Rapid Isolation and Multiplexed Detection of Exosome Tumor Markers Via Queued Beads Combined with Quantum Dots in a Microarray
Corresponding Author: Hongju Mao
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 59
Abstract
Tumor-derived exosomes are actively involved in cancer progression and metastasis and have emerged as a promising marker for cancer diagnosis in liquid biopsy. Because of their nanoscale size, complex biogenesis, and methodological limitations related to exosome isolation and detection, advancements in their analysis remain slow. Microfluidic technology offers a better analytic approach compared with conventional methods. Here, we developed a bead-based microarray for exosome isolation and multiplexed tumor marker detection. Using this method, exosomes are isolated by binding to antibodies on the bead surface, and tumor markers on the exosomes are detected through quantum dot (QD) probes. The beads are then uniformly trapped and queued among micropillars in the chip. This design benefits fluorescence observation by dispersing the signals into every single bead, thereby avoiding optical interference and enabling more accurate test results. We analyzed exosomes in the cell culture supernatant of lung cancer and endothelial cell lines, and different lung cancer markers labeled with three QD probes were used to conduct multiplexed detection of exosome surface protein markers. Lung cancer-derived samples showed much higher (~ sixfold–tenfold) fluorescence intensity than endothelial cell samples, and different types of lung cancer samples showed distinctive marker expression levels. Additionally, using the chip to detect clinical plasma samples from cancer patients showed good diagnostic power and revealed a well consistency with conventional tests for serological markers. These results provide insight into a promising method for exosome tumor marker detection and early-stage cancer diagnosis.
Highlights:
1 A bead-based microarray for exosome isolation and multiplexed tumor marker detection was developed.
2 The beads are uniformly trapped and queued among the micropillars in the chip, which can avoid optical interference and enable more accurate test results.
3 The results with different types of lung cancer exosome samples showed distinctive marker expression levels.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Raposo, W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200(4), 373–383 (2013). https://doi.org/10.1083/jcb.201211138
- S. Mathivanan, C.J. Fahner, G.E. Reid, R.J. Simpson, ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 40(Database issue), D1241–1244 (2012). https://doi.org/10.1093/nar/gkr828
- M. Guescini, S. Genedani, V. Stocchi, L.F. Agnati, Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J. Neural Transm. 117(1), 1–4 (2010). https://doi.org/10.1007/s00702-009-0288-8
- C. Thery, L. Zitvogel, S. Amigorena, Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2(8), 569–579 (2002). https://doi.org/10.1038/nri855
- A.V. Vlassov, S. Magdaleno, R. Setterquist, R. Conrad, Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta 1820(7), 940–948 (2012). https://doi.org/10.1016/j.bbagen.2012.03.017
- R. Kalluri, The biology and function of exosomes in cancer. J. Clin. Invest. 126(4), 1208–1215 (2016). https://doi.org/10.1172/jci81135
- W.M. Suchorska, M.S. Lach, The role of exosomes in tumor progression and metastasis (review). Oncol. Rep. 35(3), 1237–1244 (2016). https://doi.org/10.3892/or.2015.4507
- A. Sharma, Z. Khatun, A. Shiras, Tumor exosomes: cellular postmen of cancer diagnosis and personalized therapy. Nanomedicine 11(4), 421–437 (2016). https://doi.org/10.2217/nnm.15.210
- Y. Shao, Y. Shen, T. Chen, F. Xu, X. Chen, S. Zheng, The functions and clinical applications of tumor-derived exosomes. Oncotarget 7(37), 60736–60751 (2016). https://doi.org/10.18632/oncotarget.11177
- T.L. Whiteside, The potential of tumor-derived exosomes for noninvasive cancer monitoring. Expert Rev. Mol. Diagn. 15(10), 1293–1310 (2015). https://doi.org/10.1586/14737159.2015.1071666
- M. He, Y. Zeng, Microfluidic exosome analysis toward liquid biopsy for cancer. J. Lab. Autom. 21(4), 599–608 (2016). https://doi.org/10.1177/2211068216651035
- J.C. Contreras-Naranjo, H.J. Wu, V.M. Ugaz, Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip 17(21), 3558–3577 (2017). https://doi.org/10.1039/c7lc00592j
- N. Arraud, R. Linares, S. Tan, C. Gounou, J.M. Pasquet, S. Mornet, A.R. Brisson, Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost. 12(5), 614–627 (2014). https://doi.org/10.1111/jth.12554
- M. Colombo, G. Raposo, C. Thery, Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014). https://doi.org/10.1146/annurev-cellbio-101512-122326
- C. Thery, S. Amigorena, G. Raposo, A. Clayton, Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3, Unit 3.22 (2006). https://doi.org/10.1002/0471143030.cb0322s30
- J.D. Chen, D. Chen, Y. Xie, T. Yuan, X. Chen, Progress of microfluidics for biology and medicine. Nano-Micro Lett. 5(1), 66–80 (2013). https://doi.org/10.3786/nml.v5i1.p66-80
- S. Shikha, X. Zheng, Y. Zhang, Upconversion nanoparticles-encoded hydrogel microbeads-based multiplexed protein detection. Nano-Micro Lett. 10, 31 (2018). https://doi.org/10.1007/s40820-017-0184-y
- R. Li, M. Zhou, J. Li, Z. Wang, W. Zhang, Identifying EGFR-expressed cells and detecting EGFR multi-mutations at single-cell level by microfluidic chip. Nano-Micro Lett. 10, 16 (2018). https://doi.org/10.1007/s40820-017-0168-y
- L. Shang, Y. Cheng, Y. Zhao, Emerging droplet microfluidics. Chem. Rev. 117(12), 7964–8040 (2017). https://doi.org/10.1021/acs.chemrev.6b00848
- B. Hu, J. Li, L. Mou, Y. Liu, J. Deng et al., An automated and portable microfluidic chemiluminescence immunoassay for quantitative detection of biomarkers. Lab Chip 17(13), 2225–2234 (2017). https://doi.org/10.1039/c7lc00249a
- K. Boriachek, M.N. Islam, A. Moller, C. Salomon, N.T. Nguyen et al., Biological functions and current advances in isolation and detection strategies for exosome nanovesicles. Small 14(6), 1702153 (2018). https://doi.org/10.1002/smll.201702153
- Z. Wang, H.J. Wu, D. Fine, J. Schmulen, Y. Hu et al., Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. Lab Chip 13(15), 2879–2882 (2013). https://doi.org/10.1039/c3lc41343h
- B.H. Wunsch, J.T. Smith, S.M. Gifford, C. Wang, M. Brink et al., Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat. Nanotechnol. 11(11), 936–940 (2016). https://doi.org/10.1038/nnano.2016.134
- C. Chen, J. Skog, C.H. Hsu, R.T. Lessard, L. Balaj et al., Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10(4), 505–511 (2010). https://doi.org/10.1039/b916199f
- M. He, J. Crow, M. Roth, Y. Zeng, A.K. Godwin, Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 14(19), 3773–3780 (2014). https://doi.org/10.1039/c4lc00662c
- Z. Zhao, Y. Yang, Y. Zeng, M. He, A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 16(3), 489–496 (2016). https://doi.org/10.1039/c5lc01117e
- S. Yadav, K. Boriachek, M.N. Islam, R. Lobb, A. Möller et al., An electrochemical method for the detection of disease-specific exosomes. ChemElectroChem 4(4), 967–971 (2017). https://doi.org/10.1002/celc.201600391
- A.A. Sina, R. Vaidyanathan, S. Dey, L.G. Carrascosa, M.J. Shiddiky, M. Trau, Real time and label free profiling of clinically relevant exosomes. Sci. Rep. 6, 30460 (2016). https://doi.org/10.1038/srep30460
- L. Liu, S. Wu, F. Jing, H. Zhou, C. Jia et al., Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels. Biosens. Bioelectron. 80, 300–306 (2016). https://doi.org/10.1016/j.bios.2016.01.084
- D.C. Duffy, J.C. McDonald, O.J. Schueller, G.M. Whitesides, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70(23), 4974–4984 (1998). https://doi.org/10.1021/ac980656z
- X. Fan, C. Jia, J. Yang, G. Li, H. Mao, Q. Jin, J. Zhao, A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Biosens. Bioelectron. 71, 380–386 (2015). https://doi.org/10.1016/j.bios.2015.04.080
- A. Mehdiani, A. Maier, A. Pinto, M. Barth, P. Akhyari, A. Lichtenberg, An innovative method for exosome quantification and size measurement. J. Vis. Exp. 95, 50974 (2015). https://doi.org/10.3791/50974
- Y. Wan, G. Cheng, X. Liu, S.J. Hao, M. Nisic et al., Rapid magnetic isolation of extracellular vesicles via lipid-based nanoprobes. Nat. Biomed. Eng. 1, 0058 (2017). https://doi.org/10.1038/s41551-017-0058
- K. Wang, L. Zhou, Z. Wang, Z. Cheng, H. Dong et al., Uniform distribution of microspheres based on pressure difference for carcinoma-embryonic antigen detection. Sens. Actuators B 258, 558–565 (2018). https://doi.org/10.1016/j.snb.2017.11.150
- D. Jin, B. Deng, J.X. Li, W. Cai, L. Tu et al., A microfluidic device enabling high-efficiency single cell trapping. Biomicrofluidics 9(1), 014101 (2015). https://doi.org/10.1063/1.4905428
- M. Grunnet, J.B. Sorensen, Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer 76(2), 138–143 (2012). https://doi.org/10.1016/j.lungcan.2011.11.012
- V. Barak, H. Goike, K.W. Panaretakis, R. Einarsson, Clinical utility of cytokeratins as tumor markers. Clin. Biochem. 37(7), 529–540 (2004). https://doi.org/10.1016/j.clinbiochem.2004.05.009
- R. Molina, X. Filella, J.M. Auge, ProGRP: a new biomarker for small cell lung cancer. Clin. Biochem. 37(7), 505–511 (2004). https://doi.org/10.1016/j.clinbiochem.2004.05.007
References
G. Raposo, W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200(4), 373–383 (2013). https://doi.org/10.1083/jcb.201211138
S. Mathivanan, C.J. Fahner, G.E. Reid, R.J. Simpson, ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 40(Database issue), D1241–1244 (2012). https://doi.org/10.1093/nar/gkr828
M. Guescini, S. Genedani, V. Stocchi, L.F. Agnati, Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J. Neural Transm. 117(1), 1–4 (2010). https://doi.org/10.1007/s00702-009-0288-8
C. Thery, L. Zitvogel, S. Amigorena, Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2(8), 569–579 (2002). https://doi.org/10.1038/nri855
A.V. Vlassov, S. Magdaleno, R. Setterquist, R. Conrad, Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta 1820(7), 940–948 (2012). https://doi.org/10.1016/j.bbagen.2012.03.017
R. Kalluri, The biology and function of exosomes in cancer. J. Clin. Invest. 126(4), 1208–1215 (2016). https://doi.org/10.1172/jci81135
W.M. Suchorska, M.S. Lach, The role of exosomes in tumor progression and metastasis (review). Oncol. Rep. 35(3), 1237–1244 (2016). https://doi.org/10.3892/or.2015.4507
A. Sharma, Z. Khatun, A. Shiras, Tumor exosomes: cellular postmen of cancer diagnosis and personalized therapy. Nanomedicine 11(4), 421–437 (2016). https://doi.org/10.2217/nnm.15.210
Y. Shao, Y. Shen, T. Chen, F. Xu, X. Chen, S. Zheng, The functions and clinical applications of tumor-derived exosomes. Oncotarget 7(37), 60736–60751 (2016). https://doi.org/10.18632/oncotarget.11177
T.L. Whiteside, The potential of tumor-derived exosomes for noninvasive cancer monitoring. Expert Rev. Mol. Diagn. 15(10), 1293–1310 (2015). https://doi.org/10.1586/14737159.2015.1071666
M. He, Y. Zeng, Microfluidic exosome analysis toward liquid biopsy for cancer. J. Lab. Autom. 21(4), 599–608 (2016). https://doi.org/10.1177/2211068216651035
J.C. Contreras-Naranjo, H.J. Wu, V.M. Ugaz, Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip 17(21), 3558–3577 (2017). https://doi.org/10.1039/c7lc00592j
N. Arraud, R. Linares, S. Tan, C. Gounou, J.M. Pasquet, S. Mornet, A.R. Brisson, Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost. 12(5), 614–627 (2014). https://doi.org/10.1111/jth.12554
M. Colombo, G. Raposo, C. Thery, Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014). https://doi.org/10.1146/annurev-cellbio-101512-122326
C. Thery, S. Amigorena, G. Raposo, A. Clayton, Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3, Unit 3.22 (2006). https://doi.org/10.1002/0471143030.cb0322s30
J.D. Chen, D. Chen, Y. Xie, T. Yuan, X. Chen, Progress of microfluidics for biology and medicine. Nano-Micro Lett. 5(1), 66–80 (2013). https://doi.org/10.3786/nml.v5i1.p66-80
S. Shikha, X. Zheng, Y. Zhang, Upconversion nanoparticles-encoded hydrogel microbeads-based multiplexed protein detection. Nano-Micro Lett. 10, 31 (2018). https://doi.org/10.1007/s40820-017-0184-y
R. Li, M. Zhou, J. Li, Z. Wang, W. Zhang, Identifying EGFR-expressed cells and detecting EGFR multi-mutations at single-cell level by microfluidic chip. Nano-Micro Lett. 10, 16 (2018). https://doi.org/10.1007/s40820-017-0168-y
L. Shang, Y. Cheng, Y. Zhao, Emerging droplet microfluidics. Chem. Rev. 117(12), 7964–8040 (2017). https://doi.org/10.1021/acs.chemrev.6b00848
B. Hu, J. Li, L. Mou, Y. Liu, J. Deng et al., An automated and portable microfluidic chemiluminescence immunoassay for quantitative detection of biomarkers. Lab Chip 17(13), 2225–2234 (2017). https://doi.org/10.1039/c7lc00249a
K. Boriachek, M.N. Islam, A. Moller, C. Salomon, N.T. Nguyen et al., Biological functions and current advances in isolation and detection strategies for exosome nanovesicles. Small 14(6), 1702153 (2018). https://doi.org/10.1002/smll.201702153
Z. Wang, H.J. Wu, D. Fine, J. Schmulen, Y. Hu et al., Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. Lab Chip 13(15), 2879–2882 (2013). https://doi.org/10.1039/c3lc41343h
B.H. Wunsch, J.T. Smith, S.M. Gifford, C. Wang, M. Brink et al., Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat. Nanotechnol. 11(11), 936–940 (2016). https://doi.org/10.1038/nnano.2016.134
C. Chen, J. Skog, C.H. Hsu, R.T. Lessard, L. Balaj et al., Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10(4), 505–511 (2010). https://doi.org/10.1039/b916199f
M. He, J. Crow, M. Roth, Y. Zeng, A.K. Godwin, Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 14(19), 3773–3780 (2014). https://doi.org/10.1039/c4lc00662c
Z. Zhao, Y. Yang, Y. Zeng, M. He, A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 16(3), 489–496 (2016). https://doi.org/10.1039/c5lc01117e
S. Yadav, K. Boriachek, M.N. Islam, R. Lobb, A. Möller et al., An electrochemical method for the detection of disease-specific exosomes. ChemElectroChem 4(4), 967–971 (2017). https://doi.org/10.1002/celc.201600391
A.A. Sina, R. Vaidyanathan, S. Dey, L.G. Carrascosa, M.J. Shiddiky, M. Trau, Real time and label free profiling of clinically relevant exosomes. Sci. Rep. 6, 30460 (2016). https://doi.org/10.1038/srep30460
L. Liu, S. Wu, F. Jing, H. Zhou, C. Jia et al., Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels. Biosens. Bioelectron. 80, 300–306 (2016). https://doi.org/10.1016/j.bios.2016.01.084
D.C. Duffy, J.C. McDonald, O.J. Schueller, G.M. Whitesides, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70(23), 4974–4984 (1998). https://doi.org/10.1021/ac980656z
X. Fan, C. Jia, J. Yang, G. Li, H. Mao, Q. Jin, J. Zhao, A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Biosens. Bioelectron. 71, 380–386 (2015). https://doi.org/10.1016/j.bios.2015.04.080
A. Mehdiani, A. Maier, A. Pinto, M. Barth, P. Akhyari, A. Lichtenberg, An innovative method for exosome quantification and size measurement. J. Vis. Exp. 95, 50974 (2015). https://doi.org/10.3791/50974
Y. Wan, G. Cheng, X. Liu, S.J. Hao, M. Nisic et al., Rapid magnetic isolation of extracellular vesicles via lipid-based nanoprobes. Nat. Biomed. Eng. 1, 0058 (2017). https://doi.org/10.1038/s41551-017-0058
K. Wang, L. Zhou, Z. Wang, Z. Cheng, H. Dong et al., Uniform distribution of microspheres based on pressure difference for carcinoma-embryonic antigen detection. Sens. Actuators B 258, 558–565 (2018). https://doi.org/10.1016/j.snb.2017.11.150
D. Jin, B. Deng, J.X. Li, W. Cai, L. Tu et al., A microfluidic device enabling high-efficiency single cell trapping. Biomicrofluidics 9(1), 014101 (2015). https://doi.org/10.1063/1.4905428
M. Grunnet, J.B. Sorensen, Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer 76(2), 138–143 (2012). https://doi.org/10.1016/j.lungcan.2011.11.012
V. Barak, H. Goike, K.W. Panaretakis, R. Einarsson, Clinical utility of cytokeratins as tumor markers. Clin. Biochem. 37(7), 529–540 (2004). https://doi.org/10.1016/j.clinbiochem.2004.05.009
R. Molina, X. Filella, J.M. Auge, ProGRP: a new biomarker for small cell lung cancer. Clin. Biochem. 37(7), 505–511 (2004). https://doi.org/10.1016/j.clinbiochem.2004.05.007