3D-Printed Carbon-Based Conformal Electromagnetic Interference Shielding Module for Integrated Electronics
Corresponding Author: Yinghong Chen
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 85
Abstract
Electromagnetic interference shielding (EMI SE) modules are the core component of modern electronics. However, the traditional metal-based SE modules always take up indispensable three-dimensional space inside electronics, posing a major obstacle to the integration of electronics. The innovation of integrating 3D-printed conformal shielding (c-SE) modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE function without occupying additional space. Herein, the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity. Accordingly, the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing. In particular, the SE performance of 3D-printed frame is up to 61.4 dB, simultaneously accompanied with an ultralight architecture of 0.076 g cm−3 and a superhigh specific shielding of 802.4 dB cm3 g−1. Moreover, as a proof-of-concept, the 3D-printed c-SE module is in situ integrated into core electronics, successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipation. Thus, this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics.
Highlights:
1 3D printable functional inks incorporated with graphene and carbon nanotube nanoparticles were well-formulated by manipulating their rheological performance
2 The frame with ultralight structure (0.076 g cm−3) and high-efficiency electromagnetic interference shielding (61.4 dB) was assembled
3 3D-printed c-SE module was in situ integrated onto the electronics, affording multiple functions of electromagnetic compatibility and thermal dissipation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Xie, S. Liu, K. Huang, B. Chen, P. Shi et al., Ultra-broadband strong electromagnetic interference shielding with ferromagnetic graphene quartz fabric. Adv. Mater. 34, e2202982 (2022). https://doi.org/10.1002/adma.202202982
- H. Lv, Y. Yao, S. Li, G. Wu, B. Zhao et al., Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 14, 1982 (2023). https://doi.org/10.1038/s41467-023-37436-6
- D. Jiang, M. Lian, M. Xu, Q. Sun, B.B. Xu et al., Advances in triboelectric nanogenerator technology—applications in self-powered sensors, Internet of Things, biomedicine, and blue energy. Adv. Compos. Hybrid Mater. 6, 57 (2023). https://doi.org/10.1007/s42114-023-00632-5
- S. Dang, O. Amin, B. Shihada, M.-S. Alouini, What should 6G be? Nat. Electron. 3, 20–29 (2020). https://doi.org/10.1038/s41928-019-0355-6
- K. Zhang, L. Zheng, M.A. Aouraghe, F. Xu, Ultra-light-weight kevlar/polyimide 3D woven spacer multifunctional composites for high-gain microstrip antenna. Adv. Compos. Hybrid Mater. 5, 872–883 (2022). https://doi.org/10.1007/s42114-021-00382-2
- J. Singh, Z. Din, Energy efficient data aggregation and density-based spatial clustering of applications with noise for activity monitoring in wireless sensor networks. Eng. Sci. 19, 144–153 (2022). https://doi.org/10.30919/es8d694
- Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, e1908496 (2020). https://doi.org/10.1002/adma.201908496
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3 C2 tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, e2211642 (2023). https://doi.org/10.1002/adma.202211642
- D. Lan, Y. Wang, Y. Wang, X. Zhu, H. Li et al., Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 651, 494–503 (2023). https://doi.org/10.1016/j.jcis.2023.08.019
- Y. Hao, Z. Leng, C. Yu, P. Xie, S. Meng et al., Ultra-lightweight hollow bowl-like carbon as microwave absorber owning broad band and low filler loading. Carbon 212, 118156 (2023). https://doi.org/10.1016/j.carbon.2023.118156
- P. Xie, Y. Liu, M. Feng, M. Niu, C. Liu et al., Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv. Compos. Hybrid Mater. 4, 173–185 (2021). https://doi.org/10.1007/s42114-020-00202-z
- F. Li, N. Wu, H. Kimura, Y. Wang, B.B. Xu et al., Initiating binary metal oxides microcubes electrsomagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Lett. 15, 220 (2023). https://doi.org/10.1007/s40820-023-01197-0
- Y. Cheng, X. Li, Y. Qin, Y. Fang, G. Liu et al., Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 7, eabj1663 (2021). https://doi.org/10.1126/sciadv.abj1663
- J. Ruan, Z. Chang, H. Rong, T.S. Alomar, D. Zhu et al., High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213, 118208 (2023). https://doi.org/10.1016/j.carbon.2023.118208
- R. Zhu, Z. Li, G. Deng, Y. Yu, J. Shui et al., Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 92, 106700 (2022). https://doi.org/10.1016/j.nanoen.2021.106700
- Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
- Q.-M. He, J.-R. Tao, Y. Yang, D. Yang, K. Zhang et al., Effect surface micro-wrinkles and micro-cracks on microwave shielding performance of copper-coated carbon nanotubes/polydimethylsiloxane composites. Carbon 213, 118216 (2023). https://doi.org/10.1016/j.carbon.2023.118216
- X. Shen, J.-K. Kim, Building 3D architecture in 2D thin film for effective EMI shielding. Matter 1, 796–798 (2019). https://doi.org/10.1016/j.matt.2019.09.007
- W.-Y. Chen, X.-L. Shi, J. Zou, Z.-G. Chen, Thermoelectric coolers for on-chip thermal management: materials, design, and optimization. Mater. Sci. Eng. R. Rep. 151, 100700 (2022). https://doi.org/10.1016/j.mser.2022.100700
- J. Liu, M.-Y. Yu, Z.-Z. Yu, V. Nicolosi, Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 66, 245–272 (2023). https://doi.org/10.1016/j.mattod.2023.03.022
- I.A. Kinloch, J. Suhr, J. Lou, R.J. Young, P.M. Ajayan, Composites with carbon nanotubes and graphene: an outlook. Science 362, 547–553 (2018). https://doi.org/10.1126/science.aat7439
- Y. Gao, D. Bao, M. Zhang, Y. Cui, F. Xu et al., Millefeuille-inspired thermal interface materials based on double self-assembly technique for efficient microelectronic cooling and electromagnetic interference shielding. Small 18, e2105567 (2022). https://doi.org/10.1002/smll.202105567
- P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14, 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
- Y. Chen, Y. Yang, Y. Xiong, L. Zhang, W. Xu et al., Porous aerogel and sponge composites: assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 38, 101204 (2021). https://doi.org/10.1016/j.nantod.2021.101204
- T. Wang, W.-W. Kong, W.-C. Yu, J.-F. Gao, K. Dai et al., A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 13, 162 (2021). https://doi.org/10.1007/s40820-021-00693-5
- W. Kang, L. Zeng, S. Ling, C. Zhang, 3D printed supercapacitors toward trinity excellence in kinetics, energy density, and flexibility. Adv. Energy Mater. 11, 2100020 (2021). https://doi.org/10.1002/aenm.202100020
- M. Aramfard, O. Kaynan, E. Hosseini, M. Zakertabrizi, L.M. Pérez et al., Aqueous dispersion of carbon nanomaterials with cellulose nanocrystals: an investigation of molecular interactions. Small 18, e2202216 (2022). https://doi.org/10.1002/smll.202202216
- E. Erfanian, R. Moaref, R. Ajdary, K.C. Tam, O.J. Rojas et al., Electrochemically synthesized graphene/TEMPO-oxidized cellulose nanofibrils hydrogels: highly conductive green inks for 3D printing of robust structured EMI shielding aerogels. Carbon 210, 118037 (2023). https://doi.org/10.1016/j.carbon.2023.118037
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon Aerogel@Reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- C. Wang, H. Gao, D. Liang, S. Liu, H. Zhang et al., Effective fabrication of flexible nickel chains/acrylate composite pressure-sensitive adhesives with layered structure for tunable electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 2906–2920 (2022). https://doi.org/10.1007/s42114-022-00482-7
- C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
- L.-X. Liu, W. Chen, H.-B. Zhang, Q.-W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29, 1905197 (2019). https://doi.org/10.1002/adfm.201905197
- J. Xu, H. Chang, B. Zhao, R. Li, T. Cui et al., Highly stretchable and conformal electromagnetic interference shielding armor with strain sensing ability. Chem. Eng. J. 431, 133908 (2022). https://doi.org/10.1016/j.cej.2021.133908
- H.-C. Kuo, C.-W. Kuo, C.-C. Wang, Effective low-frequency EMI conformal shielding for system-in-package (SiP) modules. Micro Opt. Tech. Lett. 65, 1892–1897 (2023). https://doi.org/10.1002/mop.33658
- J. Liu, L. McKeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34, 2106253 (2022). https://doi.org/10.1002/adma.202106253
- R. Li, Q. Fu, X. Zou, Z. Zheng, W. Luo et al., Mn-Co-Ni-O thin films prepared by sputtering with alloy target. J. Adv. Ceram. 9, 64–71 (2020). https://doi.org/10.1007/s40145-019-0348-y
- Z. Wang, B. Mao, Q. Wang, J. Yu, J. Dai et al., Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness. Small 14, e1704332 (2018). https://doi.org/10.1002/smll.201704332
- F. Ning, Z. Chai, X. Dan, P. Liu, Q. Wen et al., Integrated gas diffusion electrode with high conductivity obtained by skin electroplating for high specific power density fuel cell. Small Methods 7, e2201256 (2023). https://doi.org/10.1002/smtd.202201256
- H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
- F. Liu, Y. Gao, G. Wang, D. Wang, Y. Wang et al., Laser-induced graphene enabled additive manufacturing of multifunctional 3D architectures with freeform structures. Adv. Sci. 10, e2204990 (2023). https://doi.org/10.1002/advs.202204990
- J. Liu, J. Garcia, L.M. Leahy, R. Song, D. Mullarkey et al., 3D printing of multifunctional conductive polymer composite hydrogels. Adv. Funct. Mater. 33, 2214196 (2023). https://doi.org/10.1002/adfm.202214196
- K.P.M. Lee, T. Baum, R. Shanks, F. Daver, Electromagnetic interference shielding of 3D-printed graphene–polyamide-6 composites with 3D-printed morphology. Addit. Manuf. 43, 102020 (2021). https://doi.org/10.1016/j.addma.2021.102020
- Q. Lv, X. Tao, S. Shi, Y. Li, N. Chen, From materials to components: 3D-printed architected honeycombs toward high-performance and tunable electromagnetic interference shielding. Compos. Part B Eng. 230, 109500 (2022). https://doi.org/10.1016/j.compositesb.2021.109500
- S. Shi, M. Dai, X. Tao, F. Wu, J. Sun et al., 3D printed polylactic acid/graphene nanocomposites with tailored multifunctionality towards superior thermal management and high-efficient electromagnetic interference shielding. Chem. Eng. J. 450, 138248 (2022). https://doi.org/10.1016/j.cej.2022.138248
- P.R. Agrawal, R. Kumar, S. Teotia, S. Kumari, D.P. Mondal et al., Lightweight, high electrical and thermal conducting carbon-rGO composites foam for superior electromagnetic interference shielding. Compos. Part B Eng. 160, 131–139 (2019). https://doi.org/10.1016/j.compositesb.2018.10.033
- C. Fu, Z. Sheng, X. Zhang, Laminated structural engineering strategy toward carbon nanotube-based aerogel films. ACS Nano 16, 9378–9388 (2022). https://doi.org/10.1021/acsnano.2c02193
- X. Liu, Y. Li, X. Sun, W. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4, 1735–1747 (2021). https://doi.org/10.1016/j.matt.2021.02.022
- Y.-N. Gao, Y. Wang, T.-N. Yue, B. Zhao, R. Che et al., Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding. Chem. Eng. J. 430, 132949 (2022). https://doi.org/10.1016/j.cej.2021.132949
- H. Wu, W. Yuan, X. Yuan, L. Cheng, Atmosphere-free activation methodology for holey graphene/cellulose nanofiber-based film electrode with highly efficient capacitance performance. Carbon Energy 5, e229 (2023). https://doi.org/10.1002/cey2.229
- A. Gevorkian, S.M. Morozova, S. Kheiri, N. Khuu, H. Chen et al., Actuation of three-dimensional-printed nanocolloidal hydrogel with structural anisotropy. Adv. Funct. Mater. 31, 2010743 (2021). https://doi.org/10.1002/adfm.202010743
- G. Zhou, M.-C. Li, C. Liu, Q. Wu, C. Mei, 3D printed Ti3C2Tx MXene/cellulose nanofiber architectures for solid-state supercapacitors: ink rheology, 3D printability, and electrochemical performance. Adv. Funct. Mater. 32, 2109593 (2022). https://doi.org/10.1002/adfm.202109593
- M.A.S.R. Saadi, A. Maguire, N.T. Pottackal, M.S.H. Thakur, M.M. Ikram et al., Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34, e2108855 (2022). https://doi.org/10.1002/adma.202108855
- J. Li, H. Sun, S.-Q. Yi, K.-K. Zou, D. Zhang et al., Flexible polydimethylsiloxane composite with multi-scale conductive network for ultra-strong electromagnetic interference protection. Nano-Micro Lett. 15, 15 (2022). https://doi.org/10.1007/s40820-022-00990-7
- G. Cao, S. Cai, H. Zhang, Y. Tian, High-performance conductive adhesives based on water-soluble resins for printed circuits, flexible conductive films, and electromagnetic interference shielding devices. Adv. Compos. Hybrid Mater. 5, 1730–1742 (2022). https://doi.org/10.1007/s42114-021-00402-1
- Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14, 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- Q. Liu, J. Gu, W. Zhang, Y. Miyamoto, Z. Chen et al., Biomorphic porous graphitic carbon for electromagnetic interference shielding. J. Mater. Chem. 22, 21183–21188 (2012). https://doi.org/10.1039/C2JM34590K
- L. She, B. Zhao, M. Yuan, J. Chen, B. Fan et al., Joule-heated flexible carbon composite towards the boosted electromagnetic wave shielding properties. Adv. Compos. Hybrid Mater. 5, 3012–3022 (2022). https://doi.org/10.1007/s42114-022-00530-2
- M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15, 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
- W. He, J. Zheng, W. Dong, S. Jiang, G. Lou et al., Efficient electromagnetic wave absorption and Joule heating via ultra-light carbon composite aerogels derived from bimetal-organic frameworks. Chem. Eng. J. 459, 141677 (2023). https://doi.org/10.1016/j.cej.2023.141677
- L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao et al., Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 1, 413–431 (2021). https://doi.org/10.1002/sus2.21
References
Y. Xie, S. Liu, K. Huang, B. Chen, P. Shi et al., Ultra-broadband strong electromagnetic interference shielding with ferromagnetic graphene quartz fabric. Adv. Mater. 34, e2202982 (2022). https://doi.org/10.1002/adma.202202982
H. Lv, Y. Yao, S. Li, G. Wu, B. Zhao et al., Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 14, 1982 (2023). https://doi.org/10.1038/s41467-023-37436-6
D. Jiang, M. Lian, M. Xu, Q. Sun, B.B. Xu et al., Advances in triboelectric nanogenerator technology—applications in self-powered sensors, Internet of Things, biomedicine, and blue energy. Adv. Compos. Hybrid Mater. 6, 57 (2023). https://doi.org/10.1007/s42114-023-00632-5
S. Dang, O. Amin, B. Shihada, M.-S. Alouini, What should 6G be? Nat. Electron. 3, 20–29 (2020). https://doi.org/10.1038/s41928-019-0355-6
K. Zhang, L. Zheng, M.A. Aouraghe, F. Xu, Ultra-light-weight kevlar/polyimide 3D woven spacer multifunctional composites for high-gain microstrip antenna. Adv. Compos. Hybrid Mater. 5, 872–883 (2022). https://doi.org/10.1007/s42114-021-00382-2
J. Singh, Z. Din, Energy efficient data aggregation and density-based spatial clustering of applications with noise for activity monitoring in wireless sensor networks. Eng. Sci. 19, 144–153 (2022). https://doi.org/10.30919/es8d694
Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, e1908496 (2020). https://doi.org/10.1002/adma.201908496
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3 C2 tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, e2211642 (2023). https://doi.org/10.1002/adma.202211642
D. Lan, Y. Wang, Y. Wang, X. Zhu, H. Li et al., Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 651, 494–503 (2023). https://doi.org/10.1016/j.jcis.2023.08.019
Y. Hao, Z. Leng, C. Yu, P. Xie, S. Meng et al., Ultra-lightweight hollow bowl-like carbon as microwave absorber owning broad band and low filler loading. Carbon 212, 118156 (2023). https://doi.org/10.1016/j.carbon.2023.118156
P. Xie, Y. Liu, M. Feng, M. Niu, C. Liu et al., Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv. Compos. Hybrid Mater. 4, 173–185 (2021). https://doi.org/10.1007/s42114-020-00202-z
F. Li, N. Wu, H. Kimura, Y. Wang, B.B. Xu et al., Initiating binary metal oxides microcubes electrsomagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Lett. 15, 220 (2023). https://doi.org/10.1007/s40820-023-01197-0
Y. Cheng, X. Li, Y. Qin, Y. Fang, G. Liu et al., Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 7, eabj1663 (2021). https://doi.org/10.1126/sciadv.abj1663
J. Ruan, Z. Chang, H. Rong, T.S. Alomar, D. Zhu et al., High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213, 118208 (2023). https://doi.org/10.1016/j.carbon.2023.118208
R. Zhu, Z. Li, G. Deng, Y. Yu, J. Shui et al., Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 92, 106700 (2022). https://doi.org/10.1016/j.nanoen.2021.106700
Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
Q.-M. He, J.-R. Tao, Y. Yang, D. Yang, K. Zhang et al., Effect surface micro-wrinkles and micro-cracks on microwave shielding performance of copper-coated carbon nanotubes/polydimethylsiloxane composites. Carbon 213, 118216 (2023). https://doi.org/10.1016/j.carbon.2023.118216
X. Shen, J.-K. Kim, Building 3D architecture in 2D thin film for effective EMI shielding. Matter 1, 796–798 (2019). https://doi.org/10.1016/j.matt.2019.09.007
W.-Y. Chen, X.-L. Shi, J. Zou, Z.-G. Chen, Thermoelectric coolers for on-chip thermal management: materials, design, and optimization. Mater. Sci. Eng. R. Rep. 151, 100700 (2022). https://doi.org/10.1016/j.mser.2022.100700
J. Liu, M.-Y. Yu, Z.-Z. Yu, V. Nicolosi, Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 66, 245–272 (2023). https://doi.org/10.1016/j.mattod.2023.03.022
I.A. Kinloch, J. Suhr, J. Lou, R.J. Young, P.M. Ajayan, Composites with carbon nanotubes and graphene: an outlook. Science 362, 547–553 (2018). https://doi.org/10.1126/science.aat7439
Y. Gao, D. Bao, M. Zhang, Y. Cui, F. Xu et al., Millefeuille-inspired thermal interface materials based on double self-assembly technique for efficient microelectronic cooling and electromagnetic interference shielding. Small 18, e2105567 (2022). https://doi.org/10.1002/smll.202105567
P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14, 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
Y. Chen, Y. Yang, Y. Xiong, L. Zhang, W. Xu et al., Porous aerogel and sponge composites: assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 38, 101204 (2021). https://doi.org/10.1016/j.nantod.2021.101204
T. Wang, W.-W. Kong, W.-C. Yu, J.-F. Gao, K. Dai et al., A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 13, 162 (2021). https://doi.org/10.1007/s40820-021-00693-5
W. Kang, L. Zeng, S. Ling, C. Zhang, 3D printed supercapacitors toward trinity excellence in kinetics, energy density, and flexibility. Adv. Energy Mater. 11, 2100020 (2021). https://doi.org/10.1002/aenm.202100020
M. Aramfard, O. Kaynan, E. Hosseini, M. Zakertabrizi, L.M. Pérez et al., Aqueous dispersion of carbon nanomaterials with cellulose nanocrystals: an investigation of molecular interactions. Small 18, e2202216 (2022). https://doi.org/10.1002/smll.202202216
E. Erfanian, R. Moaref, R. Ajdary, K.C. Tam, O.J. Rojas et al., Electrochemically synthesized graphene/TEMPO-oxidized cellulose nanofibrils hydrogels: highly conductive green inks for 3D printing of robust structured EMI shielding aerogels. Carbon 210, 118037 (2023). https://doi.org/10.1016/j.carbon.2023.118037
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon Aerogel@Reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
C. Wang, H. Gao, D. Liang, S. Liu, H. Zhang et al., Effective fabrication of flexible nickel chains/acrylate composite pressure-sensitive adhesives with layered structure for tunable electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 2906–2920 (2022). https://doi.org/10.1007/s42114-022-00482-7
C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
L.-X. Liu, W. Chen, H.-B. Zhang, Q.-W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29, 1905197 (2019). https://doi.org/10.1002/adfm.201905197
J. Xu, H. Chang, B. Zhao, R. Li, T. Cui et al., Highly stretchable and conformal electromagnetic interference shielding armor with strain sensing ability. Chem. Eng. J. 431, 133908 (2022). https://doi.org/10.1016/j.cej.2021.133908
H.-C. Kuo, C.-W. Kuo, C.-C. Wang, Effective low-frequency EMI conformal shielding for system-in-package (SiP) modules. Micro Opt. Tech. Lett. 65, 1892–1897 (2023). https://doi.org/10.1002/mop.33658
J. Liu, L. McKeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34, 2106253 (2022). https://doi.org/10.1002/adma.202106253
R. Li, Q. Fu, X. Zou, Z. Zheng, W. Luo et al., Mn-Co-Ni-O thin films prepared by sputtering with alloy target. J. Adv. Ceram. 9, 64–71 (2020). https://doi.org/10.1007/s40145-019-0348-y
Z. Wang, B. Mao, Q. Wang, J. Yu, J. Dai et al., Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness. Small 14, e1704332 (2018). https://doi.org/10.1002/smll.201704332
F. Ning, Z. Chai, X. Dan, P. Liu, Q. Wen et al., Integrated gas diffusion electrode with high conductivity obtained by skin electroplating for high specific power density fuel cell. Small Methods 7, e2201256 (2023). https://doi.org/10.1002/smtd.202201256
H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
F. Liu, Y. Gao, G. Wang, D. Wang, Y. Wang et al., Laser-induced graphene enabled additive manufacturing of multifunctional 3D architectures with freeform structures. Adv. Sci. 10, e2204990 (2023). https://doi.org/10.1002/advs.202204990
J. Liu, J. Garcia, L.M. Leahy, R. Song, D. Mullarkey et al., 3D printing of multifunctional conductive polymer composite hydrogels. Adv. Funct. Mater. 33, 2214196 (2023). https://doi.org/10.1002/adfm.202214196
K.P.M. Lee, T. Baum, R. Shanks, F. Daver, Electromagnetic interference shielding of 3D-printed graphene–polyamide-6 composites with 3D-printed morphology. Addit. Manuf. 43, 102020 (2021). https://doi.org/10.1016/j.addma.2021.102020
Q. Lv, X. Tao, S. Shi, Y. Li, N. Chen, From materials to components: 3D-printed architected honeycombs toward high-performance and tunable electromagnetic interference shielding. Compos. Part B Eng. 230, 109500 (2022). https://doi.org/10.1016/j.compositesb.2021.109500
S. Shi, M. Dai, X. Tao, F. Wu, J. Sun et al., 3D printed polylactic acid/graphene nanocomposites with tailored multifunctionality towards superior thermal management and high-efficient electromagnetic interference shielding. Chem. Eng. J. 450, 138248 (2022). https://doi.org/10.1016/j.cej.2022.138248
P.R. Agrawal, R. Kumar, S. Teotia, S. Kumari, D.P. Mondal et al., Lightweight, high electrical and thermal conducting carbon-rGO composites foam for superior electromagnetic interference shielding. Compos. Part B Eng. 160, 131–139 (2019). https://doi.org/10.1016/j.compositesb.2018.10.033
C. Fu, Z. Sheng, X. Zhang, Laminated structural engineering strategy toward carbon nanotube-based aerogel films. ACS Nano 16, 9378–9388 (2022). https://doi.org/10.1021/acsnano.2c02193
X. Liu, Y. Li, X. Sun, W. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4, 1735–1747 (2021). https://doi.org/10.1016/j.matt.2021.02.022
Y.-N. Gao, Y. Wang, T.-N. Yue, B. Zhao, R. Che et al., Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding. Chem. Eng. J. 430, 132949 (2022). https://doi.org/10.1016/j.cej.2021.132949
H. Wu, W. Yuan, X. Yuan, L. Cheng, Atmosphere-free activation methodology for holey graphene/cellulose nanofiber-based film electrode with highly efficient capacitance performance. Carbon Energy 5, e229 (2023). https://doi.org/10.1002/cey2.229
A. Gevorkian, S.M. Morozova, S. Kheiri, N. Khuu, H. Chen et al., Actuation of three-dimensional-printed nanocolloidal hydrogel with structural anisotropy. Adv. Funct. Mater. 31, 2010743 (2021). https://doi.org/10.1002/adfm.202010743
G. Zhou, M.-C. Li, C. Liu, Q. Wu, C. Mei, 3D printed Ti3C2Tx MXene/cellulose nanofiber architectures for solid-state supercapacitors: ink rheology, 3D printability, and electrochemical performance. Adv. Funct. Mater. 32, 2109593 (2022). https://doi.org/10.1002/adfm.202109593
M.A.S.R. Saadi, A. Maguire, N.T. Pottackal, M.S.H. Thakur, M.M. Ikram et al., Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34, e2108855 (2022). https://doi.org/10.1002/adma.202108855
J. Li, H. Sun, S.-Q. Yi, K.-K. Zou, D. Zhang et al., Flexible polydimethylsiloxane composite with multi-scale conductive network for ultra-strong electromagnetic interference protection. Nano-Micro Lett. 15, 15 (2022). https://doi.org/10.1007/s40820-022-00990-7
G. Cao, S. Cai, H. Zhang, Y. Tian, High-performance conductive adhesives based on water-soluble resins for printed circuits, flexible conductive films, and electromagnetic interference shielding devices. Adv. Compos. Hybrid Mater. 5, 1730–1742 (2022). https://doi.org/10.1007/s42114-021-00402-1
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14, 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
Q. Liu, J. Gu, W. Zhang, Y. Miyamoto, Z. Chen et al., Biomorphic porous graphitic carbon for electromagnetic interference shielding. J. Mater. Chem. 22, 21183–21188 (2012). https://doi.org/10.1039/C2JM34590K
L. She, B. Zhao, M. Yuan, J. Chen, B. Fan et al., Joule-heated flexible carbon composite towards the boosted electromagnetic wave shielding properties. Adv. Compos. Hybrid Mater. 5, 3012–3022 (2022). https://doi.org/10.1007/s42114-022-00530-2
M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15, 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
W. He, J. Zheng, W. Dong, S. Jiang, G. Lou et al., Efficient electromagnetic wave absorption and Joule heating via ultra-light carbon composite aerogels derived from bimetal-organic frameworks. Chem. Eng. J. 459, 141677 (2023). https://doi.org/10.1016/j.cej.2023.141677
L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao et al., Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 1, 413–431 (2021). https://doi.org/10.1002/sus2.21