2)T(x) for in vivo measurements of chloride ions in the Pd mouse brain. Anal. Chem. 93(21), 7647–7656 (2021). https://doi.org/10.1021/acs.analchem.1c00342
D. Bennet, Y. Khorsandian, J. Pelusi, A. Mirabella, P. Pirrotte et al., Molecular and physical technologies for monitoring fluid and electrolyte imbalance: a focus on cancer population. Clin. Transl. Med. 11(6), e461 (2021). https://doi.org/10.1002/ctm2.461
F. Zhao, G.-Y. Shi, Y. Tian, Simultaneous determination of glutamate and calcium ion in rat brain during spreading depression and ischemia processes. Chin. J. Anal. Chem. 47(3), 347–354 (2019). https://doi.org/10.1016/s1872-2040(19)61146-1
D.D. Zhu, Y.R. Tan, L.W. Zheng, J.Z. Lao, J.Y. Liu et al., Microneedle-coupled epidermal sensors for in-situ-multiplexed ion detection in interstitial fluids. ACS Appl. Mater. Interfaces 15, 14146–14154 (2023). https://doi.org/10.1021/acsami.3c00573
Y. Zhang, K. Chi, J. Xiao, Y. Xu, A. Zhao et al., Coral-like hierarchical structured carbon nanoscaffold with improved sensitivity for biomolecular detection in cancer tissue. Biosens. Bioelectron. 150, 111924 (2020). https://doi.org/10.1016/j.bios.2019.111924
Y. Da, S. Luo, Y. Tian, Real-time monitoring of neurotransmitters in the brain of living animals. ACS Appl. Mater. Interfaces 15(1), 138–157 (2023). https://doi.org/10.1021/acsami.2c02740
Z.-Z. Si, C.-J. Zou, X. Mei, X.-F. Li, H. Luo et al., Targeting neuroinflammation in alzheimer’s disease: from mechanisms to clinical applications. Neural Regen. Res. 18(4), 708–715 (2023). https://doi.org/10.4103/1673-5374.353484
L.F. Burbulla, P. Song, J.R. Mazzulli, E. Zampese, Y.C. Wong et al., Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in parkinson’s disease. Science 357(6357), 1255 (2017). https://doi.org/10.1126/science.aam9080
R.I. Teleanu, A.G. Niculescu, E. Roza, O. Vladacenco, A.M. Grumezescu et al., Neurotransmitters-key factors in neurological and neurodegenerative disorders of the central nervous system. Int. J. Mol. Sci. 23(11), 5954 (2022). https://doi.org/10.3390/ijms23115954
A.N. Vaneev, R.V. Timoshenko, P.V. Gorelkin, N.L. Klyachko, Y.E. Korchev et al., Nano- and microsensors for in vivo real-time electrochemical analysis: present and future perspectives. Nanomaterials 12(21), 3736 (2022). https://doi.org/10.3390/nano12213736
K. Guzman-Ramos, D. Osorio-Gomez, F. Bermudez-Rattoni, Cognitive impairment in alzheimer’s and metabolic diseases: a catecholaminergic hypothesis. Neuroscience 497, 308–323 (2022). https://doi.org/10.1016/j.neuroscience.2022.05.031
A.K. Hurben, N.Y. Tretyakova, Role of protein damage inflicted by dopamine metabolites in parkinson’s disease: evidence, tools, and outlook. Chem. Res. Toxicol. 35(10), 1789–1804 (2022). https://doi.org/10.1021/acs.chemrestox.2c00193
G. Novak, M.V. Seeman, Dopamine, psychosis, and symptom fluctuation: a narrative review. Healthcare (2022). https://doi.org/10.3390/healthcare10091713
Y. Tang, X.K. Yang, X.W. Zhang, W.T. Wu, F.L. Zhang et al., Harpagide, a natural product, promotes synaptic vesicle release as measured by nanoelectrode amperometry. Chem. Sci. 11(3), 778–785 (2019). https://doi.org/10.1039/c9sc05538j
C. He, M. Tao, C. Zhang, Y. He, W. Xu et al., Microelectrode-based electrochemical sensing technology for in vivo detection of dopamine: recent developments and future prospects. Crit. Rev. Anal. Chem. 52(3), 544–554 (2022). https://doi.org/10.1080/10408347.2020.1811946
T. Feng, W. Ji, Q. Tang, H. Wei, S. Zhang et al., Low-fouling nanoporous conductive polymer-coated microelectrode for in vivo monitoring of dopamine in the rat brain. Anal. Chem. 91(16), 10786–10791 (2019). https://doi.org/10.1021/acs.analchem.9b02386
Z. Hsine, R. Mlika, N. Jaffrezic-Renault, H. Korri-Youssoufi, Review—recent progress in graphene based modified electrodes for electrochemical detection of dopamine. Chemosensors 10(7), 249 (2022). https://doi.org/10.3390/chemosensors10070249
I.M. Taylor, N.A. Patel, N.C. Freedman, E. Castagnola, X.T. Cui, Direct in vivo electrochemical detection of resting dopamine using poly(3,4-ethylenedioxythiophene)/carbon nanotube functionalized microelectrodes. Anal. Chem. 91(20), 12917–12927 (2019). https://doi.org/10.1021/acs.analchem.9b02904
X. Chen, J. Chen, H. Dong, Q. Yu, S. Zhang et al., Sensitive detection of dopamine using a platinum microelectrode modified by reduced graphene oxide and gold nanops. J. Electroanal. Chem. 848, 113244 (2019). https://doi.org/10.1016/j.jelechem.2019.113244
P. Puthongkham, B.J. Venton, Recent advances in fast-scan cyclic voltammetry. Analyst 145(4), 1087–1102 (2020). https://doi.org/10.1039/c9an01925a
A. Abdalla, A. West, Y. Jin, R.A. Saylor, B. Qiang et al., Fast serotonin voltammetry as a versatile tool for mapping dynamic tissue architecture: I. responses at carbon fibers describe local tissue physiology. J. Neurochem. 153(1), 33–50 (2020). https://doi.org/10.1111/jnc.14854
Y. Sun, T.N.H. Nguyen, A. Anderson, X. Cheng, T.E. Gage et al., In vivo glutamate sensing inside the mouse brain with perovskite nickelate-nafion heterostructures. ACS Appl. Mater. Interfaces 12(22), 24564–24574 (2020). https://doi.org/10.1021/acsami.0c02826
S.S. Chu, H.A. Nguyen, D. Lin, M. Bhatti, C.E. Jones-Tinsley et al., Development of highly sensitive, flexible dual l-glutamate and gaba microsensors for in vivo brain sensing. Biosens. Bioelectron. 222, 114941 (2023). https://doi.org/10.1016/j.bios.2022.114941
X. Wang, T. Xu, Y. Zhang, N. Gao, T. Feng et al., In vivo detection of redox-inactive neurochemicals in the rat brain with an ion transfer microsensor. ACS Sens. 6(7), 2757–2762 (2021). https://doi.org/10.1021/acssensors.1c00978
Y. Luo, R. Lin, Y. Zuo, Z. Zhang, Y. Zhuo et al., Efficient electrochemical microsensor for in vivo monitoring of H2 O2 in PD mouse brain: rational design and synthesis of recognition molecules. Anal. Chem. 94(25), 9130–9139 (2022). https://doi.org/10.1021/acs.analchem.2c01570
L. Liu, L. Zhang, Z. Dai, Y. Tian, A simple functional carbon nanotube fiber for in vivo monitoring of NO in a rat brain following cerebral ischemia. Analyst 142(9), 1452–1458 (2017). https://doi.org/10.1039/c7an00138j
A. Meiller, E. Sequeira, S. Marinesco, Electrochemical nitric oxide microsensors based on a fluorinated xerogel screening layer for in vivo brain monitoring. Anal. Chem. 92(2), 1804–1810 (2020). https://doi.org/10.1021/acs.analchem.9b03621
A. Polak-Szabela, I. Dziembowska, M. Bracha, A. Pedrycz-Wieczorska, K. Kedziora-Kornatowska et al., The analysis of oxidative stress markers may increase the accuracy of the differential diagnosis of alzheimer’s disease with and without depression. Clin. Interv. Aging 16, 1105–1117 (2021). https://doi.org/10.2147/CIA.S310750
Q. Peng, X. Yan, X. Shi, S. Ou, H. Gu et al., In vivo monitoring of superoxide anion from alzheimer’s rat brains with functionalized ionic liquid polymer decorated microsensor. Biosens. Bioelectron. 144, 111665 (2019). https://doi.org/10.1016/j.bios.2019.111665
C. Szabo, K. Modis, Pathophysiological roles of peroxynitrite in circulatory shock. Shock 34, 4–14 (2010). https://doi.org/10.1097/SHK.0b013e3181e7e9ba
F. Liu, H. Dong, Y. Tian, Real-time monitoring of peroxynitrite (ONOO−) in the rat brain by developing a ratiometric electrochemical biosensor. Analyst 144(6), 2150–2157 (2019). https://doi.org/10.1039/c9an00079h
J.K. Thompson, M.R. Peterson, R.D. Freeman, Single-neuron activity and tissue oxygenation in the cerebral cortex. Science 299(5609), 1070–1072 (2003). https://doi.org/10.1126/science.1079220
Y. Cao, W. Ma, W. Ji, P. Yu, F. Wu et al., Electrophoretically sheathed carbon fiber microelectrodes with metal/nitrogen/carbon electrocatalyst for electrochemical monitoring of oxygen in vivo. ACS Appl. Bio Mater. 2(3), 1376–1383 (2019). https://doi.org/10.1021/acsabm.9b00100
L. Zhou, X. Li, B. Su, Spatial regulation control of oxygen metabolic consumption in mouse brain. Adv. Sci. 9(34), e2204468 (2022). https://doi.org/10.1002/advs.202204468
K.Y. Goud, C. Moonla, R.K. Mishra, C. Yu, R. Narayan et al., Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward parkinson management. ACS Sens. 4(8), 2196–2204 (2019). https://doi.org/10.1021/acssensors.9b01127
P. Joshi, P.R. Riley, R. Mishra, S. Azizi Machekposhti, R. Narayan, Transdermal polymeric microneedle sensing platform for fentanyl detection in biofluid. Biosensors 12(4), 198 (2022). https://doi.org/10.3390/bios12040198
M.M. Sabzehmeidani, M. Kazemzad, Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: a review. Sci. Total. Environ. 810, 151997 (2022). https://doi.org/10.1016/j.scitotenv.2021.151997
M. Regiart, A. Ledo, E. Fernandes, G.A. Messina, C.M.A. Brett et al., Highly sensitive and selective nanostructured microbiosensors for glucose and lactate simultaneous measurements in blood serum and in vivo in brain tissue. Biosens. Bioelectron. 199, 113874 (2022). https://doi.org/10.1016/j.bios.2021.113874
X. Xie, J.C. Doloff, V. Yesilyurt, A. Sadraei, J.J. McGarrigle et al., Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat. Biomed. Eng. 2(12), 894–906 (2018). https://doi.org/10.1038/s41551-018-0273-3
B. Liu, X. Liu, S. Shi, R. Huang, R. Su et al., Design and mechanisms of antifouling materials for surface plasmon resonance sensors. Acta Biomater. 40, 100–118 (2016). https://doi.org/10.1016/j.actbio.2016.02.035
D. Chan, J.C. Chien, E. Axpe, L. Blankemeier, S.W. Baker et al., Combinatorial polyacrylamide hydrogels for preventing biofouling on implantable biosensors. Adv. Mater. 34(24), e2109764 (2022). https://doi.org/10.1002/adma.202109764
K. Sato, T. Konno, Carbon nanotube immobilized electrode using amphiphilic phospholipid polymer with anti-fouling and dispersion property for electrochemical analysis. Electroanalysis 32(5), 898–901 (2020). https://doi.org/10.1002/elan.201900549
L. Fang, B. Liang, G. Yang, Y. Hu, Q. Zhu et al., A needle-type glucose biosensor based on PANI nanofibers and PU/E-PU membrane for long-term invasive continuous monitoring. Biosens. Bioelectron. 97, 196–202 (2017). https://doi.org/10.1016/j.bios.2017.04.043
S.-Y. Yang, V. Sencadas, S.S. You, N.Z.-X. Jia, S.S. Srinivasan et al., Powering implantable and ingestible electronics. Adv. Funct. Mater. 31(44), 2009289 (2021). https://doi.org/10.1002/adfm.202009289
X. Chen, X. Xie, Y. Liu, C. Zhao, M. Wen et al., Advances in healthcare electronics enabled by triboelectric nanogenerators. Adv. Funct. Mater. 30(43), 2004673 (2020). https://doi.org/10.1002/adfm.202004673
L. Barelli, G. Bidini, D. Pelosi, E. Sisani, Enzymatic biofuel cells: a review on flow designs. Energies (2021). https://doi.org/10.3390/en14040910
S. El Ichi-Ribault, J.-P. Alcaraz, F. Boucher, B. Boutaud, R. Dalmolin et al., Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months. Electrochim. Acta 269, 360–366 (2018). https://doi.org/10.1016/j.electacta.2018.02.156