Controlled Twill Surface Structure Endowing Nanofiber Composite Membrane Excellent Electromagnetic Interference Shielding
Corresponding Author: Dong Wang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 236
Abstract
Inspired by the Chinese Knotting weave structure, an electromagnetic interference (EMI) nanofiber composite membrane with a twill surface was prepared. Poly(vinyl alcohol-co-ethylene) (Pva-co-PE) nanofibers and twill nylon fabric were used as the matrix and filter templates, respectively. A Pva-co-PE-MXene/silver nanowire (Pva-co-PE-MXene/AgNW, PMxAg) membrane was successfully prepared using a template method. When the MXene/AgNW content was only 7.4 wt% (PM7.4Ag), the EMI shielding efficiency (SE) of the composite membrane with the oblique twill structure on the surface was 103.9 dB and the surface twill structure improved the EMI by 38.5%. This result was attributed to the pre-interference of the oblique twill structure in the direction of the incident EM wave, which enhanced the probability of the electromagnetic waves randomly colliding with the MXene nanosheets. Simultaneously, the internal reflection and ohmic and resonance losses were enhanced. The PM7.4Ag membrane with the twill structure exhibited both an outstanding tensile strength of 22.8 MPa and EMI SE/t of 3925.2 dB cm−1. Moreover, the PMxAg nanocomposite membranes demonstrated an excellent thermal management performance, hydrophobicity, non-flammability, and performance stability, which was demonstrated by an EMI SE of 97.3% in a high-temperature environment of 140 °C. The successful preparation of surface-twill composite membranes makes it difficult to achieve both a low filler content and a high EMI SE in electromagnetic shielding materials. This strategy provides a new approach for preparing thin membranes with excellent EMI properties.
Highlights:
1 Inspired by the Chinese Knotting weave structure, an electromagnetic interference (EMI) nanofiber composite membrane with a twill surface was prepared.
2 The EMI shielding efficiency (SE) of the composite membrane was 103.9 dB when the MXene/silver nanowires (MXene/AgNW) content was only 7.4 wt% and the surface twill structure improved the EMI by 38.5%.
3 The nanofiber composite membrane demonstrated an excellent thermal management performance, hydrophobicity, non-flammability, and performance stability, which was demonstrated by an EMI SE of 97.3% in a high-temperature environment at 140 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, e2211642 (2023). https://doi.org/10.1002/adma.202211642
- H. Cheng, Y. Pan, W. Li, C. Liu, C. Shen et al., Facile design of multifunctional melamine foam with Ni-anchored reduced graphene oxide/MXene as highly efficient microwave absorber. Nano Today 52, 101958 (2023). https://doi.org/10.1016/j.nantod.2023.101958
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
- Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7, 2000979 (2020). https://doi.org/10.1002/advs.202000979
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, e202200705 (2022). https://doi.org/10.1002/anie.202200705
- L. Ma, M. Hamidinejad, C. Liang, B. Zhao, S. Habibpour et al., Enhanced electromagnetic wave absorption performance of polymer/SiC-nanowire/MXene (Ti3C2Tx) composites. Carbon 179, 408–416 (2021). https://doi.org/10.1016/j.carbon.2021.04.063
- Y. Guo, H. Qiu, K. Ruan, S. Wang, Y. Zhang et al., Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Compos. Sci. Technol. 219, 109253 (2022). https://doi.org/10.1016/j.compscitech.2021.109253
- C. Pavlou, M.G. PastoreCarbone, A.C. Manikas, G. Trakakis, C. Koral et al., Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 12, 4655 (2021). https://doi.org/10.1038/s41467-021-24970-4
- D. Zhang, R. Wang, X. Wang, Y. Gogotsi, In situ monitoring redox processes in energy storage using UV–Vis spectroscopy. Nat. Energy 8, 567–576 (2023). https://doi.org/10.1038/s41560-023-01240-9
- M. Zhang, M. Su, Y. Qin, C. Liu, C. Shen et al., Photothermal ultra-high molecular weight polyethylene/MXene aerogel for crude oil adsorption and water evaporation. 2D Mater. 10, 024007 (2023). https://doi.org/10.1088/2053-1583/acc3aa
- F. Pan, Y. Rao, D. Batalu, L. Cai, Y. Dong et al., Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 14, 140 (2022). https://doi.org/10.1007/s40820-022-00869-7
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- J. Kim, Y. Yoon, S.K. Kim, S. Park, W. Song et al., Chemically stabilized and functionalized 2D-MXene with deep eutectic solvents as versatile dispersion medium. Adv. Funct. Mater. 31, 2008722 (2021). https://doi.org/10.1002/adfm.202008722
- C. Liang, H. Qiu, Y. Zhang, Y. Liu, J. Gu, External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull. 68, 1938–1953 (2023). https://doi.org/10.1016/j.scib.2023.07.046
- Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
- Z. Xu, X. Ding, S. Li, F. Huang, B. Wang et al., Oxidation-resistant MXene-based melamine foam with ultralow-percolation thresholds for electromagnetic-infrared compatible shielding. ACS Appl. Mater. Interfaces 14, 40396–40407 (2022). https://doi.org/10.1021/acsami.2c05544
- R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
- Z. Zeng, G. Wang, B.F. Wolan, N. Wu, C. Wang et al., Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 14, 179 (2022). https://doi.org/10.1007/s40820-022-00883-9
- N. Duan, Z. Shi, Z. Wang, B. Zou, C. Zhang et al., Mechanically robust Ti3C2Tx MXene/Carbon fiber fabric/Thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications. Mater. Des. 214, 110382 (2022). https://doi.org/10.1016/j.matdes.2022.110382
- Y. Sun, R. Ding, S.Y. Hong, J. Lee, Y.-K. Seo et al., MXene-xanthan nanocomposite films with layered microstructure for electromagnetic interference shielding and Joule heating. Chem. Eng. J. 410, 128348 (2021). https://doi.org/10.1016/j.cej.2020.128348
- J. Cao, Z. Zhou, Q. Song, K. Chen, G. Su et al., Ultrarobust Ti3C2Tx MXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructures. ACS Nano 14, 7055–7065 (2020). https://doi.org/10.1021/acsnano.0c01779
- Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen et al., Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10, 2920 (2019). https://doi.org/10.1038/s41467-019-10885-8
- L.X. Liu, W. Chen, H.B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- Z. Li, Z. Wang, W. Lu, B. Hou, Theoretical study of electromagnetic interference shielding of 2D MXenes films. Metals 8, 652 (2018). https://doi.org/10.3390/met8080652
- G. Wang, C. Li, D. Estevez, P. Xu, M. Peng et al., Boosting interfacial polarization through heterointerface engineering in mxene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 15, 152 (2023). https://doi.org/10.1007/s40820-023-01123-4
- T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
- Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14, 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- C. Jiao, Z. Deng, P. Min, J. Lai, Q. Gou et al., Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding. Carbon 198, 179–187 (2022). https://doi.org/10.1016/j.carbon.2022.07.017
- W. Ma, W. Cai, W. Chen, P. Liu, J. Wang et al., Microwave-induced segregated composite network with MXene as interfacial solder for ultra-efficient electromagnetic interference shielding and anti-dripping. Chem. Eng. J. 425, 131699 (2021). https://doi.org/10.1016/j.cej.2021.131699
- Z. Lu, F. Jia, L. Zhuo, D. Ning, K. Gao et al., Micro-porous MXene/Aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Compos. Part B Eng. 217, 108853 (2021). https://doi.org/10.1016/j.compositesb.2021.108853
- Q.-M. He, J.-R. Tao, D. Yang, Y. Yang, M. Wang, Surface wrinkles enhancing electromagnetic interference shielding of copper coated polydimethylsiloxane: a simulation and experimental study. Chem. Eng. J. 454, 140162 (2023). https://doi.org/10.1016/j.cej.2022.140162
- C. Liang, W. Zhang, C. Liu, J. He, Y. Xiang et al., Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics. Chem. Eng. J. 471, 144500 (2023). https://doi.org/10.1016/j.cej.2023.144500
- K. Tian, D. Hu, Q. Wei, Q. Fu, H. Deng, Recent progress on multifunctional electromagnetic interference shielding polymer composites. J. Mater. Sci. Technol. 134, 106–131 (2023). https://doi.org/10.1016/j.jmst.2022.06.031
- J. Liu, L. McKeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3 C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34, e2106253 (2022). https://doi.org/10.1002/adma.202106253
- Z. Tan, H. Zhao, F. Sun, L. Ran, L. Yi et al., Fabrication of Chitosan/MXene multilayered film based on layer-by-layer assembly: toward enhanced electromagnetic interference shielding and thermal management capacity. Compos. Part A-Appl. Sci. Manuf. 155, 106809 (2022). https://doi.org/10.1016/j.compositesa.2022.106809
- X. Jin, J. Wang, L. Dai, X. Liu, L. Li et al., Flame-retardant poly(vinyl alcohol)/mxene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020). https://doi.org/10.1016/j.cej.2019.122475
- E. Pakdel, J. Wang, S. Kashi, L. Sun, X. Wang, Advances in photocatalytic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments. Adv. Colloid Interface Sci. 277, 102116 (2020). https://doi.org/10.1016/j.cis.2020.102116
- C. Wu, J. Wang, X. Zhang, L. Kang, X. Cao et al., Hollow gradient-structured iron-anchored carbon nanospheres for enhanced electromagnetic wave absorption. Nano-Micro Lett. 15, 7 (2022). https://doi.org/10.1007/s40820-022-00963-w
- L. Wang, Z. Ma, H. Qiu, Y. Zhang, Z. Yu et al., Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 14, 224 (2022). https://doi.org/10.1007/s40820-022-00949-8
- C. Xiang, W. Wang, S. Wang, S. Liu, M. Li et al., Humidity-driven switch in the transparency of a nanofiber film for a smart window. J. Phys. Chem. Lett. 12, 9636–9643 (2021). https://doi.org/10.1021/acs.jpclett.1c02772
- F. Zeng, X. Zhao, M. Luo, W. Wang, X. Qing et al., A transparent PEDOT: PSS/PVA-co-PE/epoxy thermoelectric composite device with excellent flexibility and environmental stability. Compos. Sci. Technol. 218, 109153 (2022). https://doi.org/10.1016/j.compscitech.2021.109153
- D. Wang, W. Xu, G. Sun, B.-S. Chiou, Radical graft polymerization of an allyl monomer onto hydrophilic polymers and their antibacterial nanofibrous membranes. ACS Appl. Mater. Interfaces 3, 2838–2844 (2011). https://doi.org/10.1021/am200286a
- P. Cheng, K. Liu, Y. Wan, W. Hu, C. Ji et al., Solution viscosity-mediated structural control of nanofibrous sponge for RNA separation and purification. Adv. Funct. Mater. 32, 2112023 (2022). https://doi.org/10.1002/adfm.202112023
- X. Wen, C. Yang, Z. Li, M. Xia, Y. Wu et al., A sandwich-structured ultra-flexible Pva-co-PE/Cu nanofiber composite film with excellent electrical conductivity, electromagnetic shielding properties, and environmental stability. Colloids Surf. A: Physicochem. Eng. Aspects 656, 130329 (2023). https://doi.org/10.1016/j.colsurfa.2022.130329
- Y. Wei, P. Zhang, R.A. Soomro, Q. Zhu, B. Xu, Advances in the synthesis of 2D MXenes. Adv. Mater. 33, 2103148 (2021). https://doi.org/10.1002/adma.202103148
- F. Liu, Y. Li, S. Hao, Y. Cheng, Y. Zhan et al., Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohydr. Polym. 243, 116467 (2020). https://doi.org/10.1016/j.carbpol.2020.116467
- H. Yang, L. Cheng, Q. Yang, A. Farooq, L. Ying et al., Multifunctional and durable thermal management coating from sericin-MXene biohybrid on silk fabric micro-etched by deep eutectic solvent. Appl. Surf. Sci. 623, 156962 (2023). https://doi.org/10.1016/j.apsusc.2023.156962
- J. Liu, H.-B. Zhang, X. Xie, R. Yang, Z. Liu et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14, e1802479 (2018). https://doi.org/10.1002/smll.201802479
- Z. Ma, S. Kang, J. Ma, L. Shao, A. Wei et al., High-performance and rapid-response electrical heaters based on ultraflexible, heat-resistant, and mechanically strong aramid nanofiber/Ag nanowire nanocomposite papers. ACS Nano 13, 7578–7590 (2019). https://doi.org/10.1021/acsnano.9b00434
- Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
- L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu et al., Highly efficient and reliable transparent electromagnetic interference shielding film. ACS Appl. Mater. Interfaces 10, 11941–11949 (2018). https://doi.org/10.1021/acsami.8b00492
- W.-L. Song, X.-T. Guan, L.-Z. Fan, W.-Q. Cao, C.-Y. Wang et al., Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J. Mater. Chem. A 3, 2097–2107 (2015). https://doi.org/10.1039/C4TA05939E
- H.Y. Choi, T.-W. Lee, S.-E. Lee, J. Lim, Y.G. Jeong, Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements. Compos. Sci. Technol. 150, 45–53 (2017). https://doi.org/10.1016/j.compscitech.2017.07.008
- H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng et al., Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 4, 505–513 (2021). https://doi.org/10.1007/s42114-021-00224-1
- B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12, 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
- D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma et al., Flexible and transparent electrothermal film heaters based on graphene materials. Small 7, 3186–3192 (2011). https://doi.org/10.1002/smll.201101305
References
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, e2211642 (2023). https://doi.org/10.1002/adma.202211642
H. Cheng, Y. Pan, W. Li, C. Liu, C. Shen et al., Facile design of multifunctional melamine foam with Ni-anchored reduced graphene oxide/MXene as highly efficient microwave absorber. Nano Today 52, 101958 (2023). https://doi.org/10.1016/j.nantod.2023.101958
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7, 2000979 (2020). https://doi.org/10.1002/advs.202000979
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, e202200705 (2022). https://doi.org/10.1002/anie.202200705
L. Ma, M. Hamidinejad, C. Liang, B. Zhao, S. Habibpour et al., Enhanced electromagnetic wave absorption performance of polymer/SiC-nanowire/MXene (Ti3C2Tx) composites. Carbon 179, 408–416 (2021). https://doi.org/10.1016/j.carbon.2021.04.063
Y. Guo, H. Qiu, K. Ruan, S. Wang, Y. Zhang et al., Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Compos. Sci. Technol. 219, 109253 (2022). https://doi.org/10.1016/j.compscitech.2021.109253
C. Pavlou, M.G. PastoreCarbone, A.C. Manikas, G. Trakakis, C. Koral et al., Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 12, 4655 (2021). https://doi.org/10.1038/s41467-021-24970-4
D. Zhang, R. Wang, X. Wang, Y. Gogotsi, In situ monitoring redox processes in energy storage using UV–Vis spectroscopy. Nat. Energy 8, 567–576 (2023). https://doi.org/10.1038/s41560-023-01240-9
M. Zhang, M. Su, Y. Qin, C. Liu, C. Shen et al., Photothermal ultra-high molecular weight polyethylene/MXene aerogel for crude oil adsorption and water evaporation. 2D Mater. 10, 024007 (2023). https://doi.org/10.1088/2053-1583/acc3aa
F. Pan, Y. Rao, D. Batalu, L. Cai, Y. Dong et al., Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 14, 140 (2022). https://doi.org/10.1007/s40820-022-00869-7
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
J. Kim, Y. Yoon, S.K. Kim, S. Park, W. Song et al., Chemically stabilized and functionalized 2D-MXene with deep eutectic solvents as versatile dispersion medium. Adv. Funct. Mater. 31, 2008722 (2021). https://doi.org/10.1002/adfm.202008722
C. Liang, H. Qiu, Y. Zhang, Y. Liu, J. Gu, External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull. 68, 1938–1953 (2023). https://doi.org/10.1016/j.scib.2023.07.046
Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
Z. Xu, X. Ding, S. Li, F. Huang, B. Wang et al., Oxidation-resistant MXene-based melamine foam with ultralow-percolation thresholds for electromagnetic-infrared compatible shielding. ACS Appl. Mater. Interfaces 14, 40396–40407 (2022). https://doi.org/10.1021/acsami.2c05544
R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
Z. Zeng, G. Wang, B.F. Wolan, N. Wu, C. Wang et al., Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 14, 179 (2022). https://doi.org/10.1007/s40820-022-00883-9
N. Duan, Z. Shi, Z. Wang, B. Zou, C. Zhang et al., Mechanically robust Ti3C2Tx MXene/Carbon fiber fabric/Thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications. Mater. Des. 214, 110382 (2022). https://doi.org/10.1016/j.matdes.2022.110382
Y. Sun, R. Ding, S.Y. Hong, J. Lee, Y.-K. Seo et al., MXene-xanthan nanocomposite films with layered microstructure for electromagnetic interference shielding and Joule heating. Chem. Eng. J. 410, 128348 (2021). https://doi.org/10.1016/j.cej.2020.128348
J. Cao, Z. Zhou, Q. Song, K. Chen, G. Su et al., Ultrarobust Ti3C2Tx MXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructures. ACS Nano 14, 7055–7065 (2020). https://doi.org/10.1021/acsnano.0c01779
Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen et al., Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10, 2920 (2019). https://doi.org/10.1038/s41467-019-10885-8
L.X. Liu, W. Chen, H.B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
Z. Li, Z. Wang, W. Lu, B. Hou, Theoretical study of electromagnetic interference shielding of 2D MXenes films. Metals 8, 652 (2018). https://doi.org/10.3390/met8080652
G. Wang, C. Li, D. Estevez, P. Xu, M. Peng et al., Boosting interfacial polarization through heterointerface engineering in mxene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 15, 152 (2023). https://doi.org/10.1007/s40820-023-01123-4
T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14, 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
C. Jiao, Z. Deng, P. Min, J. Lai, Q. Gou et al., Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding. Carbon 198, 179–187 (2022). https://doi.org/10.1016/j.carbon.2022.07.017
W. Ma, W. Cai, W. Chen, P. Liu, J. Wang et al., Microwave-induced segregated composite network with MXene as interfacial solder for ultra-efficient electromagnetic interference shielding and anti-dripping. Chem. Eng. J. 425, 131699 (2021). https://doi.org/10.1016/j.cej.2021.131699
Z. Lu, F. Jia, L. Zhuo, D. Ning, K. Gao et al., Micro-porous MXene/Aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Compos. Part B Eng. 217, 108853 (2021). https://doi.org/10.1016/j.compositesb.2021.108853
Q.-M. He, J.-R. Tao, D. Yang, Y. Yang, M. Wang, Surface wrinkles enhancing electromagnetic interference shielding of copper coated polydimethylsiloxane: a simulation and experimental study. Chem. Eng. J. 454, 140162 (2023). https://doi.org/10.1016/j.cej.2022.140162
C. Liang, W. Zhang, C. Liu, J. He, Y. Xiang et al., Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics. Chem. Eng. J. 471, 144500 (2023). https://doi.org/10.1016/j.cej.2023.144500
K. Tian, D. Hu, Q. Wei, Q. Fu, H. Deng, Recent progress on multifunctional electromagnetic interference shielding polymer composites. J. Mater. Sci. Technol. 134, 106–131 (2023). https://doi.org/10.1016/j.jmst.2022.06.031
J. Liu, L. McKeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3 C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34, e2106253 (2022). https://doi.org/10.1002/adma.202106253
Z. Tan, H. Zhao, F. Sun, L. Ran, L. Yi et al., Fabrication of Chitosan/MXene multilayered film based on layer-by-layer assembly: toward enhanced electromagnetic interference shielding and thermal management capacity. Compos. Part A-Appl. Sci. Manuf. 155, 106809 (2022). https://doi.org/10.1016/j.compositesa.2022.106809
X. Jin, J. Wang, L. Dai, X. Liu, L. Li et al., Flame-retardant poly(vinyl alcohol)/mxene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020). https://doi.org/10.1016/j.cej.2019.122475
E. Pakdel, J. Wang, S. Kashi, L. Sun, X. Wang, Advances in photocatalytic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments. Adv. Colloid Interface Sci. 277, 102116 (2020). https://doi.org/10.1016/j.cis.2020.102116
C. Wu, J. Wang, X. Zhang, L. Kang, X. Cao et al., Hollow gradient-structured iron-anchored carbon nanospheres for enhanced electromagnetic wave absorption. Nano-Micro Lett. 15, 7 (2022). https://doi.org/10.1007/s40820-022-00963-w
L. Wang, Z. Ma, H. Qiu, Y. Zhang, Z. Yu et al., Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 14, 224 (2022). https://doi.org/10.1007/s40820-022-00949-8
C. Xiang, W. Wang, S. Wang, S. Liu, M. Li et al., Humidity-driven switch in the transparency of a nanofiber film for a smart window. J. Phys. Chem. Lett. 12, 9636–9643 (2021). https://doi.org/10.1021/acs.jpclett.1c02772
F. Zeng, X. Zhao, M. Luo, W. Wang, X. Qing et al., A transparent PEDOT: PSS/PVA-co-PE/epoxy thermoelectric composite device with excellent flexibility and environmental stability. Compos. Sci. Technol. 218, 109153 (2022). https://doi.org/10.1016/j.compscitech.2021.109153
D. Wang, W. Xu, G. Sun, B.-S. Chiou, Radical graft polymerization of an allyl monomer onto hydrophilic polymers and their antibacterial nanofibrous membranes. ACS Appl. Mater. Interfaces 3, 2838–2844 (2011). https://doi.org/10.1021/am200286a
P. Cheng, K. Liu, Y. Wan, W. Hu, C. Ji et al., Solution viscosity-mediated structural control of nanofibrous sponge for RNA separation and purification. Adv. Funct. Mater. 32, 2112023 (2022). https://doi.org/10.1002/adfm.202112023
X. Wen, C. Yang, Z. Li, M. Xia, Y. Wu et al., A sandwich-structured ultra-flexible Pva-co-PE/Cu nanofiber composite film with excellent electrical conductivity, electromagnetic shielding properties, and environmental stability. Colloids Surf. A: Physicochem. Eng. Aspects 656, 130329 (2023). https://doi.org/10.1016/j.colsurfa.2022.130329
Y. Wei, P. Zhang, R.A. Soomro, Q. Zhu, B. Xu, Advances in the synthesis of 2D MXenes. Adv. Mater. 33, 2103148 (2021). https://doi.org/10.1002/adma.202103148
F. Liu, Y. Li, S. Hao, Y. Cheng, Y. Zhan et al., Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohydr. Polym. 243, 116467 (2020). https://doi.org/10.1016/j.carbpol.2020.116467
H. Yang, L. Cheng, Q. Yang, A. Farooq, L. Ying et al., Multifunctional and durable thermal management coating from sericin-MXene biohybrid on silk fabric micro-etched by deep eutectic solvent. Appl. Surf. Sci. 623, 156962 (2023). https://doi.org/10.1016/j.apsusc.2023.156962
J. Liu, H.-B. Zhang, X. Xie, R. Yang, Z. Liu et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14, e1802479 (2018). https://doi.org/10.1002/smll.201802479
Z. Ma, S. Kang, J. Ma, L. Shao, A. Wei et al., High-performance and rapid-response electrical heaters based on ultraflexible, heat-resistant, and mechanically strong aramid nanofiber/Ag nanowire nanocomposite papers. ACS Nano 13, 7578–7590 (2019). https://doi.org/10.1021/acsnano.9b00434
Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu et al., Highly efficient and reliable transparent electromagnetic interference shielding film. ACS Appl. Mater. Interfaces 10, 11941–11949 (2018). https://doi.org/10.1021/acsami.8b00492
W.-L. Song, X.-T. Guan, L.-Z. Fan, W.-Q. Cao, C.-Y. Wang et al., Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J. Mater. Chem. A 3, 2097–2107 (2015). https://doi.org/10.1039/C4TA05939E
H.Y. Choi, T.-W. Lee, S.-E. Lee, J. Lim, Y.G. Jeong, Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements. Compos. Sci. Technol. 150, 45–53 (2017). https://doi.org/10.1016/j.compscitech.2017.07.008
H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng et al., Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 4, 505–513 (2021). https://doi.org/10.1007/s42114-021-00224-1
B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12, 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma et al., Flexible and transparent electrothermal film heaters based on graphene materials. Small 7, 3186–3192 (2011). https://doi.org/10.1002/smll.201101305