Light–Material Interactions Using Laser and Flash Sources for Energy Conversion and Storage Applications
Corresponding Author: Jungho Ryu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 276
Abstract
This review provides a comprehensive overview of the progress in light–material interactions (LMIs), focusing on lasers and flash lights for energy conversion and storage applications. We discuss intricate LMI parameters such as light sources, interaction time, and fluence to elucidate their importance in material processing. In addition, this study covers various light-induced photothermal and photochemical processes ranging from melting, crystallization, and ablation to doping and synthesis, which are essential for developing energy materials and devices. Finally, we present extensive energy conversion and storage applications demonstrated by LMI technologies, including energy harvesters, sensors, capacitors, and batteries. Despite the several challenges associated with LMIs, such as complex mechanisms, and high-degrees of freedom, we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations.
Highlights:
1 This review paper provides a comprehensive analysis of light–material interaction (LMI) parameters, offering insights into their significance in material processing.
2 It examines a wide array of photothermal and photochemical processes, showcasing their versatility in creating advanced materials for energy conversion and storage applications.
3 The review presents a multidisciplinary approach to advancing LMI technologies and highlights their potential contribution to the commercialization of future energy conversion and storage systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Hu, M. Wu, F. Chi, G. Lai, P. Li et al., Ultralow-resistance electrochemical capacitor for integrable line filtering. Nature 624, 74–79 (2023). https://doi.org/10.1038/s41586-023-06712-2
- F. Han, G. Meng, F. Zhou, L. Song, X. Li et al., Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage. Sci. Adv. 1, e1500605 (2015). https://doi.org/10.1126/sciadv.1500605
- J. Zhao, H. Lu, Y. Zhang, S. Yu, O.I. Malyi et al., Direct coherent multi-ink printing of fabric supercapacitors. Sci. Adv. 7, eabd6978 (2021). https://doi.org/10.1126/sciadv.abd6978
- C. Yuan, Sustainable battery manufacturing in the future. Nat. Energy 8, 1180–1181 (2023). https://doi.org/10.1038/s41560-023-01374-w
- Y. Qiao, H. Yang, Z. Chang, H. Deng, X. Li et al., A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 6, 653–662 (2021). https://doi.org/10.1038/s41560-021-00839-0
- H. Tang, K. Geng, L. Wu, J. Liu, Z. Chen et al., Fuel cells with an operational range of –20 to 200 °C enabled by phosphoric acid-doped intrinsically ultramicroporous membranes. Nat. Energy 7, 153–162 (2022). https://doi.org/10.1038/s41560-021-00956-w
- L. Shi, Y. Zhao, S. Matz, S. Gottesfeld, B.P. Setzler et al., A shorted membrane electrochemical cell powered by hydrogen to remove CO2 from the air feed of hydroxide exchange membrane fuel cells. Nat. Energy 7, 238–247 (2022). https://doi.org/10.1038/s41560-021-00969-5
- Q. Zhang, S. Dong, P. Shao, Y. Zhu, Z. Mu et al., Covalent organic framework-based porous ionomers for high-performance fuel cells. Science 378, 181–186 (2022). https://doi.org/10.1126/science.abm6304
- S. Wu, Y. Yang, M. Sun, T. Zhang, S. Huang et al., Dilute aqueous-aprotic electrolyte towards robust Zn-ion hybrid supercapacitor with high operation voltage and long lifespan. Nano-Micro Lett. 16, 161 (2024). https://doi.org/10.1007/s40820-024-01372-x
- C. Gao, Q. You, J. Huang, J. Sun, X. Yao et al., Ultraconformable integrated wireless charging micro-supercapacitor skin. Nano-Micro Lett. 16, 123 (2024). https://doi.org/10.1007/s40820-024-01352-1
- C.P. Grey, D.S. Hall, Prospects for lithium-ion batteries and beyond—a 2030 vision. Nat. Commun. 11, 6279 (2020). https://doi.org/10.1038/s41467-020-19991-4
- C. Li, Md.M. Islam, J. Moore, J. Sleppy, C. Morrison et al., Wearable energy-smart ribbons for synchronous energy harvest and storage. Nat. Commun. 7, 13319 (2016). https://doi.org/10.1038/ncomms13319
- M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016). https://doi.org/10.1038/ncomms12647
- G. Nagaraju, S.C. Sekhar, B. Ramulu, L.K. Bharat, G.S.R. Raju et al., Enabling redox chemistry with hierarchically designed bilayered nanoarchitectures for pouch-type hybrid supercapacitors: a sunlight-driven rechargeable energy storage system to portable electronics. Nano Energy 50, 448–461 (2018). https://doi.org/10.1016/j.nanoen.2018.05.063
- A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
- G. Li, Z. Su, L. Canil, D. Hughes, M.H. Aldamasy et al., Highly efficient p-i-n perovskite solar cells that endure temperature variations. Science 379, 399–403 (2023). https://doi.org/10.1126/science.add7331
- X. Chu, Q. Ye, Z. Wang, C. Zhang, F. Ma et al., Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency. Nat. Energy 8, 372–380 (2023). https://doi.org/10.1038/s41560-023-01220-z
- W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
- T. Zhang, H. Liang, Z. Wang, C. Qiu, Y.B. Peng et al., Piezoelectric ultrasound energy-harvesting device for deep brain stimulation and analgesia applications. Sci. Adv. 8, eabk0159 (2022). https://doi.org/10.1126/sciadv.abk0159
- R. Liu, Z.L. Wang, K. Fukuda, T. Someya, Flexible self-charging power sources. Nat. Rev. Mater. 7, 870–886 (2022). https://doi.org/10.1038/s41578-022-00441-0
- J. Park, K. Kim, Y. Kim, T.S. Kim, I.S. Min et al., A wireless, solar-powered, optoelectronic system for spatial restriction-free long-term optogenetic neuromodulations. Sci. Adv. 9, eadi8918 (2023). https://doi.org/10.1126/sciadv.adi8918
- A. Kurakula, S.A. Graham, M.V. Paranjape, P. Manchi, V.S. Kavarthapu et al., Multimodal energy generation and intruder sensing platform via aluminum titanate/poly-glucosamine composite film-based hybrid nanogenerators. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202307462
- J.H. Shin, Y. Bin Kim, J.H. Park, J.S. Lee, S.H. Park et al., Light-material interfaces for self-powered optoelectronics. J. Mater. Chem. A 9, 25694 (2021). https://doi.org/10.1039/D1TA08892K
- X. Xu, J. Zhang, Z. Zhang, G. Lu, W. Cao et al., All-covalent organic framework nanofilms assembled lithium-ion capacitor to solve the imbalanced charge storage kinetics. Nano-Micro Lett. 16, 116 (2024). https://doi.org/10.1007/s40820-024-01343-2
- W. Shi, L. Zhang, R. Jing, Y. Huang, F. Chen et al., Moderate fields, maximum potential: achieving high records with temperature-stable energy storage in lead-free BNT-based ceramics. Nano-Micro Lett. 16, 91 (2024). https://doi.org/10.1007/s40820-023-01290-4
- J. Ma, J. Qin, S. Zheng, Y. Fu, L. Chi et al., Hierarchically structured Nb2O5 microflowers with enhanced capacity and fast-charging capability for flexible planar sodium ion micro-supercapacitors. Nano-Micro Lett. 16, 67 (2024). https://doi.org/10.1007/s40820-023-01281-5
- W. Fan, Q. Wang, K. Rong, Y. Shi, W. Peng et al., MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors. Nano-Micro Lett. 16, 36 (2023). https://doi.org/10.1007/s40820-023-01226-y
- J. Nan, Y. Sun, F. Yang, Y. Zhang, Y. Li et al., Coupling of adhesion and anti-freezing properties in hydrogel electrolytes for low-temperature aqueous-based hybrid capacitors. Nano-Micro Lett. 16, 22 (2023). https://doi.org/10.1007/s40820-023-01229-9
- L. Chen, H. Yu, J. Wu, S. Deng, H. Liu et al., Large energy capacitive high-entropy lead-free ferroelectrics. Nano-Micro Lett. 15, 65 (2023). https://doi.org/10.1007/s40820-023-01036-2
- X. Xu, Z. Zhang, R. Xiong, G. Lu, J. Zhang et al., Bending resistance covalent organic framework superlattice: “nano-hourglass” -induced charge accumulation for flexible In-plane micro-supercapacitors. Nano-Micro Lett. 15, 25 (2022). https://doi.org/10.1007/s40820-022-00997-0
- P. Meng, J. Huang, Z. Yang, M. Jiang, Y. Wang et al., Air-stable binary hydrated eutectic electrolytes with unique solvation structure for rechargeable aluminum-ion batteries. Nano-Micro Lett. 15, 188 (2023). https://doi.org/10.1007/s40820-023-01160-z
- C. Bao, P. Tang, D. Sun, S. Zhou, Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2021). https://doi.org/10.1038/s42254-021-00388-1
- K.W. Tan, B. Jung, J.G. Werner, E.R. Rhoades, M.O. Thompson et al., Transient laser heating induced hierarchical porous structures from block copolymer-directed self-assembly. Science 349, 54–58 (2015). https://doi.org/10.1126/science.aab0492
- Y. Yuan, X. Li, L. Jiang, M. Liang, X. Zhang et al., Laser maskless fast patterning for multitype microsupercapacitors. Nat. Commun. 14, 3967 (2023). https://doi.org/10.1038/s41467-023-39760-3
- X. Zang, C. Jian, T. Zhu, Z. Fan, W. Wang et al., Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications. Nat. Commun. 10, 3112 (2019). https://doi.org/10.1038/s41467-019-10999-z
- M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis et al., Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5, e16133 (2016). https://doi.org/10.1038/lsa.2016.133
- G.-T. Hwang, V. Annapureddy, J.H. Han, D.J. Joe, C. Baek et al., Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Adv. Energy Mater. 6, 1600237 (2016). https://doi.org/10.1002/aenm.201600237
- J. Ding, Y. Zhou, W. Xu, F. Yang, D. Zhao et al., Ultraviolet-irradiated all-organic nanocomposites with polymer dots for high-temperature capacitive energy storage. Nano-Micro Lett. 16, 59 (2023). https://doi.org/10.1007/s40820-023-01230-2
- J.H. Park, S. Han, D. Kim, B.K. You, D.J. Joe et al., Plasmonic-tuned flash Cu nanowelding with ultrafast photochemical-reducing and interlocking on flexible plastics. Adv. Funct. Mater. 27, 1701138 (2017). https://doi.org/10.1002/adfm.201701138
- G.W. Shim, W. Hong, J.H. Cha, J.H. Park, K.J. Lee et al., TFT channel materials for display applications: from amorphous silicon to transition metal dichalcogenides. Adv. Mater. 32, e1907166 (2020). https://doi.org/10.1002/adma.201907166
- D.J. Joe, S. Kim, J.H. Park, D.Y. Park, H.E. Lee et al., Laser–material interactions for flexible applications. Adv. Mater. 29, 1606586 (2017). https://doi.org/10.1002/adma.201606586
- H. Park, J.J. Park, P. Bui, H. Yoon, C.P. Grigoropoulos et al., Laser-based selective material processing for next-generation additive manufacturing. Adv. Mater. (2023). https://doi.org/10.1002/adma.202307586
- S. Song, H. Hong, K.Y. Kim, K.K. Kim, J. Kim et al., Photothermal lithography for realizing a stretchable multilayer electronic circuit using a laser. ACS Nano 17, 21443–21454 (2023). https://doi.org/10.1021/acsnano.3c06207
- T.H. Im, D.Y. Park, H.K. Lee, J.H. Park, C.K. Jeong et al., Xenon flash lamp-induced ultrafast multilayer graphene growth. Part. Part. Syst. Charact. 34, 1600429 (2017). https://doi.org/10.1002/ppsc.201600429
- J.H. Park, J. Seo, C. Kim, D.J. Joe, H.E. Lee et al., Flash-induced stretchable Cu conductor via multiscale-interfacial couplings. Adv. Sci. 5, 1801146 (2018). https://doi.org/10.1002/advs.201801146
- H. Zhang, D. Yang, T. Ma, H. Lin, B. Jia, Flash-induced ultrafast production of graphene/MnO with extraordinary supercapacitance. Small Methods 5, e2100225 (2021). https://doi.org/10.1002/smtd.202100225
- M.V. Shugaev, M. He, Y. Levy, A. Mazzi, A. Miotello et al.: Laser-induced thermal processes: heat transfer, generation of stresses, melting and solidification, vaporization, and phase explosion. In: Handbook of Laser Micro- and Nano-Engineering, pp. 83–163. Springer International Publishing, Cham, (2021), https://doi.org/10.1007/978-3-030-63647-0_11
- M. Park, Y. Gu, X. Mao, C.P. Grigoropoulos, V. Zorba, Mechanisms of ultrafast GHz burst fs laser ablation. Sci. Adv. 9, eadf6397 (2023). https://doi.org/10.1126/sciadv.adf6397
- J. Shin, J. Ko, S. Jeong, P. Won, Y. Lee et al., Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis. Nat. Mater. 20, 100–107 (2021). https://doi.org/10.1038/s41563-020-0769-6
- J. Yin, L. Lan, Y. Zhang, H. Ni, Y. Tan et al., Nanosecond-resolution photothermal dynamic imaging via MHZ digitization and match filtering. Nat. Commun. 12, 7097 (2021). https://doi.org/10.1038/s41467-021-27362-w
- S. Kim, J.H. Son, S.H. Lee, B.K. You, K.-I. Park et al., Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off. Adv. Mater. 26, 7480–7487 (2014). https://doi.org/10.1002/adma.201402472
- C.K. Jeong, K.-I. Park, J.H. Son, G.-T. Hwang, S.H. Lee et al., Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ. Sci. 7, 4035–4043 (2014). https://doi.org/10.1039/c4ee02435d
- C.K. Jeong, S.B. Cho, J.H. Han, D.Y. Park, S. Yang et al., Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. Nano Res. 10, 437–455 (2017). https://doi.org/10.1007/s12274-016-1304-6
- J.H. Park, H.E. Lee, C.K. Jeong, D.H. Kim, S.K. Hong et al., Self-powered flexible electronics beyond thermal limits. Nano Energy 56, 531–546 (2019). https://doi.org/10.1016/j.nanoen.2018.11.077
- B. Radfar, F. Es, R. Turan, Effects of different laser modified surface morphologies and post-texturing cleanings on c-Si solar cell performance. Renew. Energy 145, 2707–2714 (2020). https://doi.org/10.1016/j.renene.2019.08.031
- J. Wang, L. Cao, S. Li, J. Xu, R. Xiao et al., Effect of laser-textured Cu foil with deep ablation on Si anode performance in Li-ion batteries. Nanomaterials 13, 2534 (2023). https://doi.org/10.3390/nano13182534
- M.I. Sánchez, P. Delaporte, Y. Spiegel, B. Franta, E. Mazur et al., A laser-processed silicon solar cell with photovoltaic efficiency in the infrared. Phys. Status Solidi A 218, 2000550 (2021). https://doi.org/10.1002/pssa.202000550
- E. Ravesio, A.H.A. Lutey, D. Versaci, L. Romoli, S. Bodoardo, Nanosecond pulsed laser texturing of Li-ion battery electrode current collectors: Electrochemical characterisation of cathode half-cells. Sustain. Mater. Technol. 38, e00751 (2023). https://doi.org/10.1016/j.susmat.2023.e00751
- J.H. Park, S. Jeong, E.J. Lee, S.S. Lee, J.Y. Seok et al., Transversally extended laser plasmonic welding for oxidation-free copper fabrication toward high-fidelity optoelectronics. Chem. Mater. 28, 4151–4159 (2016). https://doi.org/10.1021/acs.chemmater.6b00013
- H.S. Wang, T.H. Im, Y. Bin Kim, S.H. Sung, S. Min et al., Flash-welded ultraflat silver nanowire network for flexible organic light-emitting diode and triboelectric tactile sensor. Mater. 9, 061112 (2021). https://doi.org/10.1063/5.0051431
- T. Sugiyama, H. Masuhara, Laser-induced crystallization and crystal growth. Chem. Asian J. 6, 2878–2889 (2011). https://doi.org/10.1002/asia.201100105
- M. Smith, R. McMahon, M. Voelskow, D. Panknin, W. Skorupa, Modelling of flash-lamp-induced crystallization of amorphous silicon thin films on glass. J. Cryst. Growth 285, 249–260 (2005). https://doi.org/10.1016/j.jcrysgro.2005.08.033
- K.K. Kim, I. Ha, P. Won, D.-G. Seo, K.-J. Cho et al., Transparent wearable three-dimensional touch by self-generated multiscale structure. Nat. Commun. 10, 2582 (2019). https://doi.org/10.1038/s41467-019-10736-6
- J. Jais, J.H. Park, B. Kang, Additive manufacturing of digitally programmable hierarchical biomimetic surfaces for hydrodynamic informatics. Addit. Manuf. 76, 103763 (2023). https://doi.org/10.1016/j.addma.2023.103763
- E. Gilshtein, S. Pfeiffer, M.D. Rossell, J. Sastre, L. Gorjan et al., Millisecond photonic sintering of iron oxide doped alumina ceramic coatings. Sci. Rep. 11, 3536 (2021). https://doi.org/10.1038/s41598-021-82896-9
- H. Kong, J. Kwon, D. Paeng, W.J. Jung, S. Ghimire et al., Laser-induced crystalline-phase transformation for hematite nanorod photoelectrochemical cells. ACS Appl. Mater. Interfaces 12, 48917–48927 (2020). https://doi.org/10.1021/acsami.0c11999
- K. Ohdaira, K. Sawada, N. Usami, S. Varlamov, H. Matsumura, Large-grain polycrystalline silicon films formed through flash-lamp-induced explosive crystallization. Jpn. J. Appl. Phys. 51, 10NB15 (2012). https://doi.org/10.1143/jjap.51.10nb15
- H. Palneedi, J.H. Park, D. Maurya, M. Peddigari, G.T. Hwang et al., Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv. Mater. 30, e1705148 (2018). https://doi.org/10.1002/adma.201705148
- H. Palneedi, D. Maurya, L.D. Geng, H.-C. Song, G.-T. Hwang et al., Enhanced self-biased magnetoelectric coupling in laser-annealed Pb(Zr, Ti)O3 thick film deposited on Ni foil. ACS Appl. Mater. Interf. 10, 11018–11025 (2018). https://doi.org/10.1021/acsami.7b16706
- T.H. Im, J.H. Lee, H.S. Wang, S.H. Sung, Y. Bin Kim et al., Flashlight-material interaction for wearable and flexible electronics. Mater. Today 51, 525–551 (2021). https://doi.org/10.1016/j.mattod.2021.07.027
- I.H. Kim, T.H. Im, H.E. Lee, J.S. Jang, H.S. Wang et al., Janus graphene liquid crystalline fiber with tunable properties enabled by ultrafast flash reduction. Small 15, e1901529 (2019). https://doi.org/10.1002/smll.201901529
- I. Choi, H.Y. Jeong, D.Y. Jung, M. Byun, C.-G. Choi et al., Laser-induced solid-phase doped graphene. ACS Nano 8, 7671–7677 (2014). https://doi.org/10.1021/nn5032214
- K. Lee, M. Park, K.G. Malollari, J. Shin, S.M. Winkler et al., Laser-induced graphitization of polydopamine leads to enhanced mechanical performance while preserving multifunctionality. Nat. Commun. 11, 4848 (2020). https://doi.org/10.1038/s41467-020-18654-8
- J. Theerthagiri, K. Karuppasamy, S.J. Lee, R. Shwetharani, H.S. Kim et al., Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light Sci. Appl. 11, 250 (2022). https://doi.org/10.1038/s41377-022-00904-7
- S. Song, S.-H. Um, J. Park, I. Ha, J. Lee et al., Rapid synthesis of multifunctional apatite via the laser-induced hydrothermal process. ACS Nano 16, 12840–12851 (2022). https://doi.org/10.1021/acsnano.2c05110
- J.H. Shin, J.H. Park, J. Seo, T.H. Im, J.C. Kim et al., A flash-induced robust Cu electrode on glass substrates and its application for thin-film μLEDs. Adv. Mater. 33, e2007186 (2021). https://doi.org/10.1002/adma.202007186
- T.H. Im, C.H. Lee, J.C. Kim, S. Kim, M. Kim et al., Metastable quantum dot for photoelectric devices via flash-induced one-step sequential self-formation. Nano Energy 84, 105889 (2021). https://doi.org/10.1016/j.nanoen.2021.105889
- Bäuerle, D.: Material transformations, laser cleaning. In: Laser Processing and Chemistry. Berlin, Heidelberg: Springer, pp. 535–559, (2011). https://doi.org/10.1007/978-3-642-17613-5_23
- C.P. Grigoropoulos, Transport in laser microfabrication: Fundamentals and applications (Cambridge University Press, Cambridge, UK, 2009)
- T.R. Steele, D.C. Gerstenberger, A. Drobshoff, R.W. Wallace, Broadly tunable high-power operation of an all-solid-state titanium-doped sapphire laser system. Opt. Lett. 16, 399–401 (1991). https://doi.org/10.1364/ol.16.000399
- S.A. Jalil, B. Lai, M. ElKabbash, J. Zhang, E.M. Garcell et al., Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices. Light Sci. Appl. 9, 14 (2020). https://doi.org/10.1038/s41377-020-0242-y
- I. Choi, S.-J. Lee, J.C. Kim, Y.-G. Kim, D.Y. Hyeon et al., Piezoelectricity of picosecond laser-synthesized perovskite BaTiO3 nanops. Appl. Surf. Sci. 511, 145614 (2020). https://doi.org/10.1016/j.apsusc.2020.145614
- S. Park, J. Park, Y.-G. Kim, S. Bae, T.-W. Kim et al., Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano Energy 78, 105266 (2020). https://doi.org/10.1016/j.nanoen.2020.105266
- J.A. Spechler, K.A. Nagamatsu, J.C. Sturm, C.B. Arnold, Improved efficiency of hybrid organic photovoltaics by pulsed laser sintering of silver nanowire network transparent electrode. ACS Appl. Mater. Interfaces 7, 10556–10562 (2015). https://doi.org/10.1021/acsami.5b02203
- D. Paeng, J.-H. Yoo, J. Yeo, D. Lee, E. Kim et al., Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation. Adv. Mater. 27, 2762–2767 (2015). https://doi.org/10.1002/adma.201500098
- S.H. Ko, J. Chung, H. Pan, C.P. Grigoropoulos, D. Poulikakos, Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing. Sens. Actuat. A Phys. 134, 161–168 (2007). https://doi.org/10.1016/j.sna.2006.04.036
- J. Long, M.H. Eliceiri, L. Wang, Z. Vangelatos, Y. Ouyang et al., Capturing the final stage of the collapse of cavitation bubbles generated during nanosecond laser ablation of submerged targets. Opt. Laser Technol. 134, 106647 (2021). https://doi.org/10.1016/j.optlastec.2020.106647
- C. Grigoropoulos, M. Rogers, S.H. Ko, A.A. Golovin, B.J. Matkowsky, Explosive crystallization in the presence of melting. Phys. Rev. B 73, 184125 (2006). https://doi.org/10.1103/physrevb.73.184125
- K.I. Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu et al., Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26, 2514–2520 (2014). https://doi.org/10.1002/adma.201305659
- M.-Y. Pu, J.Z. Chen, Improved performance of dye-sensitized solar cells with laser-textured nanoporous TiO2 photoanodes. Mater. Lett. 66, 162–164 (2012). https://doi.org/10.1016/j.matlet.2011.08.022
- D. He, J. Jin, Z. Yuan, L. Wang, Effect of ArF excimer laser annealing on morphology and surface plasmon resonance properties of Ag nanops. Appl. Phys. A 125, 423 (2019). https://doi.org/10.1007/s00339-019-2715-5
- D. Angmo, T.T. Larsen-Olsen, M. Jørgensen, R.R. Søndergaard, F.C. Krebs, Roll-to-roll inkjet printing and photonic sintering of electrodes for ITO free polymer solar cell modules and facile product integration. Adv. Energy Mater. 3, 172–175 (2013). https://doi.org/10.1002/aenm.201200520
- J.Y. Seok, S. Kim, I. Yang, J.H. Park, J. Lee et al., Strategically controlled flash irradiation on silicon anode for enhancing cycling stability and rate capability toward high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 15205–15215 (2021). https://doi.org/10.1021/acsami.0c22983
- H.E. Lee, J.H. Park, D. Jang, J.H. Shin, T.H. Im et al., Optogenetic brain neuromodulation by stray magnetic field via flash-enhanced magneto-mechano-triboelectric nanogenerator. Nano Energy 75, 104951 (2020). https://doi.org/10.1016/j.nanoen.2020.104951
- U. Okoroanyanwu, A. Bhardwaj, J.J. Watkins, Large area millisecond preparation of high-quality, few-layer graphene films on arbitrary substrates via xenon flash lamp photothermal pyrolysis and their application for high-performance micro-supercapacitors. ACS Appl. Mater. Interfaces 15, 13495–13507 (2023). https://doi.org/10.1021/acsami.2c19894
- S. Gilje, S. Dubin, A. Badakhshan, J. Farrar, S.A. Danczyk et al., Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv. Mater. 22, 419–423 (2010). https://doi.org/10.1002/adma.200901902
- T. Jeon, H.M. Jin, S.H. Lee, J.M. Lee, H.I. Park et al., Laser crystallization of organic–inorganic hybrid perovskite solar cells. ACS Nano 10, 7907–7914 (2016). https://doi.org/10.1021/acsnano.6b03815
- S. Back, J.H. Park, B. Kang, Microsupercapacitive stone module for natural energy storage. ACS Nano 16, 11708–11719 (2022). https://doi.org/10.1021/acsnano.2c01753
- J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye et al., Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014). https://doi.org/10.1038/ncomms6714
- L. Xu, C.P. Grigoropoulos, T.-J. King, High-performance thin-silicon-film transistors fabricated by double laser crystallization. J. Appl. Phys. 99, 034508 (2006). https://doi.org/10.1063/1.2171807
- G. Yuan, T. Wan, A. BaQais, Y. Mu, D. Cui et al., Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 212, 118101 (2023). https://doi.org/10.1016/j.carbon.2023.118101
- M. Kim, M.G. Gu, H. Jeong, E. Song, J.W. Jeon et al., Laser scribing of fluorinated polyimide films to generate microporous structures for high-performance micro-supercapacitor electrodes. ACS Appl. Energy Mater. 4, 208–214 (2021). https://doi.org/10.1021/acsaem.0c02096
- W. Liu, V.S. Turkani, V. Akhavan, B.A. Korgel, Photonic lift-off process to fabricate ultrathin flexible solar cells. ACS Appl. Mater. Interfaces 13, 44549–44555 (2021). https://doi.org/10.1021/acsami.1c12382
- H. Palneedi, I. Choi, G.-Y. Kim, V. Annapureddy, D. Maurya et al., Tailoring the magnetoelectric properties of Pb(Zr, Ti)O3 film deposited on amorphous metglas foil by laser annealing. J. Am. Ceram. Soc. 99, 2680–2687 (2016). https://doi.org/10.1111/jace.14270
- H. Palneedi, D. Maurya, G.-Y. Kim, V. Annapureddy, M.-S. Noh et al., Unleashing the full potential of magnetoelectric coupling in film heterostructures. Adv. Mater. 29, 1605688 (2017). https://doi.org/10.1002/adma.201605688
- D. Paeng, J. Yeo, D. Lee, S.-J. Moon, C.P. Grigoropoulos, Laser wavelength effect on laser-induced photo-thermal sintering of silver nanops. Appl. Phys. A 120, 1229–1240 (2015). https://doi.org/10.1007/s00339-015-9320-z
- I. Choi, H.Y. Jeong, H. Shin, G. Kang, M. Byun et al., Laser-induced phase separation of silicon carbide. Nat. Commun. 7, 13562 (2016). https://doi.org/10.1038/ncomms13562
- A. Imparato, C. Minarini, A. Rubino, P. Tassini, F. Villani et al., Excimer laser induced crystallization of amorphous silicon on flexible polymer substrates. Thin Solid Films 487, 58–62 (2005). https://doi.org/10.1016/j.tsf.2005.01.035
- M. Park, Z. Vangelatos, Y. Rho, H.K. Park, J. Jang et al., Comprehensive analysis of blue diode laser-annealing of amorphous silicon films. Thin Solid Films 696, 137779 (2020). https://doi.org/10.1016/j.tsf.2019.137779
- B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996). https://doi.org/10.1007/BF01567637
- H. Zhu, Z. Zhang, J. Zhou, K. Xu, D. Zhao et al., A computational study of heat transfer and material removal in picosecond laser micro-grooving of copper. Opt. Laser Technol. 137, 106792 (2021). https://doi.org/10.1016/j.optlastec.2020.106792
- M. Park, J. Jeun, G. Han, C.P. Grigoropoulos, Time-resolved emission and scattering imaging of plume dynamics and nanop ejection in femtosecond laser ablation of silver thin films. Appl. Phys. Lett. 116, 234105 (2020). https://doi.org/10.1063/5.0009227
- U. Okoroanyanwu, A. Bhardwaj, V. Einck, A. Ribbe, W. Hu et al., Rapid preparation and electrochemical energy storage applications of silicon carbide and silicon oxycarbide ceramic/carbon nanocomposites derived via flash photothermal pyrolysis of organosilicon preceramic polymers. Chem. Mater. 33, 678–694 (2021). https://doi.org/10.1021/acs.chemmater.0c04048
- J. Park, S. Pramanick, D. Park, J. Yeo, J. Lee et al., Therapeutic-gas-responsive hydrogel. Adv. Mater. 29, 1702859 (2017). https://doi.org/10.1002/adma.201702859
- H. Palneedi, D.R. Patil, S. Priya, K. Woo, J. Ye et al., Intense pulsed light thermal treatment of Pb(Zr, Ti)O3/metglas heterostructured films resulting in extreme magnetoelectric coupling of over 20 V cm-1 Oe-1. Adv. Mater. 35, e2303553 (2023). https://doi.org/10.1002/adma.202303553
- S.J. Kim, H.E. Lee, H. Choi, Y. Kim, J.H. We et al., High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano 10, 10851–10857 (2016). https://doi.org/10.1021/acsnano.6b05004
- S.C. Singh, M. ElKabbash, Z. Li, X. Li, B. Regmi et al., Solar-trackable super-wicking black metal panel for photothermal water sanitation. Nat. Sustain. 3, 938–946 (2020). https://doi.org/10.1038/s41893-020-0566-x
- R.E. Russo, X. Mao, J.J. Gonzalez, V. Zorba, J. Yoo, Laser ablation in analytical chemistry. Anal. Chem. 85, 6162–6177 (2013). https://doi.org/10.1021/ac4005327
- M. Peddigari, J.H. Park, J.H. Han, C.K. Jeong, J. Jang et al., Flexible self-charging, ultrafast, high-power-density ceramic capacitor system. ACS Energy Lett. 6, 1383–1391 (2021). https://doi.org/10.1021/acsenergylett.1c00170
- L.-J. Huang, B.-J. Li, N.-F. Ren, Enhancing optical and electrical properties of Al-doped ZnO coated polyethylene terephthalate substrates by laser annealing using overlap rate controlling strategy. Ceram. Int. 42, 7246–7252 (2016). https://doi.org/10.1016/j.ceramint.2016.01.118
- Y. Rho, K. Lee, L. Wang, C. Ko, Y. Chen et al., A laser-assisted chlorination process for reversible writing of doping patterns in graphene. Nat. Electron. 5, 505–510 (2022). https://doi.org/10.1038/s41928-022-00801-2
- M.A. Al-Azawi, N. Bidin, Gold nanops synthesized by laser ablation in deionized water. Chinese J. Phys. 53, 080803 (2015). https://doi.org/10.6122/CJP.20150511B
- S. Hopman, K. Mayer, A. Fell, M. Mesec, F. Granek, Laser cutting of silicon with the liquid jet guided laser using achlorine-containing jet media. Appl. Phys. A 102, 621–627 (2011). https://doi.org/10.1007/s00339-010-6155-5
- B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao et al., High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum. Appl. Phys. A 119, 61–68 (2015). https://doi.org/10.1007/s00339-014-8955-5
- J. Yeo, S. Hong, G. Kim, H. Lee, Y.D. Suh et al., Laser-induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design. ACS Nano 9, 6059–6068 (2015). https://doi.org/10.1021/acsnano.5b01125
- S.H. Sung, Y.S. Kim, D.J. Joe, B.H. Mun, B.K. You et al., Flexible wireless powered drug delivery system for targeted administration on cerebral cortex. Nano Energy 51, 102–112 (2018). https://doi.org/10.1016/j.nanoen.2018.06.015
- H.E. Lee, J. Choi, S.H. Lee, M. Jeong, J.H. Shin et al., Monolithic flexible vertical GaN light-emitting diodes for a transparent wireless brain optical Stimulator. Adv. Mater. 30, e1800649 (2018). https://doi.org/10.1002/adma.201800649
- S. Min, D.H. Kim, D.J. Joe, B.W. Kim, Y.H. Jung et al., Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring. Adv. Mater. 35, e2301627 (2023). https://doi.org/10.1002/adma.202301627
- H. Lee, W. Manorotkul, J. Lee, J. Kwon, Y.D. Suh et al., Nanowire-on-nanowire: all-nanowire electronics by on-demand selective integration of hierarchical heterogeneous nanowires. ACS Nano 11, 12311–12317 (2017). https://doi.org/10.1021/acsnano.7b06098
- H.R. Lim, H.S. Kim, R. Qazi, Y.T. Kwon, J.W. Jeong et al., Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32, e1901924 (2020). https://doi.org/10.1002/adma.201901924
- M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013). https://doi.org/10.1038/ncomms2446
- J. Lee, T.T. Nguyen, J. Bae, G. Jo, Y. Lee et al., 5.8-inch QHD flexible AMOLED display with enhanced bendability of LTPS TFTs. J. Soc. Inf. Disp. 26, 200–207 (2018). https://doi.org/10.1002/jsid.655
- E. Singh, P. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics. ACS Appl. Mater. Interfaces 11, 11061–11105 (2019). https://doi.org/10.1021/acsami.8b19859
- S. Han, S. Hong, J. Ham, J. Yeo, J. Lee et al., Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 26, 5808–5814 (2014). https://doi.org/10.1002/adma.201400474
- S.-G. Kwon, S. Back, J.E. Park, B. Kang, Laser filament bottom-up growth sintering for multi-planar diffraction-limit printing and its application to ultra-transparent wearable thermo-electronics. J. Mater. Chem. C 6, 7759–7766 (2018). https://doi.org/10.1039/c8tc01915k
- C. Huang, S. Zhang, H. Liu, Y. Li, G. Cui et al., Graphdiyne for high capacity and long-life lithium storage. Nano Energy 11, 481–489 (2015). https://doi.org/10.1016/j.nanoen.2014.11.036
- J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde et al., Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014). https://doi.org/10.1021/nl500390f
- J. Perelaer, R. Abbel, S. Wünscher, R. Jani, T. van Lammeren et al., Roll-to-roll compatible sintering of inkjet printed features by photonic and microwave exposure: from non-conductive ink to 40% bulk silver conductivity in less than 15 seconds. Adv. Mater. 24, 2620–2625 (2012). https://doi.org/10.1002/adma.201104417
- W.J. Hyun, E.B. Secor, G.A. Rojas, M.C. Hersam, L.F. Francis et al., All-printed, foldable organic thin-film transistors on glassine paper. Adv. Mater. 27, 7058–7064 (2015). https://doi.org/10.1002/adma.201503478
- K. Tetzner, Y.-H. Lin, A. Regoutz, A. Seitkhan, D.J. Payne et al., Sub-second photonic processing of solution-deposited single layer and heterojunction metal oxide thin-film transistors using a high-power xenon flash lamp. J. Mater. Chem. C 5, 11724–11732 (2017). https://doi.org/10.1039/C7TC03721J
- A.D. Wright, R.L. Milot, G.E. Eperon, H.J. Snaith, M.B. Johnston et al., Band-tail recombination in hybrid lead iodide perovskite. Adv. Funct. Mater. 27, 1700860 (2017). https://doi.org/10.1002/adfm.201700860
- E. Yarali, C. Koutsiaki, H. Faber, K. Tetzner, E. Yengel et al., Recent progress in photonic processing of metal-oxide transistors. Adv. Funct. Mater. 30, 1906022 (2020). https://doi.org/10.1002/adfm.201906022
- H.M. Jin, D.Y. Park, S.J. Jeong, G.Y. Lee, J.Y. Kim et al., Flash light millisecond self-assembly of high χ block copolymers for wafer-scale sub-10 nm nanopatterning. Adv. Mater. 29, 1700595 (2017). https://doi.org/10.1002/adma.201700595
- M. Peddigari, K. Woo, S.-D. Kim, M.S. Kwak, J.W. Jeong et al., Ultra-magnetic field sensitive magnetoelectric composite with sub-pT detection limit at low frequency enabled by flash photon annealing. Nano Energy 90, 106598 (2021). https://doi.org/10.1016/j.nanoen.2021.106598
- D.H. Jung, J.H. Park, H.E. Lee, J. Byun, T.H. Im et al., Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes. Nano Energy 61, 236–244 (2019). https://doi.org/10.1016/j.nanoen.2019.04.061
- Y. Li, J.T. Han, C.A. Wang, H. Xie, J.B. Goodenough, Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 22, 15357–15361 (2012). https://doi.org/10.1039/C2JM31413D
- R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007). https://doi.org/10.1002/anie.200701144
- V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014). https://doi.org/10.1039/C4CS00020J
- J.L. Allen, J. Wolfenstine, E. Rangasamy, J. Sakamoto, Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J. Power. Sources 206, 315–319 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.131
- Z. Gao, Y. Bai, H. Fu, J. Yang, T. Ferber, J. Feng, W. Jaegermann, Y. Huang, Interphase formed at Li6.4La3Zr1.4Ta0.6O12/Li interface enables cycle stability for solid-state batteries. Adv. Funct. Mater. 32, 2112113 (2022). https://doi.org/10.1002/adfm.202112113
- F. Shen, W. Guo, D. Zeng, Z. Sun, J. Gao et al., A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte. ACS Appl. Mater. Interfaces 12, 30313–30319 (2020). https://doi.org/10.1021/acsami.0c04850
- C. Zhang, R. Huang, P. Wang, Y. Wang, Z. Zhou et al., Highly compressible, thermally conductive, yet electrically insulating fluorinated graphene aerogel. ACS Appl. Mater. Interfaces 12, 58170–58178 (2020). https://doi.org/10.1021/acsami.0c19628
- Y. Wang, P. Yan, J. Xiao, D. Deng, X. Lu et al., Materials selection and chemistry development for redox flow batteries. Meet. Abstr. 0MA2016-03, 425 (2016). https://doi.org/10.1149/ma2016-03/2/425
- X. Huang, T. Xiu, M.E. Badding, Z. Wen, Two-step sintering strategy to prepare dense Li-Garnet electrolyte ceramics with high Li+ conductivity. Ceram. Int. 44, 5660–5667 (2018). https://doi.org/10.1016/j.ceramint.2017.12.217
- Z. Huang, K. Liu, L. Chen, Y. Lu, Y. Li et al., Sintering behavior of garnet-type Li6.4La3Zr1.4Ta0.6O12 in Li2CO3 atmosphere and its electrochemical property. Int. J. Appl. Ceram. Technol. 14, 921 (2017). https://doi.org/10.1111/ijac.12735
- X. Huang, C. Shen, K. Rui, J. Jin, M. Wu et al., Influence of La2Zr2O7 additive on densification and Li+ conductivity for Ta-doped Li7La3Zr2O12 garnet. JOM 68, 2593–2600 (2016). https://doi.org/10.1007/s11837-016-2065-0
- Y. Ren, H. Deng, R. Chen, Y. Shen, Y. Lin et al., Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics. J. Eur. Ceram. Soc. 35, 561–572 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.09.007
- M. Wood, X. Gao, R. Shi, T.W. Heo, J. Ali Espitia et al., Exploring the relationship between solvent-assisted ball milling, p size, and sintering temperature in garnet-type solid electrolytes. J. Power. Sources 484, 229252 (2021). https://doi.org/10.1016/j.jpowsour.2020.229252
- X. Huang, Y. Lu, Z. Song, T. Xiu, M.E. Badding et al., Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte: Sintering, microstructure, performance and the role of MgO. J. Energy Chem. 39, 8–16 (2019). https://doi.org/10.1016/j.jechem.2019.01.013
- E. Ramos, A. Browar, J. Roehling, J. Ye, CO2 laser sintering of garnet-type solid-state electrolytes. ACS Energy Lett. 7, 3392–3400 (2022). https://doi.org/10.1021/acsenergylett.2c01630
- K.A. Acord, A.D. Dupuy, U. Scipioni Bertoli, B. Zheng, W.C. West et al., Morphology, microstructure, and phase states in selective laser sintered lithium ion battery cathodes. J. Mater. Process. Technol. 288, 116827 (2021). https://doi.org/10.1016/j.jmatprotec.2020.116827
- A. Ishii, H. Huang, Y. Meng, S. Mu, J. Gao et al., Chemically inert hydrocarbon-based slurries for rapid laser sintering of thin proton-conducting ceramics. Mater. Res. Bull. 143, 111446 (2021). https://doi.org/10.1016/j.materresbull.2021.111446
- L. Ming, H. Yang, W. Zhang, X. Zeng, D. Xiong et al., Selective laser sintering of TiO2 nanop film on plastic conductive substrate for highly efficient flexible dye-sensitized solar cell application. J. Mater. Chem. A 2, 4566–4573 (2014). https://doi.org/10.1039/C3TA14210H
- Y. Pang, Y. Cao, Y. Chu, M. Liu, K. Snyder et al., Additive manufacturing of batteries. Adv. Funct. Mater. 30, 1906244 (2020). https://doi.org/10.1002/adfm.201906244
- C. Zuo, S. Zha, M. Liu, M. Hatano, M. Uchiyama, Ba(Zr0.1Ce0.7Y0.2)O3–δ as an electrolyte for low-temperature solid-oxide fuel cells. Adv. Mater. 18, 3318–3320 (2006). https://doi.org/10.1002/adma.200601366
- L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu et al., Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3-δ. Science 326, 126 (2009). https://doi.org/10.1126/science.1174811
- A. Ishii, S. Mu, Y. Meng, H. Huang, J. Lei et al., Rapid laser processing of thin Sr-doped LaCrO3–δ interconnects for solid oxide fuel cells. Energy Technol. 8, 2000364 (2020). https://doi.org/10.1002/ente.202000364
- M. Pagliaro, R. Ciriminna, G. Palmisano, Flexible solar cells. ChemSusChem 1, 880–891 (2008). https://doi.org/10.1002/cssc.200800127
- S. Zhang, X. Yang, Y. Numata, L. Han, Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ. Sci. 6, 1443–1464 (2013). https://doi.org/10.1039/C3EE24453A
- T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Sol. Energy Mater. Sol. Cells 94, 812–816 (2010). https://doi.org/10.1016/j.solmat.2009.12.029
- A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran et al., Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011). https://doi.org/10.1126/science.1209688
- W. Gao, N. Singh, L. Song, Z. Liu, A.L.M. Reddy et al., Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 6, 496–500 (2011). https://doi.org/10.1038/nnano.2011.110
- H. Wang, Y. Diao, Y. Lu, H. Yang, Q. Zhou et al., Energy storing bricks for stationary PEDOT supercapacitors. Nat. Commun. 11, 3882 (2020). https://doi.org/10.1038/s41467-020-17708-1
- S.-J. Choi, S.-J. Kim, J.-S. Jang, J.-H. Lee, I.-D. Kim, Silver nanowire embedded colorless polyimide heater for wearable chemical sensors: improved reversible reaction kinetics of optically reduced graphene oxide. Small 12, 5826–5835 (2016). https://doi.org/10.1002/smll.201602230
- J. Jang, B.G. Hyun, S. Ji, E. Cho, B.W. An et al., Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Mater 9, e432 (2017). https://doi.org/10.1038/am.2017.172
- S.-J. Choi, S.-J. Kim, I.-D. Kim, Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors. NPG Asia Mater. 8, 315 (2016). https://doi.org/10.1038/am.2016.150
- Illgen, R., Flachowsky, S., Herrmann, T., Feudel, T., Thron, D. et al.: In: 2009 10th International Conference on Ultimate Integration of Silicon (IEEE, 2009), pp. 157–160.
- Borland, J.O.: 32nm node USJ implant & annealing options. In 2007 15th International Conference on Advanced Thermal Processing of Semiconductors (IEEE, 2007), pp. 181–189.
- Colombeau, B., Yeong, S.H., Tan, D.X.M., Smith, A.J., Gwilliam, R.M. et al.: Ultra-shallow junction formation-physics and advanced technology. In: AIP Conference of Proceedings (AIP, 2008), pp. 11–18.
- Y. Chen, K. Denis, P. Kazlas, P. Drzaic, 122: a conformable electronic ink display using a foil-based a-Si TFT array. SID Symp. Dig. Tech. Pap. 32, 157–159 (2001). https://doi.org/10.1889/1.1831820
- R.A. Matula, Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 8, 1147 (1979). https://doi.org/10.1063/1.555614
- Edelstein, D., Heidenreich, J., Goldblatt, R., Cote, W., Uzoh, C. et al.: Full copper wiring in a sub-0.25 μm CMOS ULSI technology. In: International Electron Devices Meeting. IEDM Technical Digest (IEEE, n.d.), pp. 773–776.
- M.D. Susman, Y. Feldman, A. Vaskevich, I. Rubinstein, Chemical deposition and stabilization of plasmonic copper nanop films on transparent substrates. Chem. Mater. 24, 2501–2508 (2012). https://doi.org/10.1021/cm300699f
- S.-I. Park, Y. Xiong, R.-H. Kim, P. Elvikis, M. Meitl et al., Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009). https://doi.org/10.1126/science.1175690
- L. Tan, Q. Zhou, H. Wang, R. Yao, Characteristics of micro LEDs with snowflake p-electrode and composite textured sidewalls. IEEE Photonics Technol. Lett. 31, 1705–1708 (2019). https://doi.org/10.1109/LPT.2019.2942690
- P.-T. Liu, Y.-T. Chou, C.-Y. Su, H.-M. Chen, Using electroless plating Cu technology for TFT-LCD application. Surf. Coat. Technol. 205, 1497–1501 (2010). https://doi.org/10.1016/j.surfcoat.2010.10.011
- M. Abbott, J. Cotter, Optical and electrical properties of laser texturing for high-efficiency solar cells. Prog. Photovolt. Res. Appl. 14, 225–235 (2006). https://doi.org/10.1002/pip.667
- D. Canteli, I. Torres, S. Fernández, J.D. Santos, M. Morales et al., Photon-collection improvement from laser-textured AZO front-contact in thin-film solar cells. Appl. Surf. Sci. 463, 775–780 (2019). https://doi.org/10.1016/j.apsusc.2018.08.267
- Y. Zhang, G. Cai, Y. Gu, L. Ge, Y. Zheng et al., Modifying the electrode-electrolyte interface of anode supported solid oxide fuel cells (SOFCs) by laser-machining. Energy Convers. Manag. 171, 1030–1037 (2018). https://doi.org/10.1016/j.enconman.2018.06.044
- M. Kedia, M. Rai, H. Phirke, C.A. Aranda, C. Das et al., Light makes right: laser polishing for surface modification of perovskite solar cells. ACS Energy Lett. 8, 2603–2610 (2023). https://doi.org/10.1021/acsenergylett.3c00469
- D. Kim, I.-W. Tcho, I.K. Jin, S.-J. Park, S.-B. Jeon et al., Direct-laser-patterned friction layer for the output enhancement of a triboelectric nanogenerator. Nano Energy 35, 379–386 (2017). https://doi.org/10.1016/j.nanoen.2017.04.013
- K.-W. Lim, M. Peddigari, C.H. Park, H.Y. Lee, Y. Min et al., A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble nano-bullets for powering a wireless indoor positioning system. Energy Environ. Sci. 12, 666–674 (2019). https://doi.org/10.1039/c8ee03008a
- M.S. Kwak, K.W. Lim, H.Y. Lee, M. Peddigari, J. Jang et al., Multiscale surface modified magneto-mechano-triboelectric nanogenerator enabled by eco-friendly NaCl imprinting stamp for self-powered IoT applications. Nanoscale 13, 8418–8424 (2021). https://doi.org/10.1039/d1nr01336j
- R. Ye, Y. Chyan, J. Zhang, Y. Li, X. Han et al., Laser-induced graphene formation on wood. Adv. Mater. 29, 1702211 (2017). https://doi.org/10.1002/adma.201702211
- Y. Chyan, R. Ye, Y. Li, S.P. Singh, C.J. Arnusch et al., Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12, 2176–2183 (2018). https://doi.org/10.1021/acsnano.7b08539
- H. Zhu, Z. Zhang, Z. Zhang, J. Lu, K. Xu et al., Localized fabrication of flexible graphene-copper composites via a combined ultrafast laser irradiation and electrodeposition technique. J. Manuf. Process. 108, 395–407 (2023). https://doi.org/10.1016/j.jmapro.2023.10.085
- J.S. Lee, J.W. Kim, J.H. Lee, Y.K. Son, Y.B. Kim et al., Flash-induced high-throughput porous graphene via synergistic photo-effects for electromagnetic interference shielding. Nano-Micro Lett. 15, 191 (2023). https://doi.org/10.1007/s40820-023-01157-8
- M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012). https://doi.org/10.1126/science.1216744
- Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li et al., Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 9, 5868–5875 (2015). https://doi.org/10.1021/acsnano.5b00436
- Y. Yuan, L. Jiang, X. Li, P. Zuo, C. Xu et al., Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat. Commun. 11, 6185 (2020). https://doi.org/10.1038/s41467-020-19985-2
- F. Zhang, E. Alhajji, Y. Lei, N. Kurra, H.N. Alshareef, Highly doped 3D graphene Na-ion battery anode by laser scribing polyimide films in nitrogen ambient. Adv. Energy Mater. 8, 1800353 (2018). https://doi.org/10.1002/aenm.201800353
- W. Ma, S. Chen, S. Yang, W. Chen, W. Weng et al., Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon 113, 151–158 (2017). https://doi.org/10.1016/j.carbon.2016.11.051
- X. Wang, F. Wan, L. Zhang, Z. Zhao, Z. Niu et al., Large-area reduced graphene oxide composite films for flexible asymmetric sandwich and microsized supercapacitors. Adv. Funct. Mater. 28, 1707247 (2018). https://doi.org/10.1002/adfm.201707247
- S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide: MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822–2830 (2010). https://doi.org/10.1021/nn901311t
- H. Zhu, C. Wang, S. Mao, Z. Zhang, D. Zhao et al., Localized and efficient machining of germanium based on the auto-coupling between picosecond laser irradiation and electrochemical dissolution: Mechanism validation and surface characterization. J. Manuf. Process. 77, 665–677 (2022). https://doi.org/10.1016/j.jmapro.2022.03.050
- H. Zhu, M. Zhang, W. Ren, V. Saetang, J. Lu et al., Laser-induced localized and maskless electrodeposition of micro-copper structure on silicon surface: Simulation and experimental study. Opt. Laser Technol. 170, 110315 (2024). https://doi.org/10.1016/j.optlastec.2023.110315
- Q. Wu, Y. Li, Y. Yang, Y. Zhao, A photolithography process design for 5 nm logic process flow. J. Microelectron. Manuf. 2, 1–8 (2019). https://doi.org/10.33079/jomm.19020408
- G. Tallents, E. Wagenaars, G. Pert, Lithography at EUV wavelengths. Nat. Photonics 4, 809–811 (2010). https://doi.org/10.1038/nphoton.2010.277
- K. Kim, H.-E. Kim, I.-H. Lee, J.-S. Kim, J.-S. Chun et al., in Proceedings of SPIE 2440, Optical/Laser Microlithography VIII, ed. by T. A. Brunner (1995), pp. 76–87.
- J. Yun, M. Yang, B. Kang, Laser sweeping lithography: parallel bottom-up growth sintering of a nanoseed–organometallic hybrid suspension for ecofriendly mass production of electronics. ACS Sustain. Chem. Eng. 6, 4940–4947 (2018). https://doi.org/10.1021/acssuschemeng.7b04468
- Y.S. Rim, H. Chen, Y. Liu, S.H. Bae, H.J. Kim et al., Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics. ACS Nano 8, 9680–9686 (2014). https://doi.org/10.1021/nn504420r
- I. Bretos, R. Jiménez, A. Wu, A.I. Kingon, P.M. Vilarinho et al., Activated solutions enabling low-temperature processing of functional ferroelectric oxides for flexible electronics. Adv. Mater. 26, 1405–1409 (2014). https://doi.org/10.1002/adma.201304308
- L.J. Cote, R. Cruz-Silva, J. Huang, Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 131, 11027–11032 (2009). https://doi.org/10.1021/ja902348k
- S. Yoo, S.Y. Jeong, J.-W. Lee, J.H. Park, D.-W. Kim et al., Heavily nitrogen doped chemically exfoliated graphene by flash heating. Carbon 144, 675–683 (2019). https://doi.org/10.1016/j.carbon.2018.12.090
- J. Kim, M. Kim, H. Jung, J. Park, Y. Lee, Ultrastable 2D material-wrapped copper nanowires for high-performance flexible and transparent energy devices. Nano Energy 106, 108067 (2023). https://doi.org/10.1016/j.nanoen.2022.108067
- D.-H. Kim, J.-H. Cha, S. Chong, S.-H. Cho, H. Shin et al., Flash-thermal shock synthesis of single atoms in ambient air. ACS Nano 17, 23347–23358 (2023). https://doi.org/10.1021/acsnano.3c02968
- L.T. Duy, R.B. Ali, Q.A. Sial, H. Seo, Green synthesis of carbon and cobalt oxide composites by 1–Watt laser sintering for flexible supercapacitors. Ceram. Int. 49, 13131–13139 (2023). https://doi.org/10.1016/j.ceramint.2022.12.191
- T.-F. Hung, Z.-W. Yin, S.B. Betzler, W. Zheng, J. Yang et al., Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors. Chem. Eng. J. 367, 115–122 (2019). https://doi.org/10.1016/j.cej.2019.02.136
- J. Sourice, A. Quinsac, Y. Leconte, O. Sublemontier, W. Porche et al., One-step synthesis of Si@C nanops by laser pyrolysis: high-capacity anode material for lithium-ion batteries. ACS Appl. Mater. Interf. 7, 6637 (2015). https://doi.org/10.1021/am5089742
- J. Zhao, Y. Wang, Z. Zhang, Z. Zhu, S. Zeng et al., Biomineralization-inspired synthesis of hybrid COF nanosheets toward efficient desalination membranes. Small 20, e2310566 (2024). https://doi.org/10.1002/smll.202310566
- W.O. Silva, V. Costa Bassetto, D. Baster, M. Mensi, E. Oveisi et al., Oxidative print light synthesis thin film deposition of prussian blue. ACS Appl. Electron. Mater. 2, 927 (2020). https://doi.org/10.1021/acsaelm.9b00854
- F. Wang, Z. Guo, Z. Wang, H. Zhu, G. Zhao et al., Laser-induced transient self-organization of TiNx nano-filament percolated networks for high performance surface-mountable filter capacitors. Adv. Mater. 35, e2210038 (2023). https://doi.org/10.1002/adma.202210038
- D.Y. Park, D.J. Joe, D.H. Kim, H. Park, J.H. Han et al., Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 29, 1702308 (2017). https://doi.org/10.1002/adma.201702308
- H.S. Wang, S.K. Hong, J.H. Han, Y.H. Jung, H.K. Jeong et al., Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 7, eabe5683 (2021). https://doi.org/10.1126/sciadv.abe5683
- L.J. Wang, M.F. El-Kady, S. Dubin, J.Y. Hwang, Y. Shao et al., Flash converted graphene for ultra-high power supercapacitors. Adv. Energy Mater. 5, 1500786 (2015). https://doi.org/10.1002/aenm.201500786
- H.S. Lee, J. Chung, G.-T. Hwang, C.K. Jeong, Y. Jung et al., Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv. Funct. Mater. 24, 6914–6921 (2014). https://doi.org/10.1002/adfm.201402270
- K. Mizutari, M. Fujioka, M. Hosoya, N. Bramhall, H.J. Okano et al., Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron 77, 58 (2013). https://doi.org/10.1016/j.neuron.2012.10.032
References
Y. Hu, M. Wu, F. Chi, G. Lai, P. Li et al., Ultralow-resistance electrochemical capacitor for integrable line filtering. Nature 624, 74–79 (2023). https://doi.org/10.1038/s41586-023-06712-2
F. Han, G. Meng, F. Zhou, L. Song, X. Li et al., Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage. Sci. Adv. 1, e1500605 (2015). https://doi.org/10.1126/sciadv.1500605
J. Zhao, H. Lu, Y. Zhang, S. Yu, O.I. Malyi et al., Direct coherent multi-ink printing of fabric supercapacitors. Sci. Adv. 7, eabd6978 (2021). https://doi.org/10.1126/sciadv.abd6978
C. Yuan, Sustainable battery manufacturing in the future. Nat. Energy 8, 1180–1181 (2023). https://doi.org/10.1038/s41560-023-01374-w
Y. Qiao, H. Yang, Z. Chang, H. Deng, X. Li et al., A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 6, 653–662 (2021). https://doi.org/10.1038/s41560-021-00839-0
H. Tang, K. Geng, L. Wu, J. Liu, Z. Chen et al., Fuel cells with an operational range of –20 to 200 °C enabled by phosphoric acid-doped intrinsically ultramicroporous membranes. Nat. Energy 7, 153–162 (2022). https://doi.org/10.1038/s41560-021-00956-w
L. Shi, Y. Zhao, S. Matz, S. Gottesfeld, B.P. Setzler et al., A shorted membrane electrochemical cell powered by hydrogen to remove CO2 from the air feed of hydroxide exchange membrane fuel cells. Nat. Energy 7, 238–247 (2022). https://doi.org/10.1038/s41560-021-00969-5
Q. Zhang, S. Dong, P. Shao, Y. Zhu, Z. Mu et al., Covalent organic framework-based porous ionomers for high-performance fuel cells. Science 378, 181–186 (2022). https://doi.org/10.1126/science.abm6304
S. Wu, Y. Yang, M. Sun, T. Zhang, S. Huang et al., Dilute aqueous-aprotic electrolyte towards robust Zn-ion hybrid supercapacitor with high operation voltage and long lifespan. Nano-Micro Lett. 16, 161 (2024). https://doi.org/10.1007/s40820-024-01372-x
C. Gao, Q. You, J. Huang, J. Sun, X. Yao et al., Ultraconformable integrated wireless charging micro-supercapacitor skin. Nano-Micro Lett. 16, 123 (2024). https://doi.org/10.1007/s40820-024-01352-1
C.P. Grey, D.S. Hall, Prospects for lithium-ion batteries and beyond—a 2030 vision. Nat. Commun. 11, 6279 (2020). https://doi.org/10.1038/s41467-020-19991-4
C. Li, Md.M. Islam, J. Moore, J. Sleppy, C. Morrison et al., Wearable energy-smart ribbons for synchronous energy harvest and storage. Nat. Commun. 7, 13319 (2016). https://doi.org/10.1038/ncomms13319
M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016). https://doi.org/10.1038/ncomms12647
G. Nagaraju, S.C. Sekhar, B. Ramulu, L.K. Bharat, G.S.R. Raju et al., Enabling redox chemistry with hierarchically designed bilayered nanoarchitectures for pouch-type hybrid supercapacitors: a sunlight-driven rechargeable energy storage system to portable electronics. Nano Energy 50, 448–461 (2018). https://doi.org/10.1016/j.nanoen.2018.05.063
A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
G. Li, Z. Su, L. Canil, D. Hughes, M.H. Aldamasy et al., Highly efficient p-i-n perovskite solar cells that endure temperature variations. Science 379, 399–403 (2023). https://doi.org/10.1126/science.add7331
X. Chu, Q. Ye, Z. Wang, C. Zhang, F. Ma et al., Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency. Nat. Energy 8, 372–380 (2023). https://doi.org/10.1038/s41560-023-01220-z
W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
T. Zhang, H. Liang, Z. Wang, C. Qiu, Y.B. Peng et al., Piezoelectric ultrasound energy-harvesting device for deep brain stimulation and analgesia applications. Sci. Adv. 8, eabk0159 (2022). https://doi.org/10.1126/sciadv.abk0159
R. Liu, Z.L. Wang, K. Fukuda, T. Someya, Flexible self-charging power sources. Nat. Rev. Mater. 7, 870–886 (2022). https://doi.org/10.1038/s41578-022-00441-0
J. Park, K. Kim, Y. Kim, T.S. Kim, I.S. Min et al., A wireless, solar-powered, optoelectronic system for spatial restriction-free long-term optogenetic neuromodulations. Sci. Adv. 9, eadi8918 (2023). https://doi.org/10.1126/sciadv.adi8918
A. Kurakula, S.A. Graham, M.V. Paranjape, P. Manchi, V.S. Kavarthapu et al., Multimodal energy generation and intruder sensing platform via aluminum titanate/poly-glucosamine composite film-based hybrid nanogenerators. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202307462
J.H. Shin, Y. Bin Kim, J.H. Park, J.S. Lee, S.H. Park et al., Light-material interfaces for self-powered optoelectronics. J. Mater. Chem. A 9, 25694 (2021). https://doi.org/10.1039/D1TA08892K
X. Xu, J. Zhang, Z. Zhang, G. Lu, W. Cao et al., All-covalent organic framework nanofilms assembled lithium-ion capacitor to solve the imbalanced charge storage kinetics. Nano-Micro Lett. 16, 116 (2024). https://doi.org/10.1007/s40820-024-01343-2
W. Shi, L. Zhang, R. Jing, Y. Huang, F. Chen et al., Moderate fields, maximum potential: achieving high records with temperature-stable energy storage in lead-free BNT-based ceramics. Nano-Micro Lett. 16, 91 (2024). https://doi.org/10.1007/s40820-023-01290-4
J. Ma, J. Qin, S. Zheng, Y. Fu, L. Chi et al., Hierarchically structured Nb2O5 microflowers with enhanced capacity and fast-charging capability for flexible planar sodium ion micro-supercapacitors. Nano-Micro Lett. 16, 67 (2024). https://doi.org/10.1007/s40820-023-01281-5
W. Fan, Q. Wang, K. Rong, Y. Shi, W. Peng et al., MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors. Nano-Micro Lett. 16, 36 (2023). https://doi.org/10.1007/s40820-023-01226-y
J. Nan, Y. Sun, F. Yang, Y. Zhang, Y. Li et al., Coupling of adhesion and anti-freezing properties in hydrogel electrolytes for low-temperature aqueous-based hybrid capacitors. Nano-Micro Lett. 16, 22 (2023). https://doi.org/10.1007/s40820-023-01229-9
L. Chen, H. Yu, J. Wu, S. Deng, H. Liu et al., Large energy capacitive high-entropy lead-free ferroelectrics. Nano-Micro Lett. 15, 65 (2023). https://doi.org/10.1007/s40820-023-01036-2
X. Xu, Z. Zhang, R. Xiong, G. Lu, J. Zhang et al., Bending resistance covalent organic framework superlattice: “nano-hourglass” -induced charge accumulation for flexible In-plane micro-supercapacitors. Nano-Micro Lett. 15, 25 (2022). https://doi.org/10.1007/s40820-022-00997-0
P. Meng, J. Huang, Z. Yang, M. Jiang, Y. Wang et al., Air-stable binary hydrated eutectic electrolytes with unique solvation structure for rechargeable aluminum-ion batteries. Nano-Micro Lett. 15, 188 (2023). https://doi.org/10.1007/s40820-023-01160-z
C. Bao, P. Tang, D. Sun, S. Zhou, Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2021). https://doi.org/10.1038/s42254-021-00388-1
K.W. Tan, B. Jung, J.G. Werner, E.R. Rhoades, M.O. Thompson et al., Transient laser heating induced hierarchical porous structures from block copolymer-directed self-assembly. Science 349, 54–58 (2015). https://doi.org/10.1126/science.aab0492
Y. Yuan, X. Li, L. Jiang, M. Liang, X. Zhang et al., Laser maskless fast patterning for multitype microsupercapacitors. Nat. Commun. 14, 3967 (2023). https://doi.org/10.1038/s41467-023-39760-3
X. Zang, C. Jian, T. Zhu, Z. Fan, W. Wang et al., Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications. Nat. Commun. 10, 3112 (2019). https://doi.org/10.1038/s41467-019-10999-z
M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis et al., Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5, e16133 (2016). https://doi.org/10.1038/lsa.2016.133
G.-T. Hwang, V. Annapureddy, J.H. Han, D.J. Joe, C. Baek et al., Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Adv. Energy Mater. 6, 1600237 (2016). https://doi.org/10.1002/aenm.201600237
J. Ding, Y. Zhou, W. Xu, F. Yang, D. Zhao et al., Ultraviolet-irradiated all-organic nanocomposites with polymer dots for high-temperature capacitive energy storage. Nano-Micro Lett. 16, 59 (2023). https://doi.org/10.1007/s40820-023-01230-2
J.H. Park, S. Han, D. Kim, B.K. You, D.J. Joe et al., Plasmonic-tuned flash Cu nanowelding with ultrafast photochemical-reducing and interlocking on flexible plastics. Adv. Funct. Mater. 27, 1701138 (2017). https://doi.org/10.1002/adfm.201701138
G.W. Shim, W. Hong, J.H. Cha, J.H. Park, K.J. Lee et al., TFT channel materials for display applications: from amorphous silicon to transition metal dichalcogenides. Adv. Mater. 32, e1907166 (2020). https://doi.org/10.1002/adma.201907166
D.J. Joe, S. Kim, J.H. Park, D.Y. Park, H.E. Lee et al., Laser–material interactions for flexible applications. Adv. Mater. 29, 1606586 (2017). https://doi.org/10.1002/adma.201606586
H. Park, J.J. Park, P. Bui, H. Yoon, C.P. Grigoropoulos et al., Laser-based selective material processing for next-generation additive manufacturing. Adv. Mater. (2023). https://doi.org/10.1002/adma.202307586
S. Song, H. Hong, K.Y. Kim, K.K. Kim, J. Kim et al., Photothermal lithography for realizing a stretchable multilayer electronic circuit using a laser. ACS Nano 17, 21443–21454 (2023). https://doi.org/10.1021/acsnano.3c06207
T.H. Im, D.Y. Park, H.K. Lee, J.H. Park, C.K. Jeong et al., Xenon flash lamp-induced ultrafast multilayer graphene growth. Part. Part. Syst. Charact. 34, 1600429 (2017). https://doi.org/10.1002/ppsc.201600429
J.H. Park, J. Seo, C. Kim, D.J. Joe, H.E. Lee et al., Flash-induced stretchable Cu conductor via multiscale-interfacial couplings. Adv. Sci. 5, 1801146 (2018). https://doi.org/10.1002/advs.201801146
H. Zhang, D. Yang, T. Ma, H. Lin, B. Jia, Flash-induced ultrafast production of graphene/MnO with extraordinary supercapacitance. Small Methods 5, e2100225 (2021). https://doi.org/10.1002/smtd.202100225
M.V. Shugaev, M. He, Y. Levy, A. Mazzi, A. Miotello et al.: Laser-induced thermal processes: heat transfer, generation of stresses, melting and solidification, vaporization, and phase explosion. In: Handbook of Laser Micro- and Nano-Engineering, pp. 83–163. Springer International Publishing, Cham, (2021), https://doi.org/10.1007/978-3-030-63647-0_11
M. Park, Y. Gu, X. Mao, C.P. Grigoropoulos, V. Zorba, Mechanisms of ultrafast GHz burst fs laser ablation. Sci. Adv. 9, eadf6397 (2023). https://doi.org/10.1126/sciadv.adf6397
J. Shin, J. Ko, S. Jeong, P. Won, Y. Lee et al., Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis. Nat. Mater. 20, 100–107 (2021). https://doi.org/10.1038/s41563-020-0769-6
J. Yin, L. Lan, Y. Zhang, H. Ni, Y. Tan et al., Nanosecond-resolution photothermal dynamic imaging via MHZ digitization and match filtering. Nat. Commun. 12, 7097 (2021). https://doi.org/10.1038/s41467-021-27362-w
S. Kim, J.H. Son, S.H. Lee, B.K. You, K.-I. Park et al., Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off. Adv. Mater. 26, 7480–7487 (2014). https://doi.org/10.1002/adma.201402472
C.K. Jeong, K.-I. Park, J.H. Son, G.-T. Hwang, S.H. Lee et al., Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ. Sci. 7, 4035–4043 (2014). https://doi.org/10.1039/c4ee02435d
C.K. Jeong, S.B. Cho, J.H. Han, D.Y. Park, S. Yang et al., Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. Nano Res. 10, 437–455 (2017). https://doi.org/10.1007/s12274-016-1304-6
J.H. Park, H.E. Lee, C.K. Jeong, D.H. Kim, S.K. Hong et al., Self-powered flexible electronics beyond thermal limits. Nano Energy 56, 531–546 (2019). https://doi.org/10.1016/j.nanoen.2018.11.077
B. Radfar, F. Es, R. Turan, Effects of different laser modified surface morphologies and post-texturing cleanings on c-Si solar cell performance. Renew. Energy 145, 2707–2714 (2020). https://doi.org/10.1016/j.renene.2019.08.031
J. Wang, L. Cao, S. Li, J. Xu, R. Xiao et al., Effect of laser-textured Cu foil with deep ablation on Si anode performance in Li-ion batteries. Nanomaterials 13, 2534 (2023). https://doi.org/10.3390/nano13182534
M.I. Sánchez, P. Delaporte, Y. Spiegel, B. Franta, E. Mazur et al., A laser-processed silicon solar cell with photovoltaic efficiency in the infrared. Phys. Status Solidi A 218, 2000550 (2021). https://doi.org/10.1002/pssa.202000550
E. Ravesio, A.H.A. Lutey, D. Versaci, L. Romoli, S. Bodoardo, Nanosecond pulsed laser texturing of Li-ion battery electrode current collectors: Electrochemical characterisation of cathode half-cells. Sustain. Mater. Technol. 38, e00751 (2023). https://doi.org/10.1016/j.susmat.2023.e00751
J.H. Park, S. Jeong, E.J. Lee, S.S. Lee, J.Y. Seok et al., Transversally extended laser plasmonic welding for oxidation-free copper fabrication toward high-fidelity optoelectronics. Chem. Mater. 28, 4151–4159 (2016). https://doi.org/10.1021/acs.chemmater.6b00013
H.S. Wang, T.H. Im, Y. Bin Kim, S.H. Sung, S. Min et al., Flash-welded ultraflat silver nanowire network for flexible organic light-emitting diode and triboelectric tactile sensor. Mater. 9, 061112 (2021). https://doi.org/10.1063/5.0051431
T. Sugiyama, H. Masuhara, Laser-induced crystallization and crystal growth. Chem. Asian J. 6, 2878–2889 (2011). https://doi.org/10.1002/asia.201100105
M. Smith, R. McMahon, M. Voelskow, D. Panknin, W. Skorupa, Modelling of flash-lamp-induced crystallization of amorphous silicon thin films on glass. J. Cryst. Growth 285, 249–260 (2005). https://doi.org/10.1016/j.jcrysgro.2005.08.033
K.K. Kim, I. Ha, P. Won, D.-G. Seo, K.-J. Cho et al., Transparent wearable three-dimensional touch by self-generated multiscale structure. Nat. Commun. 10, 2582 (2019). https://doi.org/10.1038/s41467-019-10736-6
J. Jais, J.H. Park, B. Kang, Additive manufacturing of digitally programmable hierarchical biomimetic surfaces for hydrodynamic informatics. Addit. Manuf. 76, 103763 (2023). https://doi.org/10.1016/j.addma.2023.103763
E. Gilshtein, S. Pfeiffer, M.D. Rossell, J. Sastre, L. Gorjan et al., Millisecond photonic sintering of iron oxide doped alumina ceramic coatings. Sci. Rep. 11, 3536 (2021). https://doi.org/10.1038/s41598-021-82896-9
H. Kong, J. Kwon, D. Paeng, W.J. Jung, S. Ghimire et al., Laser-induced crystalline-phase transformation for hematite nanorod photoelectrochemical cells. ACS Appl. Mater. Interfaces 12, 48917–48927 (2020). https://doi.org/10.1021/acsami.0c11999
K. Ohdaira, K. Sawada, N. Usami, S. Varlamov, H. Matsumura, Large-grain polycrystalline silicon films formed through flash-lamp-induced explosive crystallization. Jpn. J. Appl. Phys. 51, 10NB15 (2012). https://doi.org/10.1143/jjap.51.10nb15
H. Palneedi, J.H. Park, D. Maurya, M. Peddigari, G.T. Hwang et al., Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv. Mater. 30, e1705148 (2018). https://doi.org/10.1002/adma.201705148
H. Palneedi, D. Maurya, L.D. Geng, H.-C. Song, G.-T. Hwang et al., Enhanced self-biased magnetoelectric coupling in laser-annealed Pb(Zr, Ti)O3 thick film deposited on Ni foil. ACS Appl. Mater. Interf. 10, 11018–11025 (2018). https://doi.org/10.1021/acsami.7b16706
T.H. Im, J.H. Lee, H.S. Wang, S.H. Sung, Y. Bin Kim et al., Flashlight-material interaction for wearable and flexible electronics. Mater. Today 51, 525–551 (2021). https://doi.org/10.1016/j.mattod.2021.07.027
I.H. Kim, T.H. Im, H.E. Lee, J.S. Jang, H.S. Wang et al., Janus graphene liquid crystalline fiber with tunable properties enabled by ultrafast flash reduction. Small 15, e1901529 (2019). https://doi.org/10.1002/smll.201901529
I. Choi, H.Y. Jeong, D.Y. Jung, M. Byun, C.-G. Choi et al., Laser-induced solid-phase doped graphene. ACS Nano 8, 7671–7677 (2014). https://doi.org/10.1021/nn5032214
K. Lee, M. Park, K.G. Malollari, J. Shin, S.M. Winkler et al., Laser-induced graphitization of polydopamine leads to enhanced mechanical performance while preserving multifunctionality. Nat. Commun. 11, 4848 (2020). https://doi.org/10.1038/s41467-020-18654-8
J. Theerthagiri, K. Karuppasamy, S.J. Lee, R. Shwetharani, H.S. Kim et al., Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light Sci. Appl. 11, 250 (2022). https://doi.org/10.1038/s41377-022-00904-7
S. Song, S.-H. Um, J. Park, I. Ha, J. Lee et al., Rapid synthesis of multifunctional apatite via the laser-induced hydrothermal process. ACS Nano 16, 12840–12851 (2022). https://doi.org/10.1021/acsnano.2c05110
J.H. Shin, J.H. Park, J. Seo, T.H. Im, J.C. Kim et al., A flash-induced robust Cu electrode on glass substrates and its application for thin-film μLEDs. Adv. Mater. 33, e2007186 (2021). https://doi.org/10.1002/adma.202007186
T.H. Im, C.H. Lee, J.C. Kim, S. Kim, M. Kim et al., Metastable quantum dot for photoelectric devices via flash-induced one-step sequential self-formation. Nano Energy 84, 105889 (2021). https://doi.org/10.1016/j.nanoen.2021.105889
Bäuerle, D.: Material transformations, laser cleaning. In: Laser Processing and Chemistry. Berlin, Heidelberg: Springer, pp. 535–559, (2011). https://doi.org/10.1007/978-3-642-17613-5_23
C.P. Grigoropoulos, Transport in laser microfabrication: Fundamentals and applications (Cambridge University Press, Cambridge, UK, 2009)
T.R. Steele, D.C. Gerstenberger, A. Drobshoff, R.W. Wallace, Broadly tunable high-power operation of an all-solid-state titanium-doped sapphire laser system. Opt. Lett. 16, 399–401 (1991). https://doi.org/10.1364/ol.16.000399
S.A. Jalil, B. Lai, M. ElKabbash, J. Zhang, E.M. Garcell et al., Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices. Light Sci. Appl. 9, 14 (2020). https://doi.org/10.1038/s41377-020-0242-y
I. Choi, S.-J. Lee, J.C. Kim, Y.-G. Kim, D.Y. Hyeon et al., Piezoelectricity of picosecond laser-synthesized perovskite BaTiO3 nanops. Appl. Surf. Sci. 511, 145614 (2020). https://doi.org/10.1016/j.apsusc.2020.145614
S. Park, J. Park, Y.-G. Kim, S. Bae, T.-W. Kim et al., Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano Energy 78, 105266 (2020). https://doi.org/10.1016/j.nanoen.2020.105266
J.A. Spechler, K.A. Nagamatsu, J.C. Sturm, C.B. Arnold, Improved efficiency of hybrid organic photovoltaics by pulsed laser sintering of silver nanowire network transparent electrode. ACS Appl. Mater. Interfaces 7, 10556–10562 (2015). https://doi.org/10.1021/acsami.5b02203
D. Paeng, J.-H. Yoo, J. Yeo, D. Lee, E. Kim et al., Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation. Adv. Mater. 27, 2762–2767 (2015). https://doi.org/10.1002/adma.201500098
S.H. Ko, J. Chung, H. Pan, C.P. Grigoropoulos, D. Poulikakos, Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing. Sens. Actuat. A Phys. 134, 161–168 (2007). https://doi.org/10.1016/j.sna.2006.04.036
J. Long, M.H. Eliceiri, L. Wang, Z. Vangelatos, Y. Ouyang et al., Capturing the final stage of the collapse of cavitation bubbles generated during nanosecond laser ablation of submerged targets. Opt. Laser Technol. 134, 106647 (2021). https://doi.org/10.1016/j.optlastec.2020.106647
C. Grigoropoulos, M. Rogers, S.H. Ko, A.A. Golovin, B.J. Matkowsky, Explosive crystallization in the presence of melting. Phys. Rev. B 73, 184125 (2006). https://doi.org/10.1103/physrevb.73.184125
K.I. Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu et al., Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26, 2514–2520 (2014). https://doi.org/10.1002/adma.201305659
M.-Y. Pu, J.Z. Chen, Improved performance of dye-sensitized solar cells with laser-textured nanoporous TiO2 photoanodes. Mater. Lett. 66, 162–164 (2012). https://doi.org/10.1016/j.matlet.2011.08.022
D. He, J. Jin, Z. Yuan, L. Wang, Effect of ArF excimer laser annealing on morphology and surface plasmon resonance properties of Ag nanops. Appl. Phys. A 125, 423 (2019). https://doi.org/10.1007/s00339-019-2715-5
D. Angmo, T.T. Larsen-Olsen, M. Jørgensen, R.R. Søndergaard, F.C. Krebs, Roll-to-roll inkjet printing and photonic sintering of electrodes for ITO free polymer solar cell modules and facile product integration. Adv. Energy Mater. 3, 172–175 (2013). https://doi.org/10.1002/aenm.201200520
J.Y. Seok, S. Kim, I. Yang, J.H. Park, J. Lee et al., Strategically controlled flash irradiation on silicon anode for enhancing cycling stability and rate capability toward high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 15205–15215 (2021). https://doi.org/10.1021/acsami.0c22983
H.E. Lee, J.H. Park, D. Jang, J.H. Shin, T.H. Im et al., Optogenetic brain neuromodulation by stray magnetic field via flash-enhanced magneto-mechano-triboelectric nanogenerator. Nano Energy 75, 104951 (2020). https://doi.org/10.1016/j.nanoen.2020.104951
U. Okoroanyanwu, A. Bhardwaj, J.J. Watkins, Large area millisecond preparation of high-quality, few-layer graphene films on arbitrary substrates via xenon flash lamp photothermal pyrolysis and their application for high-performance micro-supercapacitors. ACS Appl. Mater. Interfaces 15, 13495–13507 (2023). https://doi.org/10.1021/acsami.2c19894
S. Gilje, S. Dubin, A. Badakhshan, J. Farrar, S.A. Danczyk et al., Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv. Mater. 22, 419–423 (2010). https://doi.org/10.1002/adma.200901902
T. Jeon, H.M. Jin, S.H. Lee, J.M. Lee, H.I. Park et al., Laser crystallization of organic–inorganic hybrid perovskite solar cells. ACS Nano 10, 7907–7914 (2016). https://doi.org/10.1021/acsnano.6b03815
S. Back, J.H. Park, B. Kang, Microsupercapacitive stone module for natural energy storage. ACS Nano 16, 11708–11719 (2022). https://doi.org/10.1021/acsnano.2c01753
J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye et al., Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014). https://doi.org/10.1038/ncomms6714
L. Xu, C.P. Grigoropoulos, T.-J. King, High-performance thin-silicon-film transistors fabricated by double laser crystallization. J. Appl. Phys. 99, 034508 (2006). https://doi.org/10.1063/1.2171807
G. Yuan, T. Wan, A. BaQais, Y. Mu, D. Cui et al., Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 212, 118101 (2023). https://doi.org/10.1016/j.carbon.2023.118101
M. Kim, M.G. Gu, H. Jeong, E. Song, J.W. Jeon et al., Laser scribing of fluorinated polyimide films to generate microporous structures for high-performance micro-supercapacitor electrodes. ACS Appl. Energy Mater. 4, 208–214 (2021). https://doi.org/10.1021/acsaem.0c02096
W. Liu, V.S. Turkani, V. Akhavan, B.A. Korgel, Photonic lift-off process to fabricate ultrathin flexible solar cells. ACS Appl. Mater. Interfaces 13, 44549–44555 (2021). https://doi.org/10.1021/acsami.1c12382
H. Palneedi, I. Choi, G.-Y. Kim, V. Annapureddy, D. Maurya et al., Tailoring the magnetoelectric properties of Pb(Zr, Ti)O3 film deposited on amorphous metglas foil by laser annealing. J. Am. Ceram. Soc. 99, 2680–2687 (2016). https://doi.org/10.1111/jace.14270
H. Palneedi, D. Maurya, G.-Y. Kim, V. Annapureddy, M.-S. Noh et al., Unleashing the full potential of magnetoelectric coupling in film heterostructures. Adv. Mater. 29, 1605688 (2017). https://doi.org/10.1002/adma.201605688
D. Paeng, J. Yeo, D. Lee, S.-J. Moon, C.P. Grigoropoulos, Laser wavelength effect on laser-induced photo-thermal sintering of silver nanops. Appl. Phys. A 120, 1229–1240 (2015). https://doi.org/10.1007/s00339-015-9320-z
I. Choi, H.Y. Jeong, H. Shin, G. Kang, M. Byun et al., Laser-induced phase separation of silicon carbide. Nat. Commun. 7, 13562 (2016). https://doi.org/10.1038/ncomms13562
A. Imparato, C. Minarini, A. Rubino, P. Tassini, F. Villani et al., Excimer laser induced crystallization of amorphous silicon on flexible polymer substrates. Thin Solid Films 487, 58–62 (2005). https://doi.org/10.1016/j.tsf.2005.01.035
M. Park, Z. Vangelatos, Y. Rho, H.K. Park, J. Jang et al., Comprehensive analysis of blue diode laser-annealing of amorphous silicon films. Thin Solid Films 696, 137779 (2020). https://doi.org/10.1016/j.tsf.2019.137779
B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996). https://doi.org/10.1007/BF01567637
H. Zhu, Z. Zhang, J. Zhou, K. Xu, D. Zhao et al., A computational study of heat transfer and material removal in picosecond laser micro-grooving of copper. Opt. Laser Technol. 137, 106792 (2021). https://doi.org/10.1016/j.optlastec.2020.106792
M. Park, J. Jeun, G. Han, C.P. Grigoropoulos, Time-resolved emission and scattering imaging of plume dynamics and nanop ejection in femtosecond laser ablation of silver thin films. Appl. Phys. Lett. 116, 234105 (2020). https://doi.org/10.1063/5.0009227
U. Okoroanyanwu, A. Bhardwaj, V. Einck, A. Ribbe, W. Hu et al., Rapid preparation and electrochemical energy storage applications of silicon carbide and silicon oxycarbide ceramic/carbon nanocomposites derived via flash photothermal pyrolysis of organosilicon preceramic polymers. Chem. Mater. 33, 678–694 (2021). https://doi.org/10.1021/acs.chemmater.0c04048
J. Park, S. Pramanick, D. Park, J. Yeo, J. Lee et al., Therapeutic-gas-responsive hydrogel. Adv. Mater. 29, 1702859 (2017). https://doi.org/10.1002/adma.201702859
H. Palneedi, D.R. Patil, S. Priya, K. Woo, J. Ye et al., Intense pulsed light thermal treatment of Pb(Zr, Ti)O3/metglas heterostructured films resulting in extreme magnetoelectric coupling of over 20 V cm-1 Oe-1. Adv. Mater. 35, e2303553 (2023). https://doi.org/10.1002/adma.202303553
S.J. Kim, H.E. Lee, H. Choi, Y. Kim, J.H. We et al., High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano 10, 10851–10857 (2016). https://doi.org/10.1021/acsnano.6b05004
S.C. Singh, M. ElKabbash, Z. Li, X. Li, B. Regmi et al., Solar-trackable super-wicking black metal panel for photothermal water sanitation. Nat. Sustain. 3, 938–946 (2020). https://doi.org/10.1038/s41893-020-0566-x
R.E. Russo, X. Mao, J.J. Gonzalez, V. Zorba, J. Yoo, Laser ablation in analytical chemistry. Anal. Chem. 85, 6162–6177 (2013). https://doi.org/10.1021/ac4005327
M. Peddigari, J.H. Park, J.H. Han, C.K. Jeong, J. Jang et al., Flexible self-charging, ultrafast, high-power-density ceramic capacitor system. ACS Energy Lett. 6, 1383–1391 (2021). https://doi.org/10.1021/acsenergylett.1c00170
L.-J. Huang, B.-J. Li, N.-F. Ren, Enhancing optical and electrical properties of Al-doped ZnO coated polyethylene terephthalate substrates by laser annealing using overlap rate controlling strategy. Ceram. Int. 42, 7246–7252 (2016). https://doi.org/10.1016/j.ceramint.2016.01.118
Y. Rho, K. Lee, L. Wang, C. Ko, Y. Chen et al., A laser-assisted chlorination process for reversible writing of doping patterns in graphene. Nat. Electron. 5, 505–510 (2022). https://doi.org/10.1038/s41928-022-00801-2
M.A. Al-Azawi, N. Bidin, Gold nanops synthesized by laser ablation in deionized water. Chinese J. Phys. 53, 080803 (2015). https://doi.org/10.6122/CJP.20150511B
S. Hopman, K. Mayer, A. Fell, M. Mesec, F. Granek, Laser cutting of silicon with the liquid jet guided laser using achlorine-containing jet media. Appl. Phys. A 102, 621–627 (2011). https://doi.org/10.1007/s00339-010-6155-5
B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao et al., High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum. Appl. Phys. A 119, 61–68 (2015). https://doi.org/10.1007/s00339-014-8955-5
J. Yeo, S. Hong, G. Kim, H. Lee, Y.D. Suh et al., Laser-induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design. ACS Nano 9, 6059–6068 (2015). https://doi.org/10.1021/acsnano.5b01125
S.H. Sung, Y.S. Kim, D.J. Joe, B.H. Mun, B.K. You et al., Flexible wireless powered drug delivery system for targeted administration on cerebral cortex. Nano Energy 51, 102–112 (2018). https://doi.org/10.1016/j.nanoen.2018.06.015
H.E. Lee, J. Choi, S.H. Lee, M. Jeong, J.H. Shin et al., Monolithic flexible vertical GaN light-emitting diodes for a transparent wireless brain optical Stimulator. Adv. Mater. 30, e1800649 (2018). https://doi.org/10.1002/adma.201800649
S. Min, D.H. Kim, D.J. Joe, B.W. Kim, Y.H. Jung et al., Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring. Adv. Mater. 35, e2301627 (2023). https://doi.org/10.1002/adma.202301627
H. Lee, W. Manorotkul, J. Lee, J. Kwon, Y.D. Suh et al., Nanowire-on-nanowire: all-nanowire electronics by on-demand selective integration of hierarchical heterogeneous nanowires. ACS Nano 11, 12311–12317 (2017). https://doi.org/10.1021/acsnano.7b06098
H.R. Lim, H.S. Kim, R. Qazi, Y.T. Kwon, J.W. Jeong et al., Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32, e1901924 (2020). https://doi.org/10.1002/adma.201901924
M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013). https://doi.org/10.1038/ncomms2446
J. Lee, T.T. Nguyen, J. Bae, G. Jo, Y. Lee et al., 5.8-inch QHD flexible AMOLED display with enhanced bendability of LTPS TFTs. J. Soc. Inf. Disp. 26, 200–207 (2018). https://doi.org/10.1002/jsid.655
E. Singh, P. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics. ACS Appl. Mater. Interfaces 11, 11061–11105 (2019). https://doi.org/10.1021/acsami.8b19859
S. Han, S. Hong, J. Ham, J. Yeo, J. Lee et al., Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 26, 5808–5814 (2014). https://doi.org/10.1002/adma.201400474
S.-G. Kwon, S. Back, J.E. Park, B. Kang, Laser filament bottom-up growth sintering for multi-planar diffraction-limit printing and its application to ultra-transparent wearable thermo-electronics. J. Mater. Chem. C 6, 7759–7766 (2018). https://doi.org/10.1039/c8tc01915k
C. Huang, S. Zhang, H. Liu, Y. Li, G. Cui et al., Graphdiyne for high capacity and long-life lithium storage. Nano Energy 11, 481–489 (2015). https://doi.org/10.1016/j.nanoen.2014.11.036
J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde et al., Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014). https://doi.org/10.1021/nl500390f
J. Perelaer, R. Abbel, S. Wünscher, R. Jani, T. van Lammeren et al., Roll-to-roll compatible sintering of inkjet printed features by photonic and microwave exposure: from non-conductive ink to 40% bulk silver conductivity in less than 15 seconds. Adv. Mater. 24, 2620–2625 (2012). https://doi.org/10.1002/adma.201104417
W.J. Hyun, E.B. Secor, G.A. Rojas, M.C. Hersam, L.F. Francis et al., All-printed, foldable organic thin-film transistors on glassine paper. Adv. Mater. 27, 7058–7064 (2015). https://doi.org/10.1002/adma.201503478
K. Tetzner, Y.-H. Lin, A. Regoutz, A. Seitkhan, D.J. Payne et al., Sub-second photonic processing of solution-deposited single layer and heterojunction metal oxide thin-film transistors using a high-power xenon flash lamp. J. Mater. Chem. C 5, 11724–11732 (2017). https://doi.org/10.1039/C7TC03721J
A.D. Wright, R.L. Milot, G.E. Eperon, H.J. Snaith, M.B. Johnston et al., Band-tail recombination in hybrid lead iodide perovskite. Adv. Funct. Mater. 27, 1700860 (2017). https://doi.org/10.1002/adfm.201700860
E. Yarali, C. Koutsiaki, H. Faber, K. Tetzner, E. Yengel et al., Recent progress in photonic processing of metal-oxide transistors. Adv. Funct. Mater. 30, 1906022 (2020). https://doi.org/10.1002/adfm.201906022
H.M. Jin, D.Y. Park, S.J. Jeong, G.Y. Lee, J.Y. Kim et al., Flash light millisecond self-assembly of high χ block copolymers for wafer-scale sub-10 nm nanopatterning. Adv. Mater. 29, 1700595 (2017). https://doi.org/10.1002/adma.201700595
M. Peddigari, K. Woo, S.-D. Kim, M.S. Kwak, J.W. Jeong et al., Ultra-magnetic field sensitive magnetoelectric composite with sub-pT detection limit at low frequency enabled by flash photon annealing. Nano Energy 90, 106598 (2021). https://doi.org/10.1016/j.nanoen.2021.106598
D.H. Jung, J.H. Park, H.E. Lee, J. Byun, T.H. Im et al., Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes. Nano Energy 61, 236–244 (2019). https://doi.org/10.1016/j.nanoen.2019.04.061
Y. Li, J.T. Han, C.A. Wang, H. Xie, J.B. Goodenough, Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 22, 15357–15361 (2012). https://doi.org/10.1039/C2JM31413D
R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007). https://doi.org/10.1002/anie.200701144
V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014). https://doi.org/10.1039/C4CS00020J
J.L. Allen, J. Wolfenstine, E. Rangasamy, J. Sakamoto, Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J. Power. Sources 206, 315–319 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.131
Z. Gao, Y. Bai, H. Fu, J. Yang, T. Ferber, J. Feng, W. Jaegermann, Y. Huang, Interphase formed at Li6.4La3Zr1.4Ta0.6O12/Li interface enables cycle stability for solid-state batteries. Adv. Funct. Mater. 32, 2112113 (2022). https://doi.org/10.1002/adfm.202112113
F. Shen, W. Guo, D. Zeng, Z. Sun, J. Gao et al., A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte. ACS Appl. Mater. Interfaces 12, 30313–30319 (2020). https://doi.org/10.1021/acsami.0c04850
C. Zhang, R. Huang, P. Wang, Y. Wang, Z. Zhou et al., Highly compressible, thermally conductive, yet electrically insulating fluorinated graphene aerogel. ACS Appl. Mater. Interfaces 12, 58170–58178 (2020). https://doi.org/10.1021/acsami.0c19628
Y. Wang, P. Yan, J. Xiao, D. Deng, X. Lu et al., Materials selection and chemistry development for redox flow batteries. Meet. Abstr. 0MA2016-03, 425 (2016). https://doi.org/10.1149/ma2016-03/2/425
X. Huang, T. Xiu, M.E. Badding, Z. Wen, Two-step sintering strategy to prepare dense Li-Garnet electrolyte ceramics with high Li+ conductivity. Ceram. Int. 44, 5660–5667 (2018). https://doi.org/10.1016/j.ceramint.2017.12.217
Z. Huang, K. Liu, L. Chen, Y. Lu, Y. Li et al., Sintering behavior of garnet-type Li6.4La3Zr1.4Ta0.6O12 in Li2CO3 atmosphere and its electrochemical property. Int. J. Appl. Ceram. Technol. 14, 921 (2017). https://doi.org/10.1111/ijac.12735
X. Huang, C. Shen, K. Rui, J. Jin, M. Wu et al., Influence of La2Zr2O7 additive on densification and Li+ conductivity for Ta-doped Li7La3Zr2O12 garnet. JOM 68, 2593–2600 (2016). https://doi.org/10.1007/s11837-016-2065-0
Y. Ren, H. Deng, R. Chen, Y. Shen, Y. Lin et al., Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics. J. Eur. Ceram. Soc. 35, 561–572 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.09.007
M. Wood, X. Gao, R. Shi, T.W. Heo, J. Ali Espitia et al., Exploring the relationship between solvent-assisted ball milling, p size, and sintering temperature in garnet-type solid electrolytes. J. Power. Sources 484, 229252 (2021). https://doi.org/10.1016/j.jpowsour.2020.229252
X. Huang, Y. Lu, Z. Song, T. Xiu, M.E. Badding et al., Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte: Sintering, microstructure, performance and the role of MgO. J. Energy Chem. 39, 8–16 (2019). https://doi.org/10.1016/j.jechem.2019.01.013
E. Ramos, A. Browar, J. Roehling, J. Ye, CO2 laser sintering of garnet-type solid-state electrolytes. ACS Energy Lett. 7, 3392–3400 (2022). https://doi.org/10.1021/acsenergylett.2c01630
K.A. Acord, A.D. Dupuy, U. Scipioni Bertoli, B. Zheng, W.C. West et al., Morphology, microstructure, and phase states in selective laser sintered lithium ion battery cathodes. J. Mater. Process. Technol. 288, 116827 (2021). https://doi.org/10.1016/j.jmatprotec.2020.116827
A. Ishii, H. Huang, Y. Meng, S. Mu, J. Gao et al., Chemically inert hydrocarbon-based slurries for rapid laser sintering of thin proton-conducting ceramics. Mater. Res. Bull. 143, 111446 (2021). https://doi.org/10.1016/j.materresbull.2021.111446
L. Ming, H. Yang, W. Zhang, X. Zeng, D. Xiong et al., Selective laser sintering of TiO2 nanop film on plastic conductive substrate for highly efficient flexible dye-sensitized solar cell application. J. Mater. Chem. A 2, 4566–4573 (2014). https://doi.org/10.1039/C3TA14210H
Y. Pang, Y. Cao, Y. Chu, M. Liu, K. Snyder et al., Additive manufacturing of batteries. Adv. Funct. Mater. 30, 1906244 (2020). https://doi.org/10.1002/adfm.201906244
C. Zuo, S. Zha, M. Liu, M. Hatano, M. Uchiyama, Ba(Zr0.1Ce0.7Y0.2)O3–δ as an electrolyte for low-temperature solid-oxide fuel cells. Adv. Mater. 18, 3318–3320 (2006). https://doi.org/10.1002/adma.200601366
L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu et al., Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3-δ. Science 326, 126 (2009). https://doi.org/10.1126/science.1174811
A. Ishii, S. Mu, Y. Meng, H. Huang, J. Lei et al., Rapid laser processing of thin Sr-doped LaCrO3–δ interconnects for solid oxide fuel cells. Energy Technol. 8, 2000364 (2020). https://doi.org/10.1002/ente.202000364
M. Pagliaro, R. Ciriminna, G. Palmisano, Flexible solar cells. ChemSusChem 1, 880–891 (2008). https://doi.org/10.1002/cssc.200800127
S. Zhang, X. Yang, Y. Numata, L. Han, Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ. Sci. 6, 1443–1464 (2013). https://doi.org/10.1039/C3EE24453A
T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Sol. Energy Mater. Sol. Cells 94, 812–816 (2010). https://doi.org/10.1016/j.solmat.2009.12.029
A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran et al., Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011). https://doi.org/10.1126/science.1209688
W. Gao, N. Singh, L. Song, Z. Liu, A.L.M. Reddy et al., Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 6, 496–500 (2011). https://doi.org/10.1038/nnano.2011.110
H. Wang, Y. Diao, Y. Lu, H. Yang, Q. Zhou et al., Energy storing bricks for stationary PEDOT supercapacitors. Nat. Commun. 11, 3882 (2020). https://doi.org/10.1038/s41467-020-17708-1
S.-J. Choi, S.-J. Kim, J.-S. Jang, J.-H. Lee, I.-D. Kim, Silver nanowire embedded colorless polyimide heater for wearable chemical sensors: improved reversible reaction kinetics of optically reduced graphene oxide. Small 12, 5826–5835 (2016). https://doi.org/10.1002/smll.201602230
J. Jang, B.G. Hyun, S. Ji, E. Cho, B.W. An et al., Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Mater 9, e432 (2017). https://doi.org/10.1038/am.2017.172
S.-J. Choi, S.-J. Kim, I.-D. Kim, Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors. NPG Asia Mater. 8, 315 (2016). https://doi.org/10.1038/am.2016.150
Illgen, R., Flachowsky, S., Herrmann, T., Feudel, T., Thron, D. et al.: In: 2009 10th International Conference on Ultimate Integration of Silicon (IEEE, 2009), pp. 157–160.
Borland, J.O.: 32nm node USJ implant & annealing options. In 2007 15th International Conference on Advanced Thermal Processing of Semiconductors (IEEE, 2007), pp. 181–189.
Colombeau, B., Yeong, S.H., Tan, D.X.M., Smith, A.J., Gwilliam, R.M. et al.: Ultra-shallow junction formation-physics and advanced technology. In: AIP Conference of Proceedings (AIP, 2008), pp. 11–18.
Y. Chen, K. Denis, P. Kazlas, P. Drzaic, 122: a conformable electronic ink display using a foil-based a-Si TFT array. SID Symp. Dig. Tech. Pap. 32, 157–159 (2001). https://doi.org/10.1889/1.1831820
R.A. Matula, Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 8, 1147 (1979). https://doi.org/10.1063/1.555614
Edelstein, D., Heidenreich, J., Goldblatt, R., Cote, W., Uzoh, C. et al.: Full copper wiring in a sub-0.25 μm CMOS ULSI technology. In: International Electron Devices Meeting. IEDM Technical Digest (IEEE, n.d.), pp. 773–776.
M.D. Susman, Y. Feldman, A. Vaskevich, I. Rubinstein, Chemical deposition and stabilization of plasmonic copper nanop films on transparent substrates. Chem. Mater. 24, 2501–2508 (2012). https://doi.org/10.1021/cm300699f
S.-I. Park, Y. Xiong, R.-H. Kim, P. Elvikis, M. Meitl et al., Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009). https://doi.org/10.1126/science.1175690
L. Tan, Q. Zhou, H. Wang, R. Yao, Characteristics of micro LEDs with snowflake p-electrode and composite textured sidewalls. IEEE Photonics Technol. Lett. 31, 1705–1708 (2019). https://doi.org/10.1109/LPT.2019.2942690
P.-T. Liu, Y.-T. Chou, C.-Y. Su, H.-M. Chen, Using electroless plating Cu technology for TFT-LCD application. Surf. Coat. Technol. 205, 1497–1501 (2010). https://doi.org/10.1016/j.surfcoat.2010.10.011
M. Abbott, J. Cotter, Optical and electrical properties of laser texturing for high-efficiency solar cells. Prog. Photovolt. Res. Appl. 14, 225–235 (2006). https://doi.org/10.1002/pip.667
D. Canteli, I. Torres, S. Fernández, J.D. Santos, M. Morales et al., Photon-collection improvement from laser-textured AZO front-contact in thin-film solar cells. Appl. Surf. Sci. 463, 775–780 (2019). https://doi.org/10.1016/j.apsusc.2018.08.267
Y. Zhang, G. Cai, Y. Gu, L. Ge, Y. Zheng et al., Modifying the electrode-electrolyte interface of anode supported solid oxide fuel cells (SOFCs) by laser-machining. Energy Convers. Manag. 171, 1030–1037 (2018). https://doi.org/10.1016/j.enconman.2018.06.044
M. Kedia, M. Rai, H. Phirke, C.A. Aranda, C. Das et al., Light makes right: laser polishing for surface modification of perovskite solar cells. ACS Energy Lett. 8, 2603–2610 (2023). https://doi.org/10.1021/acsenergylett.3c00469
D. Kim, I.-W. Tcho, I.K. Jin, S.-J. Park, S.-B. Jeon et al., Direct-laser-patterned friction layer for the output enhancement of a triboelectric nanogenerator. Nano Energy 35, 379–386 (2017). https://doi.org/10.1016/j.nanoen.2017.04.013
K.-W. Lim, M. Peddigari, C.H. Park, H.Y. Lee, Y. Min et al., A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble nano-bullets for powering a wireless indoor positioning system. Energy Environ. Sci. 12, 666–674 (2019). https://doi.org/10.1039/c8ee03008a
M.S. Kwak, K.W. Lim, H.Y. Lee, M. Peddigari, J. Jang et al., Multiscale surface modified magneto-mechano-triboelectric nanogenerator enabled by eco-friendly NaCl imprinting stamp for self-powered IoT applications. Nanoscale 13, 8418–8424 (2021). https://doi.org/10.1039/d1nr01336j
R. Ye, Y. Chyan, J. Zhang, Y. Li, X. Han et al., Laser-induced graphene formation on wood. Adv. Mater. 29, 1702211 (2017). https://doi.org/10.1002/adma.201702211
Y. Chyan, R. Ye, Y. Li, S.P. Singh, C.J. Arnusch et al., Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12, 2176–2183 (2018). https://doi.org/10.1021/acsnano.7b08539
H. Zhu, Z. Zhang, Z. Zhang, J. Lu, K. Xu et al., Localized fabrication of flexible graphene-copper composites via a combined ultrafast laser irradiation and electrodeposition technique. J. Manuf. Process. 108, 395–407 (2023). https://doi.org/10.1016/j.jmapro.2023.10.085
J.S. Lee, J.W. Kim, J.H. Lee, Y.K. Son, Y.B. Kim et al., Flash-induced high-throughput porous graphene via synergistic photo-effects for electromagnetic interference shielding. Nano-Micro Lett. 15, 191 (2023). https://doi.org/10.1007/s40820-023-01157-8
M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012). https://doi.org/10.1126/science.1216744
Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li et al., Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 9, 5868–5875 (2015). https://doi.org/10.1021/acsnano.5b00436
Y. Yuan, L. Jiang, X. Li, P. Zuo, C. Xu et al., Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat. Commun. 11, 6185 (2020). https://doi.org/10.1038/s41467-020-19985-2
F. Zhang, E. Alhajji, Y. Lei, N. Kurra, H.N. Alshareef, Highly doped 3D graphene Na-ion battery anode by laser scribing polyimide films in nitrogen ambient. Adv. Energy Mater. 8, 1800353 (2018). https://doi.org/10.1002/aenm.201800353
W. Ma, S. Chen, S. Yang, W. Chen, W. Weng et al., Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon 113, 151–158 (2017). https://doi.org/10.1016/j.carbon.2016.11.051
X. Wang, F. Wan, L. Zhang, Z. Zhao, Z. Niu et al., Large-area reduced graphene oxide composite films for flexible asymmetric sandwich and microsized supercapacitors. Adv. Funct. Mater. 28, 1707247 (2018). https://doi.org/10.1002/adfm.201707247
S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide: MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822–2830 (2010). https://doi.org/10.1021/nn901311t
H. Zhu, C. Wang, S. Mao, Z. Zhang, D. Zhao et al., Localized and efficient machining of germanium based on the auto-coupling between picosecond laser irradiation and electrochemical dissolution: Mechanism validation and surface characterization. J. Manuf. Process. 77, 665–677 (2022). https://doi.org/10.1016/j.jmapro.2022.03.050
H. Zhu, M. Zhang, W. Ren, V. Saetang, J. Lu et al., Laser-induced localized and maskless electrodeposition of micro-copper structure on silicon surface: Simulation and experimental study. Opt. Laser Technol. 170, 110315 (2024). https://doi.org/10.1016/j.optlastec.2023.110315
Q. Wu, Y. Li, Y. Yang, Y. Zhao, A photolithography process design for 5 nm logic process flow. J. Microelectron. Manuf. 2, 1–8 (2019). https://doi.org/10.33079/jomm.19020408
G. Tallents, E. Wagenaars, G. Pert, Lithography at EUV wavelengths. Nat. Photonics 4, 809–811 (2010). https://doi.org/10.1038/nphoton.2010.277
K. Kim, H.-E. Kim, I.-H. Lee, J.-S. Kim, J.-S. Chun et al., in Proceedings of SPIE 2440, Optical/Laser Microlithography VIII, ed. by T. A. Brunner (1995), pp. 76–87.
J. Yun, M. Yang, B. Kang, Laser sweeping lithography: parallel bottom-up growth sintering of a nanoseed–organometallic hybrid suspension for ecofriendly mass production of electronics. ACS Sustain. Chem. Eng. 6, 4940–4947 (2018). https://doi.org/10.1021/acssuschemeng.7b04468
Y.S. Rim, H. Chen, Y. Liu, S.H. Bae, H.J. Kim et al., Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics. ACS Nano 8, 9680–9686 (2014). https://doi.org/10.1021/nn504420r
I. Bretos, R. Jiménez, A. Wu, A.I. Kingon, P.M. Vilarinho et al., Activated solutions enabling low-temperature processing of functional ferroelectric oxides for flexible electronics. Adv. Mater. 26, 1405–1409 (2014). https://doi.org/10.1002/adma.201304308
L.J. Cote, R. Cruz-Silva, J. Huang, Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 131, 11027–11032 (2009). https://doi.org/10.1021/ja902348k
S. Yoo, S.Y. Jeong, J.-W. Lee, J.H. Park, D.-W. Kim et al., Heavily nitrogen doped chemically exfoliated graphene by flash heating. Carbon 144, 675–683 (2019). https://doi.org/10.1016/j.carbon.2018.12.090
J. Kim, M. Kim, H. Jung, J. Park, Y. Lee, Ultrastable 2D material-wrapped copper nanowires for high-performance flexible and transparent energy devices. Nano Energy 106, 108067 (2023). https://doi.org/10.1016/j.nanoen.2022.108067
D.-H. Kim, J.-H. Cha, S. Chong, S.-H. Cho, H. Shin et al., Flash-thermal shock synthesis of single atoms in ambient air. ACS Nano 17, 23347–23358 (2023). https://doi.org/10.1021/acsnano.3c02968
L.T. Duy, R.B. Ali, Q.A. Sial, H. Seo, Green synthesis of carbon and cobalt oxide composites by 1–Watt laser sintering for flexible supercapacitors. Ceram. Int. 49, 13131–13139 (2023). https://doi.org/10.1016/j.ceramint.2022.12.191
T.-F. Hung, Z.-W. Yin, S.B. Betzler, W. Zheng, J. Yang et al., Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors. Chem. Eng. J. 367, 115–122 (2019). https://doi.org/10.1016/j.cej.2019.02.136
J. Sourice, A. Quinsac, Y. Leconte, O. Sublemontier, W. Porche et al., One-step synthesis of Si@C nanops by laser pyrolysis: high-capacity anode material for lithium-ion batteries. ACS Appl. Mater. Interf. 7, 6637 (2015). https://doi.org/10.1021/am5089742
J. Zhao, Y. Wang, Z. Zhang, Z. Zhu, S. Zeng et al., Biomineralization-inspired synthesis of hybrid COF nanosheets toward efficient desalination membranes. Small 20, e2310566 (2024). https://doi.org/10.1002/smll.202310566
W.O. Silva, V. Costa Bassetto, D. Baster, M. Mensi, E. Oveisi et al., Oxidative print light synthesis thin film deposition of prussian blue. ACS Appl. Electron. Mater. 2, 927 (2020). https://doi.org/10.1021/acsaelm.9b00854
F. Wang, Z. Guo, Z. Wang, H. Zhu, G. Zhao et al., Laser-induced transient self-organization of TiNx nano-filament percolated networks for high performance surface-mountable filter capacitors. Adv. Mater. 35, e2210038 (2023). https://doi.org/10.1002/adma.202210038
D.Y. Park, D.J. Joe, D.H. Kim, H. Park, J.H. Han et al., Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 29, 1702308 (2017). https://doi.org/10.1002/adma.201702308
H.S. Wang, S.K. Hong, J.H. Han, Y.H. Jung, H.K. Jeong et al., Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 7, eabe5683 (2021). https://doi.org/10.1126/sciadv.abe5683
L.J. Wang, M.F. El-Kady, S. Dubin, J.Y. Hwang, Y. Shao et al., Flash converted graphene for ultra-high power supercapacitors. Adv. Energy Mater. 5, 1500786 (2015). https://doi.org/10.1002/aenm.201500786
H.S. Lee, J. Chung, G.-T. Hwang, C.K. Jeong, Y. Jung et al., Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv. Funct. Mater. 24, 6914–6921 (2014). https://doi.org/10.1002/adfm.201402270
K. Mizutari, M. Fujioka, M. Hosoya, N. Bramhall, H.J. Okano et al., Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron 77, 58 (2013). https://doi.org/10.1016/j.neuron.2012.10.032