Gradient-Layered MXene/Hollow Lignin Nanospheres Architecture Design for Flexible and Stretchable Supercapacitors
Corresponding Author: Hao Ren
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 43
Abstract
With the rapid development of flexible wearable electronics, the demand for stretchable energy storage devices has surged. In this work, a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres (HLNPs)-intercalated two-dimensional transition metal carbide (Ti3C2Tx MXene) for fabricating highly stretchable and durable supercapacitors. By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient, a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella. Moreover, the micro-chamber architecture of thin-walled lignin nanospheres effectively extended the contact area between lignin and MXene to improve ion and electron accessibility, thus better utilizing the pseudocapacitive property of lignin. All these strategies effectively enhanced the capacitive performance of the electrodes. In addition, HLNPs, which acted as a protective phase for MXene layer, enhanced mechanical properties of the wrinkled stretchable electrodes by releasing stress through slip and deformation during the stretch-release cycling and greatly improved the structural integrity and capacitive stability of the electrodes. Flexible electrodes and symmetric flexible all-solid-state supercapacitors capable of enduring 600% uniaxial tensile strain were developed with high specific capacitances of 1273 mF cm−2 (241 F g−1) and 514 mF cm−2 (95 F g−1), respectively. Moreover, their capacitances were well preserved after 1000 times of 600% stretch-release cycling. This study showcased new possibilities of incorporating biobased lignin nanospheres in energy storage devices to fabricate stretchable devices leveraging synergies among various two-dimensional nanomaterials.
Highlights:
1 A novel gradient-layered architecture based on single-pore hollow lignin nanospheres (HLNPs)-intercalated MXene layers was created to fabricate highly stretchable (600%) and durable (1000 cycling) supercapacitor electrodes.
2 The architecture reduced the overstacking of MXene, and the micro-chamber structure of HLNPs better utilized lignin’s pseudocapacitive property to improve ion and electron accessibility (specific capacitance reached 1273 mF cm−2).
3 HLNPs enhanced mechanical durability and capacitive stability of the integrated wrinkled electrodes during the stretch-release cycling.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.H. Jung, S.K. Hong, H.S. Wang, J.H. Han, T.X. Pham et al., Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 32, e1904020 (2020). https://doi.org/10.1002/adma.201904020
- J. Wang, Y. Qi, Y. Gui, C. Wang, Y. Wu et al., Ultrastretchable e-skin based on conductive hydrogel microfibers for wearable sensors. Small 20, e2305951 (2024). https://doi.org/10.1002/smll.202305951
- H. Zhang, Y. Zhu, T. Fu, C. Hao, Y. Huang et al., Robust and ultra-tough lignocellulosic organogel with zipper-like sliding noncovalent nanostructural design: towards next-generation bio-derived flexible electronics. Chem. Eng. J. 485, 150105 (2024). https://doi.org/10.1016/j.cej.2024.150105
- Y. Long, B. Jiang, T. Huang, Y. Liu, J. Niu et al., Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics. Adv. Funct. Mater. 33, 2304625 (2023). https://doi.org/10.1002/adfm.202304625
- Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 19, 1143–1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514
- Z. Jiang, B.B.A. Abbasi, S. Aloko, F. Mokhtari, G.M. Spinks, Ultra-soft organogel artificial muscles exhibiting high power density, large stroke, fast response and long-term durability in air. Adv. Mater. 35, e2210419 (2023). https://doi.org/10.1002/adma.202210419
- W. Fan, Q. Wang, K. Rong, Y. Shi, W. Peng et al., MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors. Nano-Micro Lett. 16, 36 (2023). https://doi.org/10.1007/s40820-023-01226-y
- C. Gao, Q. You, J. Huang, J. Sun, X. Yao et al., Ultraconformable integrated wireless charging micro-supercapacitor skin. Nano-Micro Lett. 16, 123 (2024). https://doi.org/10.1007/s40820-024-01352-1
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/C8CS00324F
- K. Maleski, V.N. Mochalin, Y. Gogotsi, Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 29, 1632–1640 (2017). https://doi.org/10.1021/acs.chemmater.6b04830
- M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- K. Khan, A.K. Tareen, M. Iqbal, I. Hussain, A. Mahmood et al., Recent advances in MXenes: a future of nanotechnologies. J. Mater. Chem. A 11(19764), 19811 (2023). https://doi.org/10.1039/D3TA03069E
- R. Ma, X. Zhang, J. Zhuo, L. Cao, Y. Song et al., Self-supporting, binder-free, and flexible Ti3C2Tx MXene-based supercapacitor electrode with improved electrochemical performance. ACS Nano 16, 9713–9727 (2022). https://doi.org/10.1021/acsnano.2c03351
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- J. Come, Y. Xie, M. Naguib, S. Jesse, S.V. Kalinin et al., Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes. Adv. Energy Mater. 6, 1502290 (2016). https://doi.org/10.1002/aenm.201502290
- A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers MXenes (Jenny Stanford Publishing, New York, 2023), pp.207–224. https://doi.org/10.1201/9781003306511-11
- Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 111(47), 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
- Y. Zhou, K. Maleski, B. Anasori, J.O. Thostenson, Y. Pang et al., Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano 14, 3576–3586 (2020). https://doi.org/10.1021/acsnano.9b10066
- S. Feng, X. Wang, M. Wang, C. Bai, S. Cao et al., Crumpled MXene electrodes for ultrastretchable and high-area-capacitance supercapacitors. Nano Lett. 21, 7561–7568 (2021). https://doi.org/10.1021/acs.nanolett.1c02071
- T.H. Chang, T. Zhang, H. Yang, K. Li, Y. Tian et al., Controlled crumpling of two-dimensional titanium carbide (MXene) for highly stretchable, bendable, efficient supercapacitors. ACS Nano 12, 8048–8059 (2018). https://doi.org/10.1021/acsnano.8b02908
- Y. Li, X. Tian, S.-P. Gao, L. Jing, K. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30, 1907451 (2020). https://doi.org/10.1002/adfm.201907451
- W. Liu, J. Chen, Z. Chen, K. Liu, G. Zhou et al., Stretchable lithium-ion batteries enabled by device-scaled wavy structure and elastic-sticky separator. Adv. Energy Mater. 7, 1701076 (2017). https://doi.org/10.1002/aenm.201701076
- H. An, T. Habib, S. Shah, H. Gao, M. Radovic et al., Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 4, eaaq118 (2018). https://doi.org/10.1126/sciadv.aaq0118
- Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan et al., Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5, 1800750 (2018). https://doi.org/10.1002/advs.201800750
- W.-T. Cao, F.-F. Chen, Y.-J. Zhu, Y.-G. Zhang, Y.-Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12, 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- Y. Wang, X. Wang, X. Li, Y. Bai, H. Xiao et al., Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Adv. Funct. Mater. 29, 1900326 (2019). https://doi.org/10.1002/adfm.201900326
- Y. Wang, N. Chen, B. Zhou, X. Zhou, B. Pu et al., NH3-induced in situ etching strategy derived 3D-interconnected porous MXene/carbon dots films for high performance flexible supercapacitors. Nano-Micro Lett. 15, 231 (2023). https://doi.org/10.1007/s40820-023-01204-4
- Y. Wang, N. Chen, Y. Liu, X. Zhou, B. Pu et al., MXene/Graphdiyne nanotube composite films for Free-Standing and flexible Solid-State supercapacitor. Chem. Eng. J. 450, 138398 (2022). https://doi.org/10.1016/j.cej.2022.138398
- H.-N. Zhang, H. Ren, H.-M. Zhai, Analysis of phenolation potential of spruce kraft lignin and construction of its molecular structure model. Ind. Crops Prod. 167, 113506 (2021). https://doi.org/10.1016/j.indcrop.2021.113506
- H. Zhang, H. Zhao, Y. Yang, H. Ren, H. Zhai, A spectroscopic method for quantitating lignin in lignocellulosic biomass based on the completely dissolved solution of biomass in LiCl/DMSO. Green Chem. 24, 2212–2221 (2022). https://doi.org/10.1039/D1GC04257B
- G. Milczarek, O. Inganäs, Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks. Science 335, 1468–1471 (2012). https://doi.org/10.1126/science.1215159
- L. Chen, J. Wu, A. Zhang, A. Zhou, Z. Huang et al., One-step synthesis of polyhydroquinone–graphene hydrogel composites for high performance supercapacitors. J. Mater. Chem. A 3, 16033–16039 (2015). https://doi.org/10.1039/C5TA03881B
- F. Li, X. Wang, R. Sun, A metal-free and flexible supercapacitor based on redox-active lignosulfonate functionalized graphene hydrogels. J. Mater. Chem. A 5, 20643–20650 (2017). https://doi.org/10.1039/c7ta03789a
- L. Ma, T. Zhao, F. Xu, T. You, X. Zhang, A dual utilization strategy of lignosulfonate for MXene asymmetric supercapacitor with high area energy density. Chem. Eng. J. 405, 126694 (2021). https://doi.org/10.1016/j.cej.2020.126694
- J. Wang, W. Guo, K. Tian, X. Li, X. Wang et al., Proof of aerobically autoxidized self-charge concept based on single catechol-enriched carbon cathode material. Nano-Micro Lett. 16, 62 (2023). https://doi.org/10.1007/s40820-023-01283-3
- N.R. Tanguy, H. Wu, S.S. Nair, K. Lian, N. Yan, Lignin cellulose nanofibrils as an electrochemically functional component for high-performance and flexible supercapacitor electrodes. ChemSusChem 14, 1057–1067 (2021). https://doi.org/10.1002/cssc.202002558
- Y. Gao, Q. Cao, J. Pu, X. Zhao, G. Fu et al., Stable Zn anodes with triple gradients. Adv. Mater. 35, 2207573 (2023). https://doi.org/10.1002/adma.202207573
- F. Xiong, Y. Han, S. Wang, G. Li, T. Qin et al., Preparation and formation mechanism of renewable lignin hollow nanospheres with a single hole by self-assembly. ACS Sustain. Chem. Eng. 5, 2273–2281 (2017). https://doi.org/10.1021/acssuschemeng.6b02585
- K. Hosoya, Y. Dan, A. Muto, Development of STEM imaging in SEM using photon detector. Microsc. Microanal. 25, 552–553 (2019). https://doi.org/10.1017/s1431927619003490
- M. Lievonen, J.J. Valle-Delgado, M.-L. Mattinen, E.-L. Hult, K. Lintinen et al., A simple process for lignin nanop preparation. Green Chem. 18, 1416–1422 (2016). https://doi.org/10.1039/c5gc01436k
- Y. Liu, X. Zhao, Z. Liu, B. Sun, X. Liu et al., Functionalized lignin nanops assembled with MXene reinforced polypropylene with favorable UV-aging resistance, electromagnetic shielding effects and superior fire-safety. Int. J. Biol. Macromol. 265, 130957 (2024). https://doi.org/10.1016/j.ijbiomac.2024.130957
- X. Jin, S. Wang, C. Sang, Y. Yue, X. Xu et al., Patternable nanocellulose/Ti3C2Tx flexible films with tunable photoresponsive and electromagnetic interference shielding performances. ACS Appl. Mater. Interfaces 14, 35040–35052 (2022). https://doi.org/10.1021/acsami.2c11567
- W.-T. Du, Y.-L. Kuan, S.-W. Kuo, Intra- and intermolecular hydrogen bonding in miscible blends of CO2/epoxy cyclohexene copolymer with poly(vinyl phenol). Int. J. Mol. Sci. 23, 7018 (2022). https://doi.org/10.3390/ijms23137018
- C. Cai, Z. Wei, Y. Huang, P. Wang, J. Song et al., Bioinspired structure-robust cellulose nanocrystal films with enhanced water resistance, photothermal conversion ability, and fluorescence. Cellulose 27, 10241–10257 (2020). https://doi.org/10.1007/s10570-020-03484-0
- S. Jiao, A. Zhou, M. Wu, H. Hu, Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays. Adv. Sci. 6, 1900529 (2019). https://doi.org/10.1002/advs.201900529
- S. Li, T.-H. Chang, Y. Li, M. Ding, J. Yang et al., Stretchable Ti3C2Tx MXene microsupercapacitors with high areal capacitance and quasi-solid-state multivalent neutral electrolyte. J. Mater. Chem. A 9, 4664–4672 (2021). https://doi.org/10.1039/D0TA10560K
- L. Weng, F. Qi, Y. Min, The Ti3C2Tx MXene coated metal mesh electrodes for stretchable supercapacitors. Mater. Lett. 278, 128235 (2020). https://doi.org/10.1016/j.matlet.2020.128235
- W. Yu, Y. Li, B. Xin, Z. Lu, MXene/PVA fiber-based supercapacitor with stretchability for wearable energy storage. Fibres. Polym. 23, 2994–3001 (2022). https://doi.org/10.1007/s12221-022-4389-4
References
Y.H. Jung, S.K. Hong, H.S. Wang, J.H. Han, T.X. Pham et al., Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 32, e1904020 (2020). https://doi.org/10.1002/adma.201904020
J. Wang, Y. Qi, Y. Gui, C. Wang, Y. Wu et al., Ultrastretchable e-skin based on conductive hydrogel microfibers for wearable sensors. Small 20, e2305951 (2024). https://doi.org/10.1002/smll.202305951
H. Zhang, Y. Zhu, T. Fu, C. Hao, Y. Huang et al., Robust and ultra-tough lignocellulosic organogel with zipper-like sliding noncovalent nanostructural design: towards next-generation bio-derived flexible electronics. Chem. Eng. J. 485, 150105 (2024). https://doi.org/10.1016/j.cej.2024.150105
Y. Long, B. Jiang, T. Huang, Y. Liu, J. Niu et al., Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics. Adv. Funct. Mater. 33, 2304625 (2023). https://doi.org/10.1002/adfm.202304625
Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 19, 1143–1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514
Z. Jiang, B.B.A. Abbasi, S. Aloko, F. Mokhtari, G.M. Spinks, Ultra-soft organogel artificial muscles exhibiting high power density, large stroke, fast response and long-term durability in air. Adv. Mater. 35, e2210419 (2023). https://doi.org/10.1002/adma.202210419
W. Fan, Q. Wang, K. Rong, Y. Shi, W. Peng et al., MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors. Nano-Micro Lett. 16, 36 (2023). https://doi.org/10.1007/s40820-023-01226-y
C. Gao, Q. You, J. Huang, J. Sun, X. Yao et al., Ultraconformable integrated wireless charging micro-supercapacitor skin. Nano-Micro Lett. 16, 123 (2024). https://doi.org/10.1007/s40820-024-01352-1
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). https://doi.org/10.1126/science.1241488
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/C8CS00324F
K. Maleski, V.N. Mochalin, Y. Gogotsi, Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 29, 1632–1640 (2017). https://doi.org/10.1021/acs.chemmater.6b04830
M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
K. Khan, A.K. Tareen, M. Iqbal, I. Hussain, A. Mahmood et al., Recent advances in MXenes: a future of nanotechnologies. J. Mater. Chem. A 11(19764), 19811 (2023). https://doi.org/10.1039/D3TA03069E
R. Ma, X. Zhang, J. Zhuo, L. Cao, Y. Song et al., Self-supporting, binder-free, and flexible Ti3C2Tx MXene-based supercapacitor electrode with improved electrochemical performance. ACS Nano 16, 9713–9727 (2022). https://doi.org/10.1021/acsnano.2c03351
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
J. Come, Y. Xie, M. Naguib, S. Jesse, S.V. Kalinin et al., Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes. Adv. Energy Mater. 6, 1502290 (2016). https://doi.org/10.1002/aenm.201502290
A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers MXenes (Jenny Stanford Publishing, New York, 2023), pp.207–224. https://doi.org/10.1201/9781003306511-11
Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 111(47), 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
Y. Zhou, K. Maleski, B. Anasori, J.O. Thostenson, Y. Pang et al., Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano 14, 3576–3586 (2020). https://doi.org/10.1021/acsnano.9b10066
S. Feng, X. Wang, M. Wang, C. Bai, S. Cao et al., Crumpled MXene electrodes for ultrastretchable and high-area-capacitance supercapacitors. Nano Lett. 21, 7561–7568 (2021). https://doi.org/10.1021/acs.nanolett.1c02071
T.H. Chang, T. Zhang, H. Yang, K. Li, Y. Tian et al., Controlled crumpling of two-dimensional titanium carbide (MXene) for highly stretchable, bendable, efficient supercapacitors. ACS Nano 12, 8048–8059 (2018). https://doi.org/10.1021/acsnano.8b02908
Y. Li, X. Tian, S.-P. Gao, L. Jing, K. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30, 1907451 (2020). https://doi.org/10.1002/adfm.201907451
W. Liu, J. Chen, Z. Chen, K. Liu, G. Zhou et al., Stretchable lithium-ion batteries enabled by device-scaled wavy structure and elastic-sticky separator. Adv. Energy Mater. 7, 1701076 (2017). https://doi.org/10.1002/aenm.201701076
H. An, T. Habib, S. Shah, H. Gao, M. Radovic et al., Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 4, eaaq118 (2018). https://doi.org/10.1126/sciadv.aaq0118
Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan et al., Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5, 1800750 (2018). https://doi.org/10.1002/advs.201800750
W.-T. Cao, F.-F. Chen, Y.-J. Zhu, Y.-G. Zhang, Y.-Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12, 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
Y. Wang, X. Wang, X. Li, Y. Bai, H. Xiao et al., Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Adv. Funct. Mater. 29, 1900326 (2019). https://doi.org/10.1002/adfm.201900326
Y. Wang, N. Chen, B. Zhou, X. Zhou, B. Pu et al., NH3-induced in situ etching strategy derived 3D-interconnected porous MXene/carbon dots films for high performance flexible supercapacitors. Nano-Micro Lett. 15, 231 (2023). https://doi.org/10.1007/s40820-023-01204-4
Y. Wang, N. Chen, Y. Liu, X. Zhou, B. Pu et al., MXene/Graphdiyne nanotube composite films for Free-Standing and flexible Solid-State supercapacitor. Chem. Eng. J. 450, 138398 (2022). https://doi.org/10.1016/j.cej.2022.138398
H.-N. Zhang, H. Ren, H.-M. Zhai, Analysis of phenolation potential of spruce kraft lignin and construction of its molecular structure model. Ind. Crops Prod. 167, 113506 (2021). https://doi.org/10.1016/j.indcrop.2021.113506
H. Zhang, H. Zhao, Y. Yang, H. Ren, H. Zhai, A spectroscopic method for quantitating lignin in lignocellulosic biomass based on the completely dissolved solution of biomass in LiCl/DMSO. Green Chem. 24, 2212–2221 (2022). https://doi.org/10.1039/D1GC04257B
G. Milczarek, O. Inganäs, Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks. Science 335, 1468–1471 (2012). https://doi.org/10.1126/science.1215159
L. Chen, J. Wu, A. Zhang, A. Zhou, Z. Huang et al., One-step synthesis of polyhydroquinone–graphene hydrogel composites for high performance supercapacitors. J. Mater. Chem. A 3, 16033–16039 (2015). https://doi.org/10.1039/C5TA03881B
F. Li, X. Wang, R. Sun, A metal-free and flexible supercapacitor based on redox-active lignosulfonate functionalized graphene hydrogels. J. Mater. Chem. A 5, 20643–20650 (2017). https://doi.org/10.1039/c7ta03789a
L. Ma, T. Zhao, F. Xu, T. You, X. Zhang, A dual utilization strategy of lignosulfonate for MXene asymmetric supercapacitor with high area energy density. Chem. Eng. J. 405, 126694 (2021). https://doi.org/10.1016/j.cej.2020.126694
J. Wang, W. Guo, K. Tian, X. Li, X. Wang et al., Proof of aerobically autoxidized self-charge concept based on single catechol-enriched carbon cathode material. Nano-Micro Lett. 16, 62 (2023). https://doi.org/10.1007/s40820-023-01283-3
N.R. Tanguy, H. Wu, S.S. Nair, K. Lian, N. Yan, Lignin cellulose nanofibrils as an electrochemically functional component for high-performance and flexible supercapacitor electrodes. ChemSusChem 14, 1057–1067 (2021). https://doi.org/10.1002/cssc.202002558
Y. Gao, Q. Cao, J. Pu, X. Zhao, G. Fu et al., Stable Zn anodes with triple gradients. Adv. Mater. 35, 2207573 (2023). https://doi.org/10.1002/adma.202207573
F. Xiong, Y. Han, S. Wang, G. Li, T. Qin et al., Preparation and formation mechanism of renewable lignin hollow nanospheres with a single hole by self-assembly. ACS Sustain. Chem. Eng. 5, 2273–2281 (2017). https://doi.org/10.1021/acssuschemeng.6b02585
K. Hosoya, Y. Dan, A. Muto, Development of STEM imaging in SEM using photon detector. Microsc. Microanal. 25, 552–553 (2019). https://doi.org/10.1017/s1431927619003490
M. Lievonen, J.J. Valle-Delgado, M.-L. Mattinen, E.-L. Hult, K. Lintinen et al., A simple process for lignin nanop preparation. Green Chem. 18, 1416–1422 (2016). https://doi.org/10.1039/c5gc01436k
Y. Liu, X. Zhao, Z. Liu, B. Sun, X. Liu et al., Functionalized lignin nanops assembled with MXene reinforced polypropylene with favorable UV-aging resistance, electromagnetic shielding effects and superior fire-safety. Int. J. Biol. Macromol. 265, 130957 (2024). https://doi.org/10.1016/j.ijbiomac.2024.130957
X. Jin, S. Wang, C. Sang, Y. Yue, X. Xu et al., Patternable nanocellulose/Ti3C2Tx flexible films with tunable photoresponsive and electromagnetic interference shielding performances. ACS Appl. Mater. Interfaces 14, 35040–35052 (2022). https://doi.org/10.1021/acsami.2c11567
W.-T. Du, Y.-L. Kuan, S.-W. Kuo, Intra- and intermolecular hydrogen bonding in miscible blends of CO2/epoxy cyclohexene copolymer with poly(vinyl phenol). Int. J. Mol. Sci. 23, 7018 (2022). https://doi.org/10.3390/ijms23137018
C. Cai, Z. Wei, Y. Huang, P. Wang, J. Song et al., Bioinspired structure-robust cellulose nanocrystal films with enhanced water resistance, photothermal conversion ability, and fluorescence. Cellulose 27, 10241–10257 (2020). https://doi.org/10.1007/s10570-020-03484-0
S. Jiao, A. Zhou, M. Wu, H. Hu, Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays. Adv. Sci. 6, 1900529 (2019). https://doi.org/10.1002/advs.201900529
S. Li, T.-H. Chang, Y. Li, M. Ding, J. Yang et al., Stretchable Ti3C2Tx MXene microsupercapacitors with high areal capacitance and quasi-solid-state multivalent neutral electrolyte. J. Mater. Chem. A 9, 4664–4672 (2021). https://doi.org/10.1039/D0TA10560K
L. Weng, F. Qi, Y. Min, The Ti3C2Tx MXene coated metal mesh electrodes for stretchable supercapacitors. Mater. Lett. 278, 128235 (2020). https://doi.org/10.1016/j.matlet.2020.128235
W. Yu, Y. Li, B. Xin, Z. Lu, MXene/PVA fiber-based supercapacitor with stretchability for wearable energy storage. Fibres. Polym. 23, 2994–3001 (2022). https://doi.org/10.1007/s12221-022-4389-4