Selective Emission Fabric for Indoor and Outdoor Passive Radiative Cooling in Personal Thermal Management
Corresponding Author: Guangping Han
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 192
Abstract
Radiative cooling fabric creates a thermally comfortable environment without energy input, providing a sustainable approach to personal thermal management. However, most currently reported fabrics mainly focus on outdoor cooling, ignoring to achieve simultaneous cooling both indoors and outdoors, thereby weakening the overall cooling performance. Herein, a full-scale structure fabric with selective emission properties is constructed for simultaneous indoor and outdoor cooling. The fabric achieves 94% reflectance performance in the sunlight band (0.3–2.5 µm) and 6% in the mid-infrared band (2.5–25 µm), effectively minimizing heat absorption and radiation release obstruction. It also demonstrates 81% radiative emission performance in the atmospheric window band (8–13 µm) and 25% radiative transmission performance in the mid-infrared band (2.5–25 μm), providing 60 and 26 W m−2 net cooling power outdoors and indoors. In practical applications, the fabric achieves excellent indoor and outdoor human cooling, with temperatures 1.4–5.5 °C lower than typical polydimethylsiloxane film. This work proposes a novel design for the advanced radiative cooling fabric, offering significant potential to realize sustainable personal thermal management.
Highlights:
1 Full-scale structure fabric across 0.3-25 μm was fabricated for enhanced sunlight reflectance (94%) and reduced mid-infrared reflectance (6%).
2 Transmission (25%) and emission (81%) characteristics for thermal radiation release.
3 Indoor and outdoor cooling fabric in personal thermal management.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Miao, X. Wang, J. Yu, B. Ding, Nanoengineered textiles for outdoor personal cooling and drying. Adv. Funct. Mater. 32, 2209029 (2022). https://doi.org/10.1002/adfm.202209029
- L. Liu, D. Yuan, X. Hu, P. Hu, J. Wang et al., Wind-proof and moisture permeability aerogel-functionalized textile as all-seasonal passive thermal regulators. Adv. Funct. Mater. 34, 2411551 (2024). https://doi.org/10.1002/adfm.202411551
- S. Xue, G. Huang, Q. Chen, X. Wang, J. Fan et al., Personal thermal management by radiative cooling and heating. Nano-Micro Lett. 16, 153 (2024). https://doi.org/10.1007/s40820-024-01360-1
- M. Romanello, C. di Napoli, C. Green, H. Kennard, P. Lampard et al., The 2023 report of the Lancet Countdown on health and climate change: the imperative for a health-centred response in a world facing irreversible harms. Lancet 402, 2346–2394 (2023). https://doi.org/10.1016/S0140-6736(23)01859-7
- S.Q. Wang, M.Q. Wu, H. Han, R.X. Du, Z.C. Zhao et al., Regulating cold energy from the universe by bifunctional phase change materials for sustainable cooling. Adv. Energy Mater. 12, 2402667 (2024). https://doi.org/10.1002/aenm.202402667
- A. Cots, S. Dicorato, L. Giovannini, F. Favoino, M. Manca, Energy efficient smart plasmochromic windows: properties, manufacturing and integration in insulating glazing. Nano Energy 84, 105894 (2021). https://doi.org/10.1016/j.nanoen.2021.105894
- X. Li, B. Ma, J. Dai, C. Sui, D. Pande et al., Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management. Sci. Adv. 7, eabj7906 (2021). https://doi.org/10.1126/sciadv.abj7906
- M.-C. Huang, M. Yang, X.-J. Guo, C.-H. Xue, H.-D. Wang et al., Scalable multifunctional radiative cooling materials. Prog. Mater. Sci. 137, 101144 (2023). https://doi.org/10.1016/j.pmatsci.2023.101144
- Z. Yan, H.T. Zhai, D.S. Fan, Q. Li, A trimode textile designed with hierarchical core-shell nanofiber structure for all-weather radiative personal thermal management. Nano Today 51, 10 (2023). https://doi.org/10.1016/j.nantod.2023.101897
- M. He, B. Zhao, X. Yue, Y. Chen, F. Qiu et al., Infrared radiative modulating textiles for personal thermal management: principle, design and application. Nano Energy 116, 108821 (2023). https://doi.org/10.1016/j.nanoen.2023.108821
- Y. Peng, J. Dong, J. Long, Y. Zhang, X. Tang et al., Thermally conductive and UV-EMI shielding electronic textiles for unrestricted and multifaceted health monitoring. Nano-Micro Lett. 16, 199 (2024). https://doi.org/10.1007/s40820-024-01429-x
- X. Wu, J. Li, F. Xie, X.-E. Wu, S. Zhao et al., A dual-selective thermal emitter with enhanced subambient radiative cooling performance. Nat. Commun. 15, 815 (2024). https://doi.org/10.1038/s41467-024-45095-4
- L. Cai, A.Y. Song, W. Li, P.-C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30, e1802152 (2018). https://doi.org/10.1002/adma.201802152
- A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014). https://doi.org/10.1038/nature13883
- R. Wu, C. Sui, T.-H. Chen, Z. Zhou, Q. Li et al., Spectrally engineered textile for radiative cooling against urban heat islands. Science 384, 1203–1212 (2024). https://doi.org/10.1126/science.adl0653
- R. Xiao, C. Hou, W. Yang, Y. Su, Y. Li et al., Infrared-radiation-enhanced nanofiber membrane for sky radiative cooling of the human body. ACS Appl. Mater. Interfaces 11, 44673–44681 (2019). https://doi.org/10.1021/acsami.9b13933
- D. Li, X. Liu, W. Li, Z. Lin, B. Zhu et al., Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16, 153–158 (2021). https://doi.org/10.1038/s41565-020-00800-4
- X. Zhang, W. Yang, Z. Shao, Y. Li, Y. Su et al., A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 16, 2188–2197 (2022). https://doi.org/10.1021/acsnano.1c08227
- X. Wu, J. Li, Q. Jiang, W. Zhang, B. Wang et al., An all-weather radiative human body cooling textile. Nat. Sustain. 6, 1446–1454 (2023). https://doi.org/10.1038/s41893-023-01200-x
- E. Rephaeli, A. Raman, S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13, 1457–1461 (2013). https://doi.org/10.1021/nl4004283
- Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat. Commun. 7, 13729 (2016). https://doi.org/10.1038/ncomms13729
- Y. Chen, J. Mandal, W. Li, A. Smith-Washington, C.-C. Tsai et al., Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 6, eaaz5413 (2020). https://doi.org/10.1126/sciadv.aaz5413
- Y.N. Song, M.Q. Lei, J. Lei, Z.M. Li, Spectrally selective polyvinylidene fluoride textile for passive human body cooling. Mater. Today Energy 18, 100504 (2020). https://doi.org/10.1016/j.mtener.2020.100504
- S. Atiganyanun, J.B. Plumley, S.J. Han, K. Hsu, J. Cytrynbaum et al., Effective radiative cooling by paint-format microsphere-based photonic random media. ACS Photonics 5, 1181–1187 (2018). https://doi.org/10.1021/acsphotonics.7b01492
- H. Bao, C. Yan, B. Wang, X. Fang, C.Y. Zhao et al., Double-layer nanop-based coatings for efficient terrestrial radiative cooling. Sol. Energy Mater. Sol. Cells 168, 78–84 (2017). https://doi.org/10.1016/j.solmat.2017.04.020
- X.R. Du, J.L. Li, B. Zhu, J. Zhu, Designing hierarchical structures for innovative cooling textile. Nano Res. 17, 9202–9224 (2024). https://doi.org/10.1007/s12274-024-6820-1
- S. Jeon, J. Shin, Ideal spectral emissivity for radiative cooling of earthbound objects. Sci. Rep. 10, 13038 (2020). https://doi.org/10.1038/s41598-020-70105-y
- P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
- Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105–112 (2018). https://doi.org/10.1038/s41893-018-0023-2
- H. Kim, S. McSherry, B. Brown, A. Lenert, Selectively enhancing solar scattering for direct radiative cooling through control of polymer nanofiber morphology. ACS Appl. Mater. Interfaces 12, 43553–43559 (2020). https://doi.org/10.1021/acsami.0c09374
- S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16, 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
- L. Li, Q. Zhang, G. Liu, R. Shi, H. Zhao et al., Durable hybrid metamaterial with hierarchically porous structure for efficient passive daytime radiative cooling. Chem. Eng. J. 498, 155516 (2024). https://doi.org/10.1016/j.cej.2024.155516
- W.-Z. Song, X.-X. Wang, H.-J. Qiu, N. Wang, M. Yu et al., Single electrode piezoelectric nanogenerator for intelligent passive daytime radiative cooling. Nano Energy 82, 105695 (2021). https://doi.org/10.1016/j.nanoen.2020.105695
- J. Liang, J. Wu, J. Guo, H. Li, X. Zhou et al., Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl. Sci. Rev. 10, nwac208 (2022). https://doi.org/10.1093/nsr/nwac208
- Q. Zhang, J. Sun, X. Cao, H. Wei, R. Du et al., Poly(vinyl alcohol) composite nanofiber membranes with hydrophobicity for daytime radiative cooling. Compos. Commun. 48, 101947 (2024). https://doi.org/10.1016/j.coco.2024.101947
- M. Lian, W. Ding, S. Liu, Y. Wang, T. Zhu et al., Highly porous yet transparent mechanically flexible aerogels realizing solar-thermal regulatory cooling. Nano-Micro Lett. 16, 131 (2024). https://doi.org/10.1007/s40820-024-01356-x
- S. Yang, W. Tao, Heat transfer, 4th edn. (Higher Education Press, China, 2006)
- D. Madheswaran, M. Sivan, S. Hauzerova, E.K. Kostakova, V. Jencova et al., Continuous fabrication of braided composite nanofibrous surgical yarns using advanced AC electrospinning and braiding technology. Compos. Commun. 48, 101932 (2024). https://doi.org/10.1016/j.coco.2024.101932
- J. Lu, T. Bai, D. Wang, H. Yu, Q. Wang et al., Electrospun polyacrylonitrile membrane in situ modified with cellulose nanocrystal anchoring TiO2 for oily wastewater recovery. Adv. Fiber Mater. 5, 2055–2068 (2023). https://doi.org/10.1007/s42765-023-00325-0
- R. Liu, S. Wang, Z. Zhou, K. Zhang, G. Wang et al., Materials in radiative cooling technologies. Adv. Mater. 37, e2401577 (2025). https://doi.org/10.1002/adma.202401577
- X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang et al., Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 30, 1907562 (2020). https://doi.org/10.1002/adfm.201907562
- X.-L. Liao, D.-X. Sun, S. Cao, N. Zhang, T. Huang et al., Freely switchable super-hydrophobicity and super-hydrophilicity of sponge-like poly(vinylidene fluoride) porous fibers for highly efficient oil/water separation. J. Hazard. Mater. 416, 125926 (2021). https://doi.org/10.1016/j.jhazmat.2021.125926
- J.J. Xue, T. Wu, Y.Q. Dai, Y.N. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119, 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593
- J. Lu, M. Cao, X. He, Y. Hu, L. Bai et al., Electrospun hierarchically channeled polyacrylonitrile nanofibrous membrane for wastewater recovery. J. Clean. Prod. 361, 132167 (2022). https://doi.org/10.1016/j.jclepro.2022.132167
- D. Zhang, X.Z. Jin, T. Huang, N. Zhang, X.D. Qi et al., Electrospun fibrous membranes with dual-scaled porous structure: Super hydrophobicity, super lipophilicity, excellent water adhesion, and anti-icing for highly efficient oil adsorption/separation. ACS Appl. Mater. Interfaces 11, 5073–5083 (2019). https://doi.org/10.1021/acsami.8b19523
- N. Cheng, D. Miao, C. Wang, Y. Lin, A.A. Babar et al., Nanosphere-structured hierarchically porous PVDF-HFP fabric for passive daytime radiative cooling via one-step water vapor-induced phase separation. Chem. Eng. J. 460, 141581 (2023). https://doi.org/10.1016/j.cej.2023.141581
- C.J. Knill, J.F. Kennedy, Polymer handbook (4th edition) J. brandrup, E.H. immergut, E.A. grulke (eds.); Wiley, New York, 1999, xiii+2288 pages, ISBN 0-471-16628-6 (£226-00). Carbohydr. Polym. 46, 295 (2001). https://doi.org/10.1016/S0144-8617(01)00238-7
- S. Sethia, E. Squillante, Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int. J. Pharm. 272, 1–10 (2004). https://doi.org/10.1016/j.ijpharm.2003.11.025
- W. Gao, Y.P. Chen, Emerging materials and strategies for passive daytime radiative cooling. Small 19, 33 (2023). https://doi.org/10.1002/smll.202206145
- P. Yao, Z. Chen, T. Liu, X. Liao, Z. Yang et al., Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling. Adv. Mater. 34, e2208236 (2022). https://doi.org/10.1002/adma.202208236
- J.P. Bijarniya, J. Sarkar, P. Maiti, Review on passive daytime radiative cooling: fundamentals, recent researches, challenges and opportunities. Renew. Sustain. Energy Rev. 133, 110263 (2020). https://doi.org/10.1016/j.rser.2020.110263
- Y. Dong, X.P. Zhang, L.L. Chen, W.F. Meng, C.H. Wang et al., Progress in passive daytime radiative cooling: a review from optical mechanism, performance test, and application. Renew. Sustain. Energy Rev. 188, 26 (2023). https://doi.org/10.1016/j.rser.2023.113801
- X. Nie, Z. Yu, E. Jackson, J. Lee, Refractive index and extinction coefficient of hollow microspheres for solar reflection. Appl. Phys. Lett. 118, 211907 (2021). https://doi.org/10.1063/5.0049018
- L. Dettwiller. Short review on the refractive index of air as a function of temperature, pressure, humidity and ionization. Arxiv. 2204.02603 (2023). https://arxiv.org/abs/2204.02603
- M. Lee, G. Kim, Y. Jung, K.R. Pyun, J. Lee et al., Photonic structures in radiative cooling. Light. Sci. Appl. 12, 134 (2023). https://doi.org/10.1038/s41377-023-01119-0
- M. Santamouris, H.S. Khan, R. Paolini, O.M.L. Julia, S. Garshasbi et al., Recent advances in fluorescence-based colored passive daytime radiative cooling for heat mitigation. Int. J. Thermophys. 45, 90 (2024). https://doi.org/10.1007/s10765-024-03382-8
- J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15, 181 (2023). https://doi.org/10.1007/s40820-023-01156-9
References
D. Miao, X. Wang, J. Yu, B. Ding, Nanoengineered textiles for outdoor personal cooling and drying. Adv. Funct. Mater. 32, 2209029 (2022). https://doi.org/10.1002/adfm.202209029
L. Liu, D. Yuan, X. Hu, P. Hu, J. Wang et al., Wind-proof and moisture permeability aerogel-functionalized textile as all-seasonal passive thermal regulators. Adv. Funct. Mater. 34, 2411551 (2024). https://doi.org/10.1002/adfm.202411551
S. Xue, G. Huang, Q. Chen, X. Wang, J. Fan et al., Personal thermal management by radiative cooling and heating. Nano-Micro Lett. 16, 153 (2024). https://doi.org/10.1007/s40820-024-01360-1
M. Romanello, C. di Napoli, C. Green, H. Kennard, P. Lampard et al., The 2023 report of the Lancet Countdown on health and climate change: the imperative for a health-centred response in a world facing irreversible harms. Lancet 402, 2346–2394 (2023). https://doi.org/10.1016/S0140-6736(23)01859-7
S.Q. Wang, M.Q. Wu, H. Han, R.X. Du, Z.C. Zhao et al., Regulating cold energy from the universe by bifunctional phase change materials for sustainable cooling. Adv. Energy Mater. 12, 2402667 (2024). https://doi.org/10.1002/aenm.202402667
A. Cots, S. Dicorato, L. Giovannini, F. Favoino, M. Manca, Energy efficient smart plasmochromic windows: properties, manufacturing and integration in insulating glazing. Nano Energy 84, 105894 (2021). https://doi.org/10.1016/j.nanoen.2021.105894
X. Li, B. Ma, J. Dai, C. Sui, D. Pande et al., Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management. Sci. Adv. 7, eabj7906 (2021). https://doi.org/10.1126/sciadv.abj7906
M.-C. Huang, M. Yang, X.-J. Guo, C.-H. Xue, H.-D. Wang et al., Scalable multifunctional radiative cooling materials. Prog. Mater. Sci. 137, 101144 (2023). https://doi.org/10.1016/j.pmatsci.2023.101144
Z. Yan, H.T. Zhai, D.S. Fan, Q. Li, A trimode textile designed with hierarchical core-shell nanofiber structure for all-weather radiative personal thermal management. Nano Today 51, 10 (2023). https://doi.org/10.1016/j.nantod.2023.101897
M. He, B. Zhao, X. Yue, Y. Chen, F. Qiu et al., Infrared radiative modulating textiles for personal thermal management: principle, design and application. Nano Energy 116, 108821 (2023). https://doi.org/10.1016/j.nanoen.2023.108821
Y. Peng, J. Dong, J. Long, Y. Zhang, X. Tang et al., Thermally conductive and UV-EMI shielding electronic textiles for unrestricted and multifaceted health monitoring. Nano-Micro Lett. 16, 199 (2024). https://doi.org/10.1007/s40820-024-01429-x
X. Wu, J. Li, F. Xie, X.-E. Wu, S. Zhao et al., A dual-selective thermal emitter with enhanced subambient radiative cooling performance. Nat. Commun. 15, 815 (2024). https://doi.org/10.1038/s41467-024-45095-4
L. Cai, A.Y. Song, W. Li, P.-C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30, e1802152 (2018). https://doi.org/10.1002/adma.201802152
A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014). https://doi.org/10.1038/nature13883
R. Wu, C. Sui, T.-H. Chen, Z. Zhou, Q. Li et al., Spectrally engineered textile for radiative cooling against urban heat islands. Science 384, 1203–1212 (2024). https://doi.org/10.1126/science.adl0653
R. Xiao, C. Hou, W. Yang, Y. Su, Y. Li et al., Infrared-radiation-enhanced nanofiber membrane for sky radiative cooling of the human body. ACS Appl. Mater. Interfaces 11, 44673–44681 (2019). https://doi.org/10.1021/acsami.9b13933
D. Li, X. Liu, W. Li, Z. Lin, B. Zhu et al., Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16, 153–158 (2021). https://doi.org/10.1038/s41565-020-00800-4
X. Zhang, W. Yang, Z. Shao, Y. Li, Y. Su et al., A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 16, 2188–2197 (2022). https://doi.org/10.1021/acsnano.1c08227
X. Wu, J. Li, Q. Jiang, W. Zhang, B. Wang et al., An all-weather radiative human body cooling textile. Nat. Sustain. 6, 1446–1454 (2023). https://doi.org/10.1038/s41893-023-01200-x
E. Rephaeli, A. Raman, S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13, 1457–1461 (2013). https://doi.org/10.1021/nl4004283
Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat. Commun. 7, 13729 (2016). https://doi.org/10.1038/ncomms13729
Y. Chen, J. Mandal, W. Li, A. Smith-Washington, C.-C. Tsai et al., Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 6, eaaz5413 (2020). https://doi.org/10.1126/sciadv.aaz5413
Y.N. Song, M.Q. Lei, J. Lei, Z.M. Li, Spectrally selective polyvinylidene fluoride textile for passive human body cooling. Mater. Today Energy 18, 100504 (2020). https://doi.org/10.1016/j.mtener.2020.100504
S. Atiganyanun, J.B. Plumley, S.J. Han, K. Hsu, J. Cytrynbaum et al., Effective radiative cooling by paint-format microsphere-based photonic random media. ACS Photonics 5, 1181–1187 (2018). https://doi.org/10.1021/acsphotonics.7b01492
H. Bao, C. Yan, B. Wang, X. Fang, C.Y. Zhao et al., Double-layer nanop-based coatings for efficient terrestrial radiative cooling. Sol. Energy Mater. Sol. Cells 168, 78–84 (2017). https://doi.org/10.1016/j.solmat.2017.04.020
X.R. Du, J.L. Li, B. Zhu, J. Zhu, Designing hierarchical structures for innovative cooling textile. Nano Res. 17, 9202–9224 (2024). https://doi.org/10.1007/s12274-024-6820-1
S. Jeon, J. Shin, Ideal spectral emissivity for radiative cooling of earthbound objects. Sci. Rep. 10, 13038 (2020). https://doi.org/10.1038/s41598-020-70105-y
P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105–112 (2018). https://doi.org/10.1038/s41893-018-0023-2
H. Kim, S. McSherry, B. Brown, A. Lenert, Selectively enhancing solar scattering for direct radiative cooling through control of polymer nanofiber morphology. ACS Appl. Mater. Interfaces 12, 43553–43559 (2020). https://doi.org/10.1021/acsami.0c09374
S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16, 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
L. Li, Q. Zhang, G. Liu, R. Shi, H. Zhao et al., Durable hybrid metamaterial with hierarchically porous structure for efficient passive daytime radiative cooling. Chem. Eng. J. 498, 155516 (2024). https://doi.org/10.1016/j.cej.2024.155516
W.-Z. Song, X.-X. Wang, H.-J. Qiu, N. Wang, M. Yu et al., Single electrode piezoelectric nanogenerator for intelligent passive daytime radiative cooling. Nano Energy 82, 105695 (2021). https://doi.org/10.1016/j.nanoen.2020.105695
J. Liang, J. Wu, J. Guo, H. Li, X. Zhou et al., Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl. Sci. Rev. 10, nwac208 (2022). https://doi.org/10.1093/nsr/nwac208
Q. Zhang, J. Sun, X. Cao, H. Wei, R. Du et al., Poly(vinyl alcohol) composite nanofiber membranes with hydrophobicity for daytime radiative cooling. Compos. Commun. 48, 101947 (2024). https://doi.org/10.1016/j.coco.2024.101947
M. Lian, W. Ding, S. Liu, Y. Wang, T. Zhu et al., Highly porous yet transparent mechanically flexible aerogels realizing solar-thermal regulatory cooling. Nano-Micro Lett. 16, 131 (2024). https://doi.org/10.1007/s40820-024-01356-x
S. Yang, W. Tao, Heat transfer, 4th edn. (Higher Education Press, China, 2006)
D. Madheswaran, M. Sivan, S. Hauzerova, E.K. Kostakova, V. Jencova et al., Continuous fabrication of braided composite nanofibrous surgical yarns using advanced AC electrospinning and braiding technology. Compos. Commun. 48, 101932 (2024). https://doi.org/10.1016/j.coco.2024.101932
J. Lu, T. Bai, D. Wang, H. Yu, Q. Wang et al., Electrospun polyacrylonitrile membrane in situ modified with cellulose nanocrystal anchoring TiO2 for oily wastewater recovery. Adv. Fiber Mater. 5, 2055–2068 (2023). https://doi.org/10.1007/s42765-023-00325-0
R. Liu, S. Wang, Z. Zhou, K. Zhang, G. Wang et al., Materials in radiative cooling technologies. Adv. Mater. 37, e2401577 (2025). https://doi.org/10.1002/adma.202401577
X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang et al., Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 30, 1907562 (2020). https://doi.org/10.1002/adfm.201907562
X.-L. Liao, D.-X. Sun, S. Cao, N. Zhang, T. Huang et al., Freely switchable super-hydrophobicity and super-hydrophilicity of sponge-like poly(vinylidene fluoride) porous fibers for highly efficient oil/water separation. J. Hazard. Mater. 416, 125926 (2021). https://doi.org/10.1016/j.jhazmat.2021.125926
J.J. Xue, T. Wu, Y.Q. Dai, Y.N. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119, 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593
J. Lu, M. Cao, X. He, Y. Hu, L. Bai et al., Electrospun hierarchically channeled polyacrylonitrile nanofibrous membrane for wastewater recovery. J. Clean. Prod. 361, 132167 (2022). https://doi.org/10.1016/j.jclepro.2022.132167
D. Zhang, X.Z. Jin, T. Huang, N. Zhang, X.D. Qi et al., Electrospun fibrous membranes with dual-scaled porous structure: Super hydrophobicity, super lipophilicity, excellent water adhesion, and anti-icing for highly efficient oil adsorption/separation. ACS Appl. Mater. Interfaces 11, 5073–5083 (2019). https://doi.org/10.1021/acsami.8b19523
N. Cheng, D. Miao, C. Wang, Y. Lin, A.A. Babar et al., Nanosphere-structured hierarchically porous PVDF-HFP fabric for passive daytime radiative cooling via one-step water vapor-induced phase separation. Chem. Eng. J. 460, 141581 (2023). https://doi.org/10.1016/j.cej.2023.141581
C.J. Knill, J.F. Kennedy, Polymer handbook (4th edition) J. brandrup, E.H. immergut, E.A. grulke (eds.); Wiley, New York, 1999, xiii+2288 pages, ISBN 0-471-16628-6 (£226-00). Carbohydr. Polym. 46, 295 (2001). https://doi.org/10.1016/S0144-8617(01)00238-7
S. Sethia, E. Squillante, Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int. J. Pharm. 272, 1–10 (2004). https://doi.org/10.1016/j.ijpharm.2003.11.025
W. Gao, Y.P. Chen, Emerging materials and strategies for passive daytime radiative cooling. Small 19, 33 (2023). https://doi.org/10.1002/smll.202206145
P. Yao, Z. Chen, T. Liu, X. Liao, Z. Yang et al., Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling. Adv. Mater. 34, e2208236 (2022). https://doi.org/10.1002/adma.202208236
J.P. Bijarniya, J. Sarkar, P. Maiti, Review on passive daytime radiative cooling: fundamentals, recent researches, challenges and opportunities. Renew. Sustain. Energy Rev. 133, 110263 (2020). https://doi.org/10.1016/j.rser.2020.110263
Y. Dong, X.P. Zhang, L.L. Chen, W.F. Meng, C.H. Wang et al., Progress in passive daytime radiative cooling: a review from optical mechanism, performance test, and application. Renew. Sustain. Energy Rev. 188, 26 (2023). https://doi.org/10.1016/j.rser.2023.113801
X. Nie, Z. Yu, E. Jackson, J. Lee, Refractive index and extinction coefficient of hollow microspheres for solar reflection. Appl. Phys. Lett. 118, 211907 (2021). https://doi.org/10.1063/5.0049018
L. Dettwiller. Short review on the refractive index of air as a function of temperature, pressure, humidity and ionization. Arxiv. 2204.02603 (2023). https://arxiv.org/abs/2204.02603
M. Lee, G. Kim, Y. Jung, K.R. Pyun, J. Lee et al., Photonic structures in radiative cooling. Light. Sci. Appl. 12, 134 (2023). https://doi.org/10.1038/s41377-023-01119-0
M. Santamouris, H.S. Khan, R. Paolini, O.M.L. Julia, S. Garshasbi et al., Recent advances in fluorescence-based colored passive daytime radiative cooling for heat mitigation. Int. J. Thermophys. 45, 90 (2024). https://doi.org/10.1007/s10765-024-03382-8
J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15, 181 (2023). https://doi.org/10.1007/s40820-023-01156-9