Flash-Induced High-Throughput Porous Graphene via Synergistic Photo-Effects for Electromagnetic Interference Shielding
Corresponding Author: Keon Jae Lee
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 191
Abstract
Porous 2D materials with high conductivity and large surface area have been proposed for potential electromagnetic interference (EMI) shielding materials in future mobility and wearable applications to prevent signal noise, transmission inaccuracy, system malfunction, and health hazards. Here, we report on the synthesis of lightweight and flexible flash-induced porous graphene (FPG) with excellent EMI shielding performance. The broad spectrum of pulsed flashlight induces photo-chemical and photo-thermal reactions in polyimide films, forming 5 × 10 cm2-size porous graphene with a hollow pillar structure in a few milliseconds. The resulting material demonstrated low density (0.0354 g cm−3) and outstanding absolute EMI shielding effectiveness of 1.12 × 105 dB cm2 g−1. The FPG was characterized via thorough material analyses, and its mechanical durability and flexibility were confirmed by a bending cycle test. Finally, the FPG was utilized in drone and wearable applications, showing effective EMI shielding performance for internal/external EMI in a drone radar system and reducing the specific absorption rate in the human body.
Highlights:
1 Flash-induced porous graphene (FPG) was synthesized via a broad-spectrum flash lamp that induced synergistic photo-effects between ultraviolet and visible-near-infrared wavelengths, resulting in large-area synthesis in just a few milliseconds.
2 A hollow pillar graphene with low sheet resistance of 18 Ω sq−1 was produced, exhibiting low density (0.0354 g cm−3) and outstanding absolute electromagnetic interference shielding effectiveness of 1.12 × 105 dB cm2 g−1.
3 A lightweight, flexible, and high-throughput FPG is applied for electromagnetic interference shielding of a drone radar system and the human body.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.S. Wang, S.K. Hong, J.H. Han, Y.H. Jung, H.K. Jeong et al., Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 7, eabe5683 (2021). https://doi.org/10.1126/sciadv.abe5683
- H.E. Lee, S.H. Lee, M. Jeong, J.H. Shin, Y. Ahn et al., Trichogenic photostimulation using monolithic flexible vertical AlGaInP light-emitting diodes. ACS Nano 12, 9587–9595 (2018). https://doi.org/10.1021/acsnano.8b05568
- J.H. Han, J.H. Kwak, D.J. Joe, S.K. Hong, H.S. Wang et al., Basilar membrane-inspired self-powered acoustic sensor enabled by highly sensitive multi tunable frequency band. Nano Energy 53, 198–205 (2018). https://doi.org/10.1016/j.nanoen.2018.08.053
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- L. Hardell, M. Carlberg, F. Soderqvist, K.H. Mild, L.L. Morgan, Long-term use of cellular phones and brain tumours: increased risk associated with use for > or =10 years. Occup. Environ. Med. 64, 626–632 (2007). https://doi.org/10.1136/oem.2006.029751
- G. Redlarski, B. Lewczuk, A. Zak, A. Koncicki, M. Krawczuk et al., The influence of electromagnetic pollution on living organisms: historical trends and forecasting changes. Biomed. Res. Int. 2015, 234098 (2015). https://doi.org/10.1155/2015/234098
- S. Geetha, K.K.S. Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: methods and materials-a review. J. Appl. Polym. Sci. 112, 2073–2086 (2009). https://doi.org/10.1002/app.29812
- Y.D. Xu, Z.Q. Lin, K. Rajavel, T. Zhao, P.L. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 29 (2022). https://doi.org/10.1007/s40820-021-00766-5
- J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces 9, 44609–44616 (2017). https://doi.org/10.1021/acsami.7b14626
- S.S. Tzeng, F.Y. Chang, EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites. Mater. Sci. Eng. A 302, 258–267 (2001). https://doi.org/10.1016/S0921-5093(00)01824-4
- R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti(3)C(2)T(x) MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
- X. Jia, B. Shen, L. Zhang, W. Zheng, Construction of compressible polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 173, 932–940 (2021). https://doi.org/10.1016/j.carbon.2020.11.036
- N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
- H.B. Zhang, Q. Yan, W.G. Zheng, Z. He, Z.Z. Yu, Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3, 918–924 (2011). https://doi.org/10.1021/am200021v
- W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014). https://doi.org/10.1016/j.carbon.2013.08.043
- F.X. Bu, M.M. Zagho, Y. Ibrahim, B. Ma, A. Elzatahry et al., Porous MXenes: synthesis, structures, and applications. Nano Today 30, 100803 (2020). https://doi.org/10.1016/j.nantod.2019.100803
- H.J. Liu, C.Z. Liang, J.J. Chen, Y.W. Huang, F. Cheng et al., Novel 3D network porous graphene nanoplatelets/Fe3O4/epoxy nanocomposites with enhanced electromagnetic interference shielding efficiency. Compos. Sci. Technol. 169, 103–109 (2019). https://doi.org/10.1016/j.compscitech.2018.11.005
- M. Huang, C. Wang, L. Quan, T.H.Y. Nguyen, H. Zhang et al., CVD growth of porous graphene foam in film form. Matter 3, 487–497 (2020). https://doi.org/10.1016/j.matt.2020.06.012
- D.G. Lai, X.X. Chen, Y. Wang, Controllable fabrication of elastomeric and porous graphene films with superior foldable behavior and excellent electromagnetic interference shielding performance. Carbon 158, 728–737 (2020). https://doi.org/10.1016/j.carbon.2019.11.047
- J. Shin, J. Ko, S. Jeong, P. Won, Y. Lee et al., Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis. Nat. Mater. 20, 100–107 (2021). https://doi.org/10.1038/s41563-020-0769-6
- I. Choi, H.Y. Jeong, H. Shin, G. Kang, M. Byun et al., Laser-induced phase separation of silicon carbide. Nat. Commun. 7, 13562 (2016). https://doi.org/10.1038/ncomms13562
- T.S.D. Le, H.P. Phan, S. Kwon, S. Park, Y. Jung et al., Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Adv. Funct. Mater. 32, 2205158 (2022). https://doi.org/10.1002/adfm.202205158
- I.H. Kim, T.H. Im, H.E. Lee, J.S. Jang, H.S. Wang et al., Janus graphene liquid crystalline fiber with tunable properties enabled by ultrafast flash reduction. Small 15, e1901529 (2019). https://doi.org/10.1002/smll.201901529
- T.H. Im, J.H. Lee, H.S. Wang, S.H. Sung, Y.B. Kim et al., Flashlight-material interaction for wearable and flexible electronics. Mater. Today 51, 525–551 (2021). https://doi.org/10.1016/j.mattod.2021.07.027
- J.H. Park, S. Han, D. Kim, B.K. You, D.J. Joe et al., Plasmonic-tuned flash Cu nanowelding with ultrafast photochemical-reducing and interlocking on flexible plastics. Adv. Funct. Mater. 27, 1701138 (2017). https://doi.org/10.1002/adfm.201701138
- J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye et al., Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014). https://doi.org/10.1038/ncomms6714
- J. Zhu, X. Huang, W. Song, Physical and chemical sensors on the basis of laser-induced graphene: mechanisms, applications, and perspectives. ACS Nano 15, 18708–18741 (2021). https://doi.org/10.1021/acsnano.1c05806
- Z.C. Zhang, M.M. Song, J.X. Hao, K.B. Wu, C.Y. Li et al., Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 127, 287–296 (2018). https://doi.org/10.1016/j.carbon.2017.11.014
- W.L. Zhang, Y.J. Lei, F.W. Ming, Q. Jiang, P.M.F.J. Costa et al., Lignin laser lithography: a direct-write method for fabricating 3D graphene electrodes for microsupercapacitors. Adv. Energy Mater. 8, 1801840 (2018). https://doi.org/10.1002/aenm.201801840
- G. Wang, Y. Zhao, F. Yang, Y. Zhang, M. Zhou et al., Multifunctional integrated transparent film for efficient electromagnetic protection. Nano-Micro Lett. 14, 65 (2022). https://doi.org/10.1007/s40820-022-00810-y
- L. Huang, Y. Liu, L.C. Ji, Y.Q. Xie, T. Wang et al., Pulsed laser assisted reduction of graphene oxide. Carbon 49, 2431–2436 (2011). https://doi.org/10.1016/j.carbon.2011.01.067
- J.H. Park, H.E. Lee, C.K. Jeong, D.H. Kim, S.K. Hong et al., Self-powered flexible electronics beyond thermal limits. Nano Energy 56, 531–546 (2019). https://doi.org/10.1016/j.nanoen.2018.11.077
- D.X. Luong, A.K. Subramanian, G.A.L. Silva, J. Yoon, S. Cofer et al., Laminated object manufacturing of 3D-printed laser-induced graphene foams. Adv. Mater. 30, e1707416 (2018). https://doi.org/10.1002/adma.201707416
- S.J. Kim, H.E. Lee, H. Choi, Y. Kim, J.H. We et al., High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano 10, 10851–10857 (2016). https://doi.org/10.1021/acsnano.6b05004
- J.H. Shin, J.H. Park, J. Seo, T.H. Im, J.C. Kim et al., A flash-induced robust cu electrode on glass substrates and its application for thin-film muLEDs. Adv. Mater. 33, e2007186 (2021). https://doi.org/10.1002/adma.202007186
- Z. Wang, J.E. Alaniz, W. Jang, J.E. Garay, C. Dames, Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. Nano Lett. 11, 2206–2213 (2011). https://doi.org/10.1021/nl1045395
- G. Poulain, D. Blanc, Y. Pellegrin, M. Lemitia, Finite element simulation of laser-induced diffusion in silicon. Proc. Siliconpv. 2011 Conf. 8, 587–591 (2011). https://doi.org/10.1016/j.egypro.2011.06.187
- S.H. Ryu, B. Park, Y.K. Han, S.J. Kwon, T. Kim et al., Electromagnetic wave shielding flexible films with near-zero reflection in the 5G frequency band. J. Mater. Chem. A 10, 4446–4455 (2022). https://doi.org/10.1039/d1ta10065c
- M. Zhang, C. Han, W.Q. Cao, M.S. Cao, H.J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13, 27 (2021). https://doi.org/10.1007/s40820-020-00552-9
- B. Zhao, M. Hamidinejad, S. Wang, P.W. Bai, R.C. Che et al., Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 9, 8896–8949 (2021). https://doi.org/10.1039/d1ta00417d
- J.-W. Kim, J.-I. Oh, H. Cho, I. Kim, and J.-W. Yu, Design of mmWave high-resolution FMCW radar system with real-time radar state tracking method, in 14th Global Symposium on Millimeter-Waves and Terahertz (Institute of Electrical and Electronics Engineers Inc., 2022)
- D.M. Pozar, Microwave engineering (Wiley, 2011), pp.178–188
- D.W. Hess, S. Mcbride, An aperture back-projection technique and measurements made on a flat plate array with a spherical near-field arch, in Loughborough Antennas Propag. Conf. (2009), pp. 733–736. https://doi.org/10.1109/LAPC.2009.5352410
- IEEE Standards Coordinating Committee, IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz. IEEE (1992). https://doi.org/10.1109/IEEESTD.2006.99501
- B.S. Shin, J.Y. Oh, H. Sohn, Theoretical and experimental investigations into laser ablation of polyimide and copper films with 355-nm Nd: YVO4 laser. J. Mater. Process. Technol. 187, 260–263 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.106
- R. Srinivasan, Ablation of polyimide (Kapton™) films by pulsed (ns) ultraviolet and infrared (9.17 μm) lasers: a comparative study. Appl. Phys. A 56, 417–423 (1993). https://doi.org/10.1007/BF00332574
- C. Harito, D.V. Bavykin, B. Yuliarto, H.K. Dipojono, F.C. Walsh, Inhibition of polyimide photodegradation by incorporation of titanate nanotubes into a composite. J. Polym. Environ. 27, 1505–1515 (2019). https://doi.org/10.1007/s10924-019-01443-w
- C. Qu, J. Hu, X. Liu, Z. Li, Y. Ding, Morphology and mechanical properties of polyimide films: the effects of UV irradiation on microscale surface. Materials 10, 1329 (2017). https://doi.org/10.3390/ma10111329
- G. Peng, W. Hao, D. Yang, S. He, Degradation of polyimide film under vacuum ultraviolet irradiation. J. Appl. Polym. Sci. 94, 1370–1374 (2004). https://doi.org/10.1002/app.20920
- D.J.T. Hill, F.A. Rasoul, J.S. Forsythe, J.H. Odonnell, P.J. Pomery et al., Effect of simulated low-earth-orbit radiation on polyimides (Uv degradation study). J. Appl. Polym. Sci. 58, 1847–1856 (1995). https://doi.org/10.1002/app.1995.070581023
- F. Cheng, J. Gao, T.S. Luk, X. Yang, Structural color printing based on plasmonic metasurfaces of perfect light absorption. Sci. Rep. 5, 11045 (2015). https://doi.org/10.1038/srep11045
- R.D. Rusu, C.P. Constantin, M. Drobota, L.M. Gradinariu, M. Butnaru et al., Polyimide films tailored by UV irradiation: surface evaluation and structure-properties relationship. Polym. Degrad. Stab. 177, 109182 (2020). https://doi.org/10.1016/j.polymdegradstab.2020.109182
- R. Srinivasan, R.R. Hall, W.D. Loehle, W.D. Wilson, D.C. Allbee, Chemical-transformations of the polyimide kapton brought about by ultraviolet-laser radiation. J. Appl. Phys. 78, 4881–4887 (1995). https://doi.org/10.1063/1.359776
- M. Inagaki, S. Harada, T. Sato, T. Nakajima, Y. Horino et al., Carbonization of polyimide film kapton. Carbon 27, 253–257 (1989). https://doi.org/10.1016/0008-6223(89)90131-0
- L.X. Duy, Z.W. Peng, Y.L. Li, J.B. Zhang, Y.S. Ji et al., Laser-induced graphene fibers. Carbon 126, 472–479 (2018). https://doi.org/10.1016/j.carbon.2017.10.036
- D.B. Schuepfer, F. Badaczewski, J.M. Guerra-Castro, D.M. Hofmann, C. Heiliger et al., Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. Carbon 161, 359–372 (2020). https://doi.org/10.1016/j.carbon.2019.12.094
- R.W. Dreyfus, CN temperatures above laser ablated polyimide. Appl. Phys. A 55, 335–339 (1992). https://doi.org/10.1007/Bf00324081
- F.M. Vivaldi, A. Dallinger, A. Bonini, N. Poma, L. Sembranti et al., Three-dimensional (3D) laser-induced graphene: structure, properties, and application to chemical sensing. ACS Appl. Mater. Interfaces 13, 30245–30260 (2021). https://doi.org/10.1021/acsami.1c05614
- Y. Chen, J.Y. Long, S. Zhou, D.C. Shi, Y. Huang et al., UV laser-induced polyimide-to-graphene conversion: modeling, fabrication, and application. Small Methods 3, 1900208 (2019). https://doi.org/10.1002/smtd.201900208
- A. Behrent, C. Griesche, P. Sippel, A.J. Baeumner, Process-property correlations in laser-induced graphene electrodes for electrochemical sensing. Microchim. Acta 188, 1–14 (2021). https://doi.org/10.1007/s00604-021-04792-3
- J.B. In, B. Hsia, J.-H. Yoo, S. Hyun, C. Carraro et al., Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon 83, 144–151 (2015). https://doi.org/10.1016/j.carbon.2014.11.017
- E. Tolstopyatov, P. Grakovich, L. Ivanov, S. Allayarov, D. Dixon, Thermophysical and spectral features of laser ablation of polymers. High Energy Chem. 49, 433–437 (2015). https://doi.org/10.1134/S001814391505015x
- P.I.C. Claro, T. Pinheiro, S.L. Silvestre, A.C. Marques, J. Coelho et al., Sustainable carbon sources for green laser-induced graphene: a perspective on fundamental principles, applications, and challenges. Appl. Phys. Rev. 9, 041305 (2022). https://doi.org/10.1063/5.0100785
- E.R. Mamleyev, S. Heissler, A. Nefedov, P.G. Weidler, N. Nordin et al., Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors. npj Flex. Electron. 3, 2 (2019). https://doi.org/10.1038/s41528-018-0047-8
- J. Yin, J.X. Zhang, S.D. Zhang, C. Liu, X.L. Yu et al., Flexible 3D porous graphene film decorated with nickel nanops for absorption-dominated electromagnetic interference shielding. Chem. Eng. J. 421, 129763 (2021). https://doi.org/10.1016/j.cej.2021.129763
- L. Huang, S. Xu, Z. Wang, K. Xue, J. Su et al., Self-reporting and photothermally enhanced rapid bacterial killing on a laser-induced graphene mask. ACS Nano 14, 12045–12053 (2020). https://doi.org/10.1021/acsnano.0c05330
- J. Ren, D.Y. Li, Y. Zhang, W.Z. Yang, H.Y. Nie et al., Laser direct activation of polyimide for selective electroless plating of flexible conductive patterns. ACS Appl. Electron. Mater. 4, 2191–2202 (2022). https://doi.org/10.1021/acsaelm.1c01193
- D.X. Luong, K. Yang, J. Yoon, S.P. Singh, T. Wang et al., Laser-induced graphene composites as multifunctional surfaces. ACS Nano 13, 2579–2586 (2019). https://doi.org/10.1021/acsnano.8b09626
- T.H. Im, D.Y. Park, H.K. Lee, J.H. Park, C.K. Jeong et al., Xenon flash lamp-induced ultrafast multilayer graphene growth. Part. Part. Syst. Charact. 34, 1600429 (2017). https://doi.org/10.1002/ppsc.201600429
- J.-P. Jegal, K.-C. Kim, M.S. Kim, K.-B. Kim, A lithium iron phosphate/nitrogen-doped reduced graphene oxide nanocomposite as a cathode material for high-power lithium ion batteries. J. Mater. Chem. A 2, 9594–9599 (2014). https://doi.org/10.1039/c4ta01075b
- A. Chhetry, M. Sharifuzzaman, H. Yoon, S. Sharma, X. Xuan et al., MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor. ACS Appl. Mater. Interfaces 11, 22531–22542 (2019). https://doi.org/10.1021/acsami.9b04915
- K. Muzyka, G. Xu, Laser-induced graphene in facts, numbers, and notes in view of electroanalytical applications: a review. Electroanalysis 34, 574–589 (2022). https://doi.org/10.1002/elan.202100425
- H. Wahab, V. Jain, A.S. Tyrrell, M.A. Seas, L. Kotthoff et al., Machine-learning-assisted fabrication: Bayesian optimization of laser-induced graphene patterning using in-situ Raman analysis. Carbon 167, 609–619 (2020). https://doi.org/10.1016/j.carbon.2020.05.087
- A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007). https://doi.org/10.1016/j.ssc.2007.03.052
- M. Abdulhafez, G.N. Tomaraei, M. Bedewy, Fluence-dependent morphological transitions in laser-induced graphene electrodes on polyimide substrates for flexible devices. ACS Appl. Nano Mater. 4, 2973–2986 (2021). https://doi.org/10.1021/acsanm.1c00101
- I. Childres, L.A. Jauregui, W. Park, H. Cao, Y.P. Chen, Raman spectroscopy of graphene and related materials. New Dev. Photon Mater. Res. 1, 1–20 (2013)
- W. Wang, C. Zhang, Z.-W. Zhang, Y.-C. Li, M. Yasir et al., Toughening Fe-based amorphous coatings by reinforcement of amorphous carbon. Sci. Rep. 7, 4084 (2017). https://doi.org/10.1038/s41598-017-04504-z
- T.M. Magne, T. De Oliveira Vieira, L.M.R. Alencar, F.F.M. Junior, S. Gemini-Piperni et al., Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. J. Nanostruct. Chem. 12, 693–727 (2021). https://doi.org/10.1007/s40097-021-00444-3
- A. Vashisth, M. Kowalik, J.C. Gerringer, C. Ashraf, A.C.T. Van Duin et al., ReaxFF simulations of laser-induced graphene (LIG) formation for multifunctional polymer nanocomposites. ACS Appl. Nano Mater. 3, 1881–1890 (2020). https://doi.org/10.1021/acsanm.9b02524
- M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 1738–1746 (2009). https://doi.org/10.1016/j.carbon.2009.02.030
- L.X. Liu, W. Chen, H.B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
- S.H. Ryu, Y.K. Han, S.J. Kwon, T. Kim, B.M. Jung et al., Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J. 428, 131167 (2022). https://doi.org/10.1016/j.cej.2021.131167
- D. Zhang, R. Yin, Y. Zheng, Q. Li, H. Liu et al., Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem. Eng. J. 438, 135587 (2022). https://doi.org/10.1016/j.cej.2022.135587
- Y. Wang, L. Liang, Z. Du, Y. Wang, C. Liu et al., Biodegradable PLA/CNTs/Ti3C2Tx MXene nanocomposites for efficient electromagnetic interference shielding. J. Mater. Sci. Mater. Electron. 32, 25952–25962 (2021). https://doi.org/10.1007/s10854-021-05377-9
- S.-Q. Zhu, J.-C. Shu, M.-S. Cao, Novel MOF-derived 3D hierarchical needlelike array architecture with excellent EMI shielding, thermal insulation and supercapacitor performance. Nanoscale 14, 7322–7331 (2022). https://doi.org/10.1039/d2nr01024k
- M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13, 102 (2021). https://doi.org/10.1007/s40820-021-00635-1
- Y. Song, F. Yin, C. Zhang, W. Guo, L. Han et al., Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanops for enhanced microwave absorption properties. Nano-Micro Lett. 13, 76 (2021). https://doi.org/10.1007/s40820-021-00601-x
- Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable mxene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
- H.E. Lee, D. Lee, T.I. Lee, J.H. Shin, G.M. Choi et al., Wireless powered wearable micro light-emitting diodes. Nano Energy 55, 454–462 (2019). https://doi.org/10.1016/j.nanoen.2018.11.017
- D.W. Lu, Z.C. Mo, B.H. Liang, L.L. Yang, Z.F. He et al., Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 133, 457–463 (2018). https://doi.org/10.1016/j.carbon.2018.03.061
- Y. Yuan, W.L. Yin, M.L. Yang, F. Xu, X. Zhao et al., Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding. Carbon 130, 59–68 (2018). https://doi.org/10.1016/j.carbon.2017.12.122
- J. Zeng, X. Ji, Y. Ma, Z. Zhang, S. Wang et al., 3d graphene fibers grown by thermal chemical vapor deposition. Adv. Mater. 30, 1705380 (2018). https://doi.org/10.1002/adma.201705380
- R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
- C. Pavlou, M.G. Pastore Carbone, A.C. Manikas, G. Trakakis, C. Koral et al., Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 12, 4655 (2021). https://doi.org/10.1038/s41467-021-24970-4
- W.C. Liyuan-Jin, P. Wang, N. Song, P. Ding, Interconnected MXene/graphene network constructed by soft template for multi-performance improvement of polymer composites. Nano-Micro Lett. 14, 133 (2022). https://doi.org/10.1007/s40820-022-00877-7
- O. Pitkanen, J. Tolvanen, I. Szenti, A. Kukovecz, J. Hannu et al., Lightweight hierarchical carbon nanocomposites with highly efficient and tunable electromagnetic interference shielding properties. ACS Appl. Mater. Interfaces 11, 19331–19338 (2019). https://doi.org/10.1021/acsami.9b02309
- Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
- S. Shahparnia, O.M. Ramahi, Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures. IEEE Trans. Electromagn. Compat. 46, 580–587 (2004). https://doi.org/10.1109/Temc.2004.837671
- M. Shalaby, W. Saad, M. Shokair, N.W. Messiha, Evaluation of electromagnetic interference in wireless broadband systems. Wirel. Pers. Commun. 96, 2223–2237 (2017). https://doi.org/10.1007/s11277-017-4294-0
- C.A. Balanis, Antenna theory—a review. Proc. IEEE 80, 7–23 (1992). https://doi.org/10.1109/5.119564
- C. Yan, W. Xu, J. Liu, Can you trust autonomous vehicles: contactless attacks against sensors of self-driving vehicle. Def. Con. 24, 109 (2016). https://doi.org/10.1145/1235
- P. Nallabolu, C. Li, A frequency-domain spoofing attack on FMCW radars and its mitigation technique based on a hybrid-chirp waveform. IEEE Trans. Microw. Theory Techn. 69, 5086–5098 (2021). https://doi.org/10.1109/Tmtt.2021.3115804
- D.-H. Shin, D.-H. Jung, D.-C. Kim, J.-W. Ham, S.-O. Park, A distributed FMCW radar system based on fiber-optic links for small drone detection. IEEE Trans. Instrum. Meas. 66, 340–347 (2016). https://doi.org/10.1109/TIM.2016.2626038
- R.N. Kostoff, P. Heroux, M. Aschner, A. Tsatsakis, Adverse health effects of 5G mobile networking technology under real-life conditions. Toxicol. Lett. 323, 35–40 (2020). https://doi.org/10.1016/j.toxlet.2020.01.020
- A.B. Miller, M.E. Sears, L.L. Morgan, D.L. Davis, L. Hardell et al., Risks to health and well-being from radio-frequency radiation emitted by cell phones and other wireless devices. Front. Public Health 7, 223 (2019). https://doi.org/10.3389/fpubh.2019.00223
- C.L. Russell, 5 G wireless telecommunications expansion: Public health and environmental implications. Environ. Res. 165, 484–495 (2018). https://doi.org/10.1016/j.envres.2018.01.016
- M.M.Z. Tanim, Electromagnetic Radiation and Human Health (2015). https://doi.org/10.13140/RG.2.2.13195.28962
- S. Yang, L. Zhang, W. Wang, Y. Zheng, Flexible tri-band dual-polarized MIMO belt strap antenna toward wearable applications in intelligent internet of medical things. IEEE Trans. Antennas Propag. 70, 197–208 (2021). https://doi.org/10.1109/TAP.2021.3098589
- Y. Li, X. Tian, S.P. Gao, L. Jing, K. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30, 1907451 (2020). https://doi.org/10.1002/adfm.201907451
References
H.S. Wang, S.K. Hong, J.H. Han, Y.H. Jung, H.K. Jeong et al., Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 7, eabe5683 (2021). https://doi.org/10.1126/sciadv.abe5683
H.E. Lee, S.H. Lee, M. Jeong, J.H. Shin, Y. Ahn et al., Trichogenic photostimulation using monolithic flexible vertical AlGaInP light-emitting diodes. ACS Nano 12, 9587–9595 (2018). https://doi.org/10.1021/acsnano.8b05568
J.H. Han, J.H. Kwak, D.J. Joe, S.K. Hong, H.S. Wang et al., Basilar membrane-inspired self-powered acoustic sensor enabled by highly sensitive multi tunable frequency band. Nano Energy 53, 198–205 (2018). https://doi.org/10.1016/j.nanoen.2018.08.053
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
L. Hardell, M. Carlberg, F. Soderqvist, K.H. Mild, L.L. Morgan, Long-term use of cellular phones and brain tumours: increased risk associated with use for > or =10 years. Occup. Environ. Med. 64, 626–632 (2007). https://doi.org/10.1136/oem.2006.029751
G. Redlarski, B. Lewczuk, A. Zak, A. Koncicki, M. Krawczuk et al., The influence of electromagnetic pollution on living organisms: historical trends and forecasting changes. Biomed. Res. Int. 2015, 234098 (2015). https://doi.org/10.1155/2015/234098
S. Geetha, K.K.S. Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: methods and materials-a review. J. Appl. Polym. Sci. 112, 2073–2086 (2009). https://doi.org/10.1002/app.29812
Y.D. Xu, Z.Q. Lin, K. Rajavel, T. Zhao, P.L. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 29 (2022). https://doi.org/10.1007/s40820-021-00766-5
J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces 9, 44609–44616 (2017). https://doi.org/10.1021/acsami.7b14626
S.S. Tzeng, F.Y. Chang, EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites. Mater. Sci. Eng. A 302, 258–267 (2001). https://doi.org/10.1016/S0921-5093(00)01824-4
R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti(3)C(2)T(x) MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
X. Jia, B. Shen, L. Zhang, W. Zheng, Construction of compressible polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 173, 932–940 (2021). https://doi.org/10.1016/j.carbon.2020.11.036
N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
H.B. Zhang, Q. Yan, W.G. Zheng, Z. He, Z.Z. Yu, Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3, 918–924 (2011). https://doi.org/10.1021/am200021v
W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014). https://doi.org/10.1016/j.carbon.2013.08.043
F.X. Bu, M.M. Zagho, Y. Ibrahim, B. Ma, A. Elzatahry et al., Porous MXenes: synthesis, structures, and applications. Nano Today 30, 100803 (2020). https://doi.org/10.1016/j.nantod.2019.100803
H.J. Liu, C.Z. Liang, J.J. Chen, Y.W. Huang, F. Cheng et al., Novel 3D network porous graphene nanoplatelets/Fe3O4/epoxy nanocomposites with enhanced electromagnetic interference shielding efficiency. Compos. Sci. Technol. 169, 103–109 (2019). https://doi.org/10.1016/j.compscitech.2018.11.005
M. Huang, C. Wang, L. Quan, T.H.Y. Nguyen, H. Zhang et al., CVD growth of porous graphene foam in film form. Matter 3, 487–497 (2020). https://doi.org/10.1016/j.matt.2020.06.012
D.G. Lai, X.X. Chen, Y. Wang, Controllable fabrication of elastomeric and porous graphene films with superior foldable behavior and excellent electromagnetic interference shielding performance. Carbon 158, 728–737 (2020). https://doi.org/10.1016/j.carbon.2019.11.047
J. Shin, J. Ko, S. Jeong, P. Won, Y. Lee et al., Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis. Nat. Mater. 20, 100–107 (2021). https://doi.org/10.1038/s41563-020-0769-6
I. Choi, H.Y. Jeong, H. Shin, G. Kang, M. Byun et al., Laser-induced phase separation of silicon carbide. Nat. Commun. 7, 13562 (2016). https://doi.org/10.1038/ncomms13562
T.S.D. Le, H.P. Phan, S. Kwon, S. Park, Y. Jung et al., Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Adv. Funct. Mater. 32, 2205158 (2022). https://doi.org/10.1002/adfm.202205158
I.H. Kim, T.H. Im, H.E. Lee, J.S. Jang, H.S. Wang et al., Janus graphene liquid crystalline fiber with tunable properties enabled by ultrafast flash reduction. Small 15, e1901529 (2019). https://doi.org/10.1002/smll.201901529
T.H. Im, J.H. Lee, H.S. Wang, S.H. Sung, Y.B. Kim et al., Flashlight-material interaction for wearable and flexible electronics. Mater. Today 51, 525–551 (2021). https://doi.org/10.1016/j.mattod.2021.07.027
J.H. Park, S. Han, D. Kim, B.K. You, D.J. Joe et al., Plasmonic-tuned flash Cu nanowelding with ultrafast photochemical-reducing and interlocking on flexible plastics. Adv. Funct. Mater. 27, 1701138 (2017). https://doi.org/10.1002/adfm.201701138
J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye et al., Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014). https://doi.org/10.1038/ncomms6714
J. Zhu, X. Huang, W. Song, Physical and chemical sensors on the basis of laser-induced graphene: mechanisms, applications, and perspectives. ACS Nano 15, 18708–18741 (2021). https://doi.org/10.1021/acsnano.1c05806
Z.C. Zhang, M.M. Song, J.X. Hao, K.B. Wu, C.Y. Li et al., Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 127, 287–296 (2018). https://doi.org/10.1016/j.carbon.2017.11.014
W.L. Zhang, Y.J. Lei, F.W. Ming, Q. Jiang, P.M.F.J. Costa et al., Lignin laser lithography: a direct-write method for fabricating 3D graphene electrodes for microsupercapacitors. Adv. Energy Mater. 8, 1801840 (2018). https://doi.org/10.1002/aenm.201801840
G. Wang, Y. Zhao, F. Yang, Y. Zhang, M. Zhou et al., Multifunctional integrated transparent film for efficient electromagnetic protection. Nano-Micro Lett. 14, 65 (2022). https://doi.org/10.1007/s40820-022-00810-y
L. Huang, Y. Liu, L.C. Ji, Y.Q. Xie, T. Wang et al., Pulsed laser assisted reduction of graphene oxide. Carbon 49, 2431–2436 (2011). https://doi.org/10.1016/j.carbon.2011.01.067
J.H. Park, H.E. Lee, C.K. Jeong, D.H. Kim, S.K. Hong et al., Self-powered flexible electronics beyond thermal limits. Nano Energy 56, 531–546 (2019). https://doi.org/10.1016/j.nanoen.2018.11.077
D.X. Luong, A.K. Subramanian, G.A.L. Silva, J. Yoon, S. Cofer et al., Laminated object manufacturing of 3D-printed laser-induced graphene foams. Adv. Mater. 30, e1707416 (2018). https://doi.org/10.1002/adma.201707416
S.J. Kim, H.E. Lee, H. Choi, Y. Kim, J.H. We et al., High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano 10, 10851–10857 (2016). https://doi.org/10.1021/acsnano.6b05004
J.H. Shin, J.H. Park, J. Seo, T.H. Im, J.C. Kim et al., A flash-induced robust cu electrode on glass substrates and its application for thin-film muLEDs. Adv. Mater. 33, e2007186 (2021). https://doi.org/10.1002/adma.202007186
Z. Wang, J.E. Alaniz, W. Jang, J.E. Garay, C. Dames, Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. Nano Lett. 11, 2206–2213 (2011). https://doi.org/10.1021/nl1045395
G. Poulain, D. Blanc, Y. Pellegrin, M. Lemitia, Finite element simulation of laser-induced diffusion in silicon. Proc. Siliconpv. 2011 Conf. 8, 587–591 (2011). https://doi.org/10.1016/j.egypro.2011.06.187
S.H. Ryu, B. Park, Y.K. Han, S.J. Kwon, T. Kim et al., Electromagnetic wave shielding flexible films with near-zero reflection in the 5G frequency band. J. Mater. Chem. A 10, 4446–4455 (2022). https://doi.org/10.1039/d1ta10065c
M. Zhang, C. Han, W.Q. Cao, M.S. Cao, H.J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13, 27 (2021). https://doi.org/10.1007/s40820-020-00552-9
B. Zhao, M. Hamidinejad, S. Wang, P.W. Bai, R.C. Che et al., Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 9, 8896–8949 (2021). https://doi.org/10.1039/d1ta00417d
J.-W. Kim, J.-I. Oh, H. Cho, I. Kim, and J.-W. Yu, Design of mmWave high-resolution FMCW radar system with real-time radar state tracking method, in 14th Global Symposium on Millimeter-Waves and Terahertz (Institute of Electrical and Electronics Engineers Inc., 2022)
D.M. Pozar, Microwave engineering (Wiley, 2011), pp.178–188
D.W. Hess, S. Mcbride, An aperture back-projection technique and measurements made on a flat plate array with a spherical near-field arch, in Loughborough Antennas Propag. Conf. (2009), pp. 733–736. https://doi.org/10.1109/LAPC.2009.5352410
IEEE Standards Coordinating Committee, IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz. IEEE (1992). https://doi.org/10.1109/IEEESTD.2006.99501
B.S. Shin, J.Y. Oh, H. Sohn, Theoretical and experimental investigations into laser ablation of polyimide and copper films with 355-nm Nd: YVO4 laser. J. Mater. Process. Technol. 187, 260–263 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.106
R. Srinivasan, Ablation of polyimide (Kapton™) films by pulsed (ns) ultraviolet and infrared (9.17 μm) lasers: a comparative study. Appl. Phys. A 56, 417–423 (1993). https://doi.org/10.1007/BF00332574
C. Harito, D.V. Bavykin, B. Yuliarto, H.K. Dipojono, F.C. Walsh, Inhibition of polyimide photodegradation by incorporation of titanate nanotubes into a composite. J. Polym. Environ. 27, 1505–1515 (2019). https://doi.org/10.1007/s10924-019-01443-w
C. Qu, J. Hu, X. Liu, Z. Li, Y. Ding, Morphology and mechanical properties of polyimide films: the effects of UV irradiation on microscale surface. Materials 10, 1329 (2017). https://doi.org/10.3390/ma10111329
G. Peng, W. Hao, D. Yang, S. He, Degradation of polyimide film under vacuum ultraviolet irradiation. J. Appl. Polym. Sci. 94, 1370–1374 (2004). https://doi.org/10.1002/app.20920
D.J.T. Hill, F.A. Rasoul, J.S. Forsythe, J.H. Odonnell, P.J. Pomery et al., Effect of simulated low-earth-orbit radiation on polyimides (Uv degradation study). J. Appl. Polym. Sci. 58, 1847–1856 (1995). https://doi.org/10.1002/app.1995.070581023
F. Cheng, J. Gao, T.S. Luk, X. Yang, Structural color printing based on plasmonic metasurfaces of perfect light absorption. Sci. Rep. 5, 11045 (2015). https://doi.org/10.1038/srep11045
R.D. Rusu, C.P. Constantin, M. Drobota, L.M. Gradinariu, M. Butnaru et al., Polyimide films tailored by UV irradiation: surface evaluation and structure-properties relationship. Polym. Degrad. Stab. 177, 109182 (2020). https://doi.org/10.1016/j.polymdegradstab.2020.109182
R. Srinivasan, R.R. Hall, W.D. Loehle, W.D. Wilson, D.C. Allbee, Chemical-transformations of the polyimide kapton brought about by ultraviolet-laser radiation. J. Appl. Phys. 78, 4881–4887 (1995). https://doi.org/10.1063/1.359776
M. Inagaki, S. Harada, T. Sato, T. Nakajima, Y. Horino et al., Carbonization of polyimide film kapton. Carbon 27, 253–257 (1989). https://doi.org/10.1016/0008-6223(89)90131-0
L.X. Duy, Z.W. Peng, Y.L. Li, J.B. Zhang, Y.S. Ji et al., Laser-induced graphene fibers. Carbon 126, 472–479 (2018). https://doi.org/10.1016/j.carbon.2017.10.036
D.B. Schuepfer, F. Badaczewski, J.M. Guerra-Castro, D.M. Hofmann, C. Heiliger et al., Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. Carbon 161, 359–372 (2020). https://doi.org/10.1016/j.carbon.2019.12.094
R.W. Dreyfus, CN temperatures above laser ablated polyimide. Appl. Phys. A 55, 335–339 (1992). https://doi.org/10.1007/Bf00324081
F.M. Vivaldi, A. Dallinger, A. Bonini, N. Poma, L. Sembranti et al., Three-dimensional (3D) laser-induced graphene: structure, properties, and application to chemical sensing. ACS Appl. Mater. Interfaces 13, 30245–30260 (2021). https://doi.org/10.1021/acsami.1c05614
Y. Chen, J.Y. Long, S. Zhou, D.C. Shi, Y. Huang et al., UV laser-induced polyimide-to-graphene conversion: modeling, fabrication, and application. Small Methods 3, 1900208 (2019). https://doi.org/10.1002/smtd.201900208
A. Behrent, C. Griesche, P. Sippel, A.J. Baeumner, Process-property correlations in laser-induced graphene electrodes for electrochemical sensing. Microchim. Acta 188, 1–14 (2021). https://doi.org/10.1007/s00604-021-04792-3
J.B. In, B. Hsia, J.-H. Yoo, S. Hyun, C. Carraro et al., Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon 83, 144–151 (2015). https://doi.org/10.1016/j.carbon.2014.11.017
E. Tolstopyatov, P. Grakovich, L. Ivanov, S. Allayarov, D. Dixon, Thermophysical and spectral features of laser ablation of polymers. High Energy Chem. 49, 433–437 (2015). https://doi.org/10.1134/S001814391505015x
P.I.C. Claro, T. Pinheiro, S.L. Silvestre, A.C. Marques, J. Coelho et al., Sustainable carbon sources for green laser-induced graphene: a perspective on fundamental principles, applications, and challenges. Appl. Phys. Rev. 9, 041305 (2022). https://doi.org/10.1063/5.0100785
E.R. Mamleyev, S. Heissler, A. Nefedov, P.G. Weidler, N. Nordin et al., Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors. npj Flex. Electron. 3, 2 (2019). https://doi.org/10.1038/s41528-018-0047-8
J. Yin, J.X. Zhang, S.D. Zhang, C. Liu, X.L. Yu et al., Flexible 3D porous graphene film decorated with nickel nanops for absorption-dominated electromagnetic interference shielding. Chem. Eng. J. 421, 129763 (2021). https://doi.org/10.1016/j.cej.2021.129763
L. Huang, S. Xu, Z. Wang, K. Xue, J. Su et al., Self-reporting and photothermally enhanced rapid bacterial killing on a laser-induced graphene mask. ACS Nano 14, 12045–12053 (2020). https://doi.org/10.1021/acsnano.0c05330
J. Ren, D.Y. Li, Y. Zhang, W.Z. Yang, H.Y. Nie et al., Laser direct activation of polyimide for selective electroless plating of flexible conductive patterns. ACS Appl. Electron. Mater. 4, 2191–2202 (2022). https://doi.org/10.1021/acsaelm.1c01193
D.X. Luong, K. Yang, J. Yoon, S.P. Singh, T. Wang et al., Laser-induced graphene composites as multifunctional surfaces. ACS Nano 13, 2579–2586 (2019). https://doi.org/10.1021/acsnano.8b09626
T.H. Im, D.Y. Park, H.K. Lee, J.H. Park, C.K. Jeong et al., Xenon flash lamp-induced ultrafast multilayer graphene growth. Part. Part. Syst. Charact. 34, 1600429 (2017). https://doi.org/10.1002/ppsc.201600429
J.-P. Jegal, K.-C. Kim, M.S. Kim, K.-B. Kim, A lithium iron phosphate/nitrogen-doped reduced graphene oxide nanocomposite as a cathode material for high-power lithium ion batteries. J. Mater. Chem. A 2, 9594–9599 (2014). https://doi.org/10.1039/c4ta01075b
A. Chhetry, M. Sharifuzzaman, H. Yoon, S. Sharma, X. Xuan et al., MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor. ACS Appl. Mater. Interfaces 11, 22531–22542 (2019). https://doi.org/10.1021/acsami.9b04915
K. Muzyka, G. Xu, Laser-induced graphene in facts, numbers, and notes in view of electroanalytical applications: a review. Electroanalysis 34, 574–589 (2022). https://doi.org/10.1002/elan.202100425
H. Wahab, V. Jain, A.S. Tyrrell, M.A. Seas, L. Kotthoff et al., Machine-learning-assisted fabrication: Bayesian optimization of laser-induced graphene patterning using in-situ Raman analysis. Carbon 167, 609–619 (2020). https://doi.org/10.1016/j.carbon.2020.05.087
A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007). https://doi.org/10.1016/j.ssc.2007.03.052
M. Abdulhafez, G.N. Tomaraei, M. Bedewy, Fluence-dependent morphological transitions in laser-induced graphene electrodes on polyimide substrates for flexible devices. ACS Appl. Nano Mater. 4, 2973–2986 (2021). https://doi.org/10.1021/acsanm.1c00101
I. Childres, L.A. Jauregui, W. Park, H. Cao, Y.P. Chen, Raman spectroscopy of graphene and related materials. New Dev. Photon Mater. Res. 1, 1–20 (2013)
W. Wang, C. Zhang, Z.-W. Zhang, Y.-C. Li, M. Yasir et al., Toughening Fe-based amorphous coatings by reinforcement of amorphous carbon. Sci. Rep. 7, 4084 (2017). https://doi.org/10.1038/s41598-017-04504-z
T.M. Magne, T. De Oliveira Vieira, L.M.R. Alencar, F.F.M. Junior, S. Gemini-Piperni et al., Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. J. Nanostruct. Chem. 12, 693–727 (2021). https://doi.org/10.1007/s40097-021-00444-3
A. Vashisth, M. Kowalik, J.C. Gerringer, C. Ashraf, A.C.T. Van Duin et al., ReaxFF simulations of laser-induced graphene (LIG) formation for multifunctional polymer nanocomposites. ACS Appl. Nano Mater. 3, 1881–1890 (2020). https://doi.org/10.1021/acsanm.9b02524
M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 1738–1746 (2009). https://doi.org/10.1016/j.carbon.2009.02.030
L.X. Liu, W. Chen, H.B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
S.H. Ryu, Y.K. Han, S.J. Kwon, T. Kim, B.M. Jung et al., Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J. 428, 131167 (2022). https://doi.org/10.1016/j.cej.2021.131167
D. Zhang, R. Yin, Y. Zheng, Q. Li, H. Liu et al., Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem. Eng. J. 438, 135587 (2022). https://doi.org/10.1016/j.cej.2022.135587
Y. Wang, L. Liang, Z. Du, Y. Wang, C. Liu et al., Biodegradable PLA/CNTs/Ti3C2Tx MXene nanocomposites for efficient electromagnetic interference shielding. J. Mater. Sci. Mater. Electron. 32, 25952–25962 (2021). https://doi.org/10.1007/s10854-021-05377-9
S.-Q. Zhu, J.-C. Shu, M.-S. Cao, Novel MOF-derived 3D hierarchical needlelike array architecture with excellent EMI shielding, thermal insulation and supercapacitor performance. Nanoscale 14, 7322–7331 (2022). https://doi.org/10.1039/d2nr01024k
M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13, 102 (2021). https://doi.org/10.1007/s40820-021-00635-1
Y. Song, F. Yin, C. Zhang, W. Guo, L. Han et al., Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanops for enhanced microwave absorption properties. Nano-Micro Lett. 13, 76 (2021). https://doi.org/10.1007/s40820-021-00601-x
Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable mxene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
H.E. Lee, D. Lee, T.I. Lee, J.H. Shin, G.M. Choi et al., Wireless powered wearable micro light-emitting diodes. Nano Energy 55, 454–462 (2019). https://doi.org/10.1016/j.nanoen.2018.11.017
D.W. Lu, Z.C. Mo, B.H. Liang, L.L. Yang, Z.F. He et al., Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 133, 457–463 (2018). https://doi.org/10.1016/j.carbon.2018.03.061
Y. Yuan, W.L. Yin, M.L. Yang, F. Xu, X. Zhao et al., Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding. Carbon 130, 59–68 (2018). https://doi.org/10.1016/j.carbon.2017.12.122
J. Zeng, X. Ji, Y. Ma, Z. Zhang, S. Wang et al., 3d graphene fibers grown by thermal chemical vapor deposition. Adv. Mater. 30, 1705380 (2018). https://doi.org/10.1002/adma.201705380
R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
C. Pavlou, M.G. Pastore Carbone, A.C. Manikas, G. Trakakis, C. Koral et al., Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 12, 4655 (2021). https://doi.org/10.1038/s41467-021-24970-4
W.C. Liyuan-Jin, P. Wang, N. Song, P. Ding, Interconnected MXene/graphene network constructed by soft template for multi-performance improvement of polymer composites. Nano-Micro Lett. 14, 133 (2022). https://doi.org/10.1007/s40820-022-00877-7
O. Pitkanen, J. Tolvanen, I. Szenti, A. Kukovecz, J. Hannu et al., Lightweight hierarchical carbon nanocomposites with highly efficient and tunable electromagnetic interference shielding properties. ACS Appl. Mater. Interfaces 11, 19331–19338 (2019). https://doi.org/10.1021/acsami.9b02309
Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
S. Shahparnia, O.M. Ramahi, Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures. IEEE Trans. Electromagn. Compat. 46, 580–587 (2004). https://doi.org/10.1109/Temc.2004.837671
M. Shalaby, W. Saad, M. Shokair, N.W. Messiha, Evaluation of electromagnetic interference in wireless broadband systems. Wirel. Pers. Commun. 96, 2223–2237 (2017). https://doi.org/10.1007/s11277-017-4294-0
C.A. Balanis, Antenna theory—a review. Proc. IEEE 80, 7–23 (1992). https://doi.org/10.1109/5.119564
C. Yan, W. Xu, J. Liu, Can you trust autonomous vehicles: contactless attacks against sensors of self-driving vehicle. Def. Con. 24, 109 (2016). https://doi.org/10.1145/1235
P. Nallabolu, C. Li, A frequency-domain spoofing attack on FMCW radars and its mitigation technique based on a hybrid-chirp waveform. IEEE Trans. Microw. Theory Techn. 69, 5086–5098 (2021). https://doi.org/10.1109/Tmtt.2021.3115804
D.-H. Shin, D.-H. Jung, D.-C. Kim, J.-W. Ham, S.-O. Park, A distributed FMCW radar system based on fiber-optic links for small drone detection. IEEE Trans. Instrum. Meas. 66, 340–347 (2016). https://doi.org/10.1109/TIM.2016.2626038
R.N. Kostoff, P. Heroux, M. Aschner, A. Tsatsakis, Adverse health effects of 5G mobile networking technology under real-life conditions. Toxicol. Lett. 323, 35–40 (2020). https://doi.org/10.1016/j.toxlet.2020.01.020
A.B. Miller, M.E. Sears, L.L. Morgan, D.L. Davis, L. Hardell et al., Risks to health and well-being from radio-frequency radiation emitted by cell phones and other wireless devices. Front. Public Health 7, 223 (2019). https://doi.org/10.3389/fpubh.2019.00223
C.L. Russell, 5 G wireless telecommunications expansion: Public health and environmental implications. Environ. Res. 165, 484–495 (2018). https://doi.org/10.1016/j.envres.2018.01.016
M.M.Z. Tanim, Electromagnetic Radiation and Human Health (2015). https://doi.org/10.13140/RG.2.2.13195.28962
S. Yang, L. Zhang, W. Wang, Y. Zheng, Flexible tri-band dual-polarized MIMO belt strap antenna toward wearable applications in intelligent internet of medical things. IEEE Trans. Antennas Propag. 70, 197–208 (2021). https://doi.org/10.1109/TAP.2021.3098589
Y. Li, X. Tian, S.P. Gao, L. Jing, K. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30, 1907451 (2020). https://doi.org/10.1002/adfm.201907451