A Solvent-Free Covalent Organic Framework Single-Ion Conductor Based on Ion–Dipole Interaction for All-Solid-State Lithium Organic Batteries
Corresponding Author: Sang‑Young Lee
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 265
Abstract
Single-ion conductors based on covalent organic frameworks (COFs) have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility. However, the sluggish Li+ conduction has hindered their practical applications. Here, we present a class of solvent-free COF single-ion conductors (Li-COF@P) based on weak ion–dipole interaction as opposed to traditional strong ion–ion interaction. The ion (Li+ from the COF)–dipole (oxygen from poly(ethylene glycol) diacrylate embedded in the COF pores) interaction in the Li-COF@P promotes ion dissociation and Li+ migration via directional ionic channels. Driven by this single-ion transport behavior, the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance (88.3% after 2000 cycles) in organic batteries (Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone (Me2BBQ) cathode) under ambient operating conditions, highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.
Highlights:
1 A class of solvent-free covalent organic framework (COF) single-ion conductors (Li-COF@P) has been designed via ion–dipole interaction as opposed to traditional ion–ion interaction, promoting ion dissociation and Li+ migration through directional ionic channels.
2 The Li-COF@P enabled long cycle life (88.3% after 2000 cycles) in all-solid-state Li organic batteries (ASSLOBs) under ambient operating conditions, which outperformed those of previously reported ASSOLBs.
3 This Li-COF@P strategy holds promise as a viable alternative to the currently prevalent inorganic solid electrolytes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Yang, Z. Suo, Hydrogel ionotronics. Nat. Rev. Mater. 3, 125–142 (2018). https://doi.org/10.1038/s41578-018-0018-7
- H.J. Kim, B. Chen, Z. Suo, R.C. Hayward, Ionoelastomer junctions between polymer networks of fixed anions and cations. Science 367, 773–776 (2020). https://doi.org/10.1126/science.aay8467
- W. Zhang, D.H. Seo, T. Chen, L. Wu, M. Topsakal et al., Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367, 1030–1034 (2020). https://doi.org/10.1126/science.aax3520
- C.S. Rustomji, Y. Yang, T.K. Kim, J. Mac, Y.J. Kim et al., Liquefied gas electrolytes for electrochemical energy storage devices. Science 356, al4263 (2017). https://doi.org/10.1126/science.aal4263
- Q. Zhao, S. Stalin, C.-Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5
- C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang et al., Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019). https://doi.org/10.1038/s41586-019-1481-z
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
- J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1, 16141 (2016). https://doi.org/10.1038/nenergy.2016.141
- M. Winter, B. Barnett, K. Xu, Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018). https://doi.org/10.1021/acs.chemrev.8b00422
- Y. An, X. Han, Y. Liu, A. Azhar, J. Na et al., Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 18, e2103617 (2022). https://doi.org/10.1002/smll.202103617
- T. Zhou, X. Huang, N. Ding, Z. Lin, Y. Yao et al., Porous polyelectrolyte frameworks: synthesis, post-ionization and advanced applications. Chem. Soc. Rev. 51, 237–267 (2022). https://doi.org/10.1039/d1cs00889g
- D. Luo, M. Li, Q. Ma, G. Wen, H. Dou et al., Porous organic polymers for Li-chemistry-based batteries: functionalities and characterization studies. Chem. Soc. Rev. 51, 2917–2938 (2022). https://doi.org/10.1039/d1cs01014j
- P.J. Waller, F. Gándara, O.M. Yaghi, Chemistry of covalent organic frameworks. Acc. Chem. Res. 48, 3053–3063 (2015). https://doi.org/10.1021/acs.accounts.5b00369
- J. Li, X. Jing, Q. Li, S. Li, X. Gao et al., Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 49, 3565–3604 (2020). https://doi.org/10.1039/d0cs00017e
- S.-Y. Ding, W. Wang, Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42, 548–568 (2013). https://doi.org/10.1039/c2cs35072f
- D. Zhu, G. Xu, M. Barnes, Y. Li, C.-P. Tseng et al., Covalent organic frameworks for batteries. Adv. Funct. Mater. 31, 2100505 (2021). https://doi.org/10.1002/adfm.202100505
- H. Wang, Z. Zeng, P. Xu, L. Li, G. Zeng et al., Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem. Soc. Rev. 48, 488–516 (2019). https://doi.org/10.1039/c8cs00376a
- R.-R. Liang, S.-Y. Jiang, A. Ru-Han, X. Zhao, Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 49, 3920–3951 (2020). https://doi.org/10.1039/d0cs00049c
- F. Meng, S. Bi, Z. Sun, B. Jiang, D. Wu et al., Synthesis of ionic vinylene-linked covalent organic frameworks through quaternization-activated Knoevenagel condensation. Angew. Chem. Int. Ed. Engl. 60, 13614–13620 (2021). https://doi.org/10.1002/anie.202104375
- D.A. Vazquez-Molina, G.S. Mohammad-Pour, C. Lee, M.W. Logan, X. Duan et al., Mechanically shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast Li-ion conductivity. J. Am. Chem. Soc. 138, 9767–9770 (2016). https://doi.org/10.1021/jacs.6b05568
- C. Li, D.-D. Wang, G.S.H. Poon Ho, Z. Zhang, J. Huang et al., Anthraquinone-based silicate covalent organic frameworks as solid electrolyte interphase for high-performance lithium–metal batteries. J. Am. Chem. Soc 145, 24603–24614 (2023). https://doi.org/10.1021/jacs.3c06723
- Z. Meng, R.M. Stolz, K.A. Mirica, Two-dimensional chemiresistive covalent organic framework with high intrinsic conductivity. J. Am. Chem. Soc. 141, 11929–11937 (2019). https://doi.org/10.1021/jacs.9b03441
- Y. Hu, N. Dunlap, S. Wan, S. Lu, S. Huang et al., Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity. J. Am. Chem. Soc. 141, 7518–7525 (2019). https://doi.org/10.1021/jacs.9b02448
- G. Zhang, Y.-L. Hong, Y. Nishiyama, S. Bai, S. Kitagawa et al., Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte. J. Am. Chem. Soc. 141, 1227–1234 (2019). https://doi.org/10.1021/jacs.8b07670
- H. Xu, S. Tao, D. Jiang, Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 15, 722–726 (2016). https://doi.org/10.1038/nmat4611
- L. Yao, C. Ma, L. Sun, D. Zhang, Y. Chen et al., Highly crystalline polyimide covalent organic framework as dual-active-center cathode for high-performance lithium-ion batteries. J. Am. Chem. Soc. 144, 23534–23542 (2022). https://doi.org/10.1021/jacs.2c10534
- S. Xu, M. Richter, X. Feng, Vinylene-linked two-dimensional covalent organic frameworks: synthesis and functions. Acc. Mater. Res. 2, 252–265 (2021). https://doi.org/10.1021/accountsmr.1c00017
- W. Gong, Y. Ouyang, S. Guo, Y. Xiao, Q. Zeng et al., Covalent organic framework with multi-cationic molecular chains for gate mechanism controlled superionic conduction in all-solid-state batteries. Angew. Chem. Int. Ed. 62, e202302505 (2023). https://doi.org/10.1002/anie.202302505
- D. Guo, D.B. Shinde, W. Shin, E. Abou-Hamad, A.-H. Emwas et al., Foldable solid-state batteries enabled by electrolyte mediation in covalent organic frameworks. Adv. Mater. 34, e2201410 (2022). https://doi.org/10.1002/adma.202201410
- K. Jeong, S. Park, G.Y. Jung, S.H. Kim, Y.-H. Lee et al., Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 141, 5880–5885 (2019). https://doi.org/10.1021/jacs.9b00543
- X. Li, Q. Hou, W. Huang, H.-S. Xu, X. Wang et al., Solution-processable covalent organic framework electrolytes for all-solid-state Li–organic batteries. ACS Energy Lett. 5, 3498–3506 (2020). https://doi.org/10.1021/acsenergylett.0c01889
- G. Zhao, Z. Mei, L. Duan, Q. An, Y. Yang et al., COF-based single Li+ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasi-solid-state organic batteries. Carbon Energy 5, e248 (2023). https://doi.org/10.1002/cey2.248
- X. Li, K.P. Loh, Recent progress in covalent organic frameworks as solid-state ion conductors. ACS Mater. Lett. 1, 327–335 (2019). https://doi.org/10.1021/acsmaterialslett.9b00185
- S. Yuan, X. Li, J. Zhu, G. Zhang, P. Van Puyvelde et al., Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 48, 2665–2681 (2019). https://doi.org/10.1039/c8cs00919h
- H.S. Sasmal, H.B. Aiyappa, S.N. Bhange, S. Karak, A. Halder et al., Superprotonic conductivity in flexible porous covalent organic framework membranes. Angew. Chem. Int. Ed. 57, 10894–10898 (2018). https://doi.org/10.1002/anie.201804753
- M.C. Senarathna, H. Li, S.D. Perera, J. Torres-Correas, S.D. Diwakara et al., Highly flexible dielectric films from solution processable covalent organic frameworks. Angew. Chem. Int. Ed. 62, e202312617 (2023). https://doi.org/10.1002/anie.202312617
- F. Biedermann, H.-J. Schneider, Experimental binding energies in supramolecular complexes. Chem. Rev. 116, 5216–5300 (2016). https://doi.org/10.1021/acs.chemrev.5b00583
- S. Bai, B. Kim, C. Kim, O. Tamwattana, H. Park et al., Permselective metal-organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 16, 77–84 (2021). https://doi.org/10.1038/s41565-020-00788-x
- R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa et al., Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013). https://doi.org/10.1038/nmat3602
- K. Jeong, S. Park, S.-Y., Lee Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries. J. Mater. Chem. A 7, 1917–1935 (2019). https://doi.org/10.1039/C8TA09056D
- K.-S. Oh, S. Park, J.-S. Kim, Y. Yao, J.-H. Kim et al., Electrostatic covalent organic frameworks as on-demand molecular traps for high-energy Li metal battery electrodes. ACS Energy Lett. 8, 2463–2474 (2023). https://doi.org/10.1021/acsenergylett.3c00600
- K.-S. Oh, J.-H. Kim, S.-H. Kim, D. Oh, S.-P. Han et al., Single-ion conducting soft electrolytes for semi-solid lithium metal batteries enabling cell fabrication and operation under ambient conditions. Adv. Energy Mater. 11, 2170151 (2021). https://doi.org/10.1002/aenm.202170151
- D.H. Kim, Y.-H. Lee, Y.B. Song, H. Kwak, S.-Y. Lee et al., Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries. ACS Energy Lett. 5, 718–727 (2020). https://doi.org/10.1021/acsenergylett.0c00251
- H. Chen, H. Tu, C. Hu, Y. Liu, D. Dong et al., Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc. 140, 896–899 (2018). https://doi.org/10.1021/jacs.7b12292
- Y. Cao, M. Wang, H. Wang, C. Han, F. Pan et al., Covalent organic framework for rechargeable batteries: mechanisms and properties of ionic conduction. Adv. Energy Mater. 12, 2200057 (2022). https://doi.org/10.1002/aenm.202200057
- Z. Zhu, M. Hong, D. Guo, J. Shi, Z. Tao et al., All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. J. Am. Chem. Soc. 136, 16461–16464 (2014). https://doi.org/10.1021/ja507852t
- H. Fei, Y. Liu, Y. An, X. Xu, G. Zeng et al., Stable all-solid-state potassium battery operating at room temperature with a composite polymer electrolyte and a sustainable organic cathode. J. Power. Sources 399, 294–298 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.124
- B. Kim, H. Kang, K. Kim, R.Y. Wang, M.J. Park, All-solid-state lithium-organic batteries comprising single-ion polymer nanop electrolytes. ChemSusChem 13, 2271–2279 (2020). https://doi.org/10.1002/cssc.202000117
- W. Li, L. Chen, Y. Sun, C. Wang, Y. Wang et al., All-solid-state secondary lithium battery using solid polymer electrolyte and anthraquinone cathode. Solid State Ion. 300, 114–119 (2017). https://doi.org/10.1016/j.ssi.2016.12.013
- Y. Shi, Y. Chen, Y. Liang, J. Andrews, H. Dong et al., Chemically inert covalently networked triazole-based solid polymer electrolytes for stable all-solid-state lithium batteries. J. Mater. Chem. A 7, 19691–19695 (2019). https://doi.org/10.1039/C9TA05885K
- M. Lécuyer, J. Gaubicher, A.-L. Barrès, F. Dolhem, M. Deschamps et al., A rechargeable lithium/quinone battery using a commercial polymer electrolyte. Electrochem. Commun. 55, 22–25 (2015). https://doi.org/10.1016/j.elecom.2015.03.010
- M. Lécuyer, M. Deschamps, D. Guyomard, J. Gaubicher, P. Poizot, Electrochemical assessment of indigo carmine dye in lithium metal polymer technology. Molecules 26, 3079 (2021). https://doi.org/10.3390/molecules26113079
- W. Wei, L. Li, L. Zhang, J. Hong, G. He, An all-solid-state Li-organic battery with quinone-based polymer cathode and composite polymer electrolyte. Electrochem. Commun. 90, 21–25 (2018). https://doi.org/10.1016/j.elecom.2018.03.006
- S. Muench, R. Burges, A. Lex-Balducci, J.C. Brendel, M. Jäger et al., Printable ionic liquid-based gel polymer electrolytes for solid state all-organic batteries. Energy Storage Mater. 25, 750–755 (2020). https://doi.org/10.1016/j.ensm.2019.09.011
- J. Zhang, Z. Chen, Q. Ai, T. Terlier, F. Hao et al., Microstructure engineering of solid-state composite cathode via solvent-assisted processing. Joule 5, 1845–1859 (2021). https://doi.org/10.1016/j.joule.2021.05.017
- F. Hao, X. Chi, Y. Liang, Y. Zhang, R. Xu et al., Taming active material-solid electrolyte interfaces with organic cathode for all-solid-state batteries. Joule 3, 1349–1359 (2019). https://doi.org/10.1016/j.joule.2019.03.017
- X. Zhou, Y. Zhang, M. Shen, Z. Fang, T. Kong et al., A highly stable Li-organic all-solid-state battery based on sulfide electrolytes. Adv. Energy Mater. 12, 2103932 (2022). https://doi.org/10.1002/aenm.202103932
- Z. Yang, F. Wang, Z. Hu, J. Chu, H. Zhan et al., Room-temperature all-solid-state lithium–organic batteries based on sulfide electrolytes and organodisulfide cathodes. Adv. Energy Mater. 11, 2102962 (2021). https://doi.org/10.1002/aenm.202102962
References
C. Yang, Z. Suo, Hydrogel ionotronics. Nat. Rev. Mater. 3, 125–142 (2018). https://doi.org/10.1038/s41578-018-0018-7
H.J. Kim, B. Chen, Z. Suo, R.C. Hayward, Ionoelastomer junctions between polymer networks of fixed anions and cations. Science 367, 773–776 (2020). https://doi.org/10.1126/science.aay8467
W. Zhang, D.H. Seo, T. Chen, L. Wu, M. Topsakal et al., Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367, 1030–1034 (2020). https://doi.org/10.1126/science.aax3520
C.S. Rustomji, Y. Yang, T.K. Kim, J. Mac, Y.J. Kim et al., Liquefied gas electrolytes for electrochemical energy storage devices. Science 356, al4263 (2017). https://doi.org/10.1126/science.aal4263
Q. Zhao, S. Stalin, C.-Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5
C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang et al., Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019). https://doi.org/10.1038/s41586-019-1481-z
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1, 16141 (2016). https://doi.org/10.1038/nenergy.2016.141
M. Winter, B. Barnett, K. Xu, Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018). https://doi.org/10.1021/acs.chemrev.8b00422
Y. An, X. Han, Y. Liu, A. Azhar, J. Na et al., Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 18, e2103617 (2022). https://doi.org/10.1002/smll.202103617
T. Zhou, X. Huang, N. Ding, Z. Lin, Y. Yao et al., Porous polyelectrolyte frameworks: synthesis, post-ionization and advanced applications. Chem. Soc. Rev. 51, 237–267 (2022). https://doi.org/10.1039/d1cs00889g
D. Luo, M. Li, Q. Ma, G. Wen, H. Dou et al., Porous organic polymers for Li-chemistry-based batteries: functionalities and characterization studies. Chem. Soc. Rev. 51, 2917–2938 (2022). https://doi.org/10.1039/d1cs01014j
P.J. Waller, F. Gándara, O.M. Yaghi, Chemistry of covalent organic frameworks. Acc. Chem. Res. 48, 3053–3063 (2015). https://doi.org/10.1021/acs.accounts.5b00369
J. Li, X. Jing, Q. Li, S. Li, X. Gao et al., Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 49, 3565–3604 (2020). https://doi.org/10.1039/d0cs00017e
S.-Y. Ding, W. Wang, Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42, 548–568 (2013). https://doi.org/10.1039/c2cs35072f
D. Zhu, G. Xu, M. Barnes, Y. Li, C.-P. Tseng et al., Covalent organic frameworks for batteries. Adv. Funct. Mater. 31, 2100505 (2021). https://doi.org/10.1002/adfm.202100505
H. Wang, Z. Zeng, P. Xu, L. Li, G. Zeng et al., Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem. Soc. Rev. 48, 488–516 (2019). https://doi.org/10.1039/c8cs00376a
R.-R. Liang, S.-Y. Jiang, A. Ru-Han, X. Zhao, Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 49, 3920–3951 (2020). https://doi.org/10.1039/d0cs00049c
F. Meng, S. Bi, Z. Sun, B. Jiang, D. Wu et al., Synthesis of ionic vinylene-linked covalent organic frameworks through quaternization-activated Knoevenagel condensation. Angew. Chem. Int. Ed. Engl. 60, 13614–13620 (2021). https://doi.org/10.1002/anie.202104375
D.A. Vazquez-Molina, G.S. Mohammad-Pour, C. Lee, M.W. Logan, X. Duan et al., Mechanically shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast Li-ion conductivity. J. Am. Chem. Soc. 138, 9767–9770 (2016). https://doi.org/10.1021/jacs.6b05568
C. Li, D.-D. Wang, G.S.H. Poon Ho, Z. Zhang, J. Huang et al., Anthraquinone-based silicate covalent organic frameworks as solid electrolyte interphase for high-performance lithium–metal batteries. J. Am. Chem. Soc 145, 24603–24614 (2023). https://doi.org/10.1021/jacs.3c06723
Z. Meng, R.M. Stolz, K.A. Mirica, Two-dimensional chemiresistive covalent organic framework with high intrinsic conductivity. J. Am. Chem. Soc. 141, 11929–11937 (2019). https://doi.org/10.1021/jacs.9b03441
Y. Hu, N. Dunlap, S. Wan, S. Lu, S. Huang et al., Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity. J. Am. Chem. Soc. 141, 7518–7525 (2019). https://doi.org/10.1021/jacs.9b02448
G. Zhang, Y.-L. Hong, Y. Nishiyama, S. Bai, S. Kitagawa et al., Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte. J. Am. Chem. Soc. 141, 1227–1234 (2019). https://doi.org/10.1021/jacs.8b07670
H. Xu, S. Tao, D. Jiang, Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 15, 722–726 (2016). https://doi.org/10.1038/nmat4611
L. Yao, C. Ma, L. Sun, D. Zhang, Y. Chen et al., Highly crystalline polyimide covalent organic framework as dual-active-center cathode for high-performance lithium-ion batteries. J. Am. Chem. Soc. 144, 23534–23542 (2022). https://doi.org/10.1021/jacs.2c10534
S. Xu, M. Richter, X. Feng, Vinylene-linked two-dimensional covalent organic frameworks: synthesis and functions. Acc. Mater. Res. 2, 252–265 (2021). https://doi.org/10.1021/accountsmr.1c00017
W. Gong, Y. Ouyang, S. Guo, Y. Xiao, Q. Zeng et al., Covalent organic framework with multi-cationic molecular chains for gate mechanism controlled superionic conduction in all-solid-state batteries. Angew. Chem. Int. Ed. 62, e202302505 (2023). https://doi.org/10.1002/anie.202302505
D. Guo, D.B. Shinde, W. Shin, E. Abou-Hamad, A.-H. Emwas et al., Foldable solid-state batteries enabled by electrolyte mediation in covalent organic frameworks. Adv. Mater. 34, e2201410 (2022). https://doi.org/10.1002/adma.202201410
K. Jeong, S. Park, G.Y. Jung, S.H. Kim, Y.-H. Lee et al., Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 141, 5880–5885 (2019). https://doi.org/10.1021/jacs.9b00543
X. Li, Q. Hou, W. Huang, H.-S. Xu, X. Wang et al., Solution-processable covalent organic framework electrolytes for all-solid-state Li–organic batteries. ACS Energy Lett. 5, 3498–3506 (2020). https://doi.org/10.1021/acsenergylett.0c01889
G. Zhao, Z. Mei, L. Duan, Q. An, Y. Yang et al., COF-based single Li+ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasi-solid-state organic batteries. Carbon Energy 5, e248 (2023). https://doi.org/10.1002/cey2.248
X. Li, K.P. Loh, Recent progress in covalent organic frameworks as solid-state ion conductors. ACS Mater. Lett. 1, 327–335 (2019). https://doi.org/10.1021/acsmaterialslett.9b00185
S. Yuan, X. Li, J. Zhu, G. Zhang, P. Van Puyvelde et al., Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 48, 2665–2681 (2019). https://doi.org/10.1039/c8cs00919h
H.S. Sasmal, H.B. Aiyappa, S.N. Bhange, S. Karak, A. Halder et al., Superprotonic conductivity in flexible porous covalent organic framework membranes. Angew. Chem. Int. Ed. 57, 10894–10898 (2018). https://doi.org/10.1002/anie.201804753
M.C. Senarathna, H. Li, S.D. Perera, J. Torres-Correas, S.D. Diwakara et al., Highly flexible dielectric films from solution processable covalent organic frameworks. Angew. Chem. Int. Ed. 62, e202312617 (2023). https://doi.org/10.1002/anie.202312617
F. Biedermann, H.-J. Schneider, Experimental binding energies in supramolecular complexes. Chem. Rev. 116, 5216–5300 (2016). https://doi.org/10.1021/acs.chemrev.5b00583
S. Bai, B. Kim, C. Kim, O. Tamwattana, H. Park et al., Permselective metal-organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 16, 77–84 (2021). https://doi.org/10.1038/s41565-020-00788-x
R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa et al., Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013). https://doi.org/10.1038/nmat3602
K. Jeong, S. Park, S.-Y., Lee Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries. J. Mater. Chem. A 7, 1917–1935 (2019). https://doi.org/10.1039/C8TA09056D
K.-S. Oh, S. Park, J.-S. Kim, Y. Yao, J.-H. Kim et al., Electrostatic covalent organic frameworks as on-demand molecular traps for high-energy Li metal battery electrodes. ACS Energy Lett. 8, 2463–2474 (2023). https://doi.org/10.1021/acsenergylett.3c00600
K.-S. Oh, J.-H. Kim, S.-H. Kim, D. Oh, S.-P. Han et al., Single-ion conducting soft electrolytes for semi-solid lithium metal batteries enabling cell fabrication and operation under ambient conditions. Adv. Energy Mater. 11, 2170151 (2021). https://doi.org/10.1002/aenm.202170151
D.H. Kim, Y.-H. Lee, Y.B. Song, H. Kwak, S.-Y. Lee et al., Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries. ACS Energy Lett. 5, 718–727 (2020). https://doi.org/10.1021/acsenergylett.0c00251
H. Chen, H. Tu, C. Hu, Y. Liu, D. Dong et al., Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc. 140, 896–899 (2018). https://doi.org/10.1021/jacs.7b12292
Y. Cao, M. Wang, H. Wang, C. Han, F. Pan et al., Covalent organic framework for rechargeable batteries: mechanisms and properties of ionic conduction. Adv. Energy Mater. 12, 2200057 (2022). https://doi.org/10.1002/aenm.202200057
Z. Zhu, M. Hong, D. Guo, J. Shi, Z. Tao et al., All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. J. Am. Chem. Soc. 136, 16461–16464 (2014). https://doi.org/10.1021/ja507852t
H. Fei, Y. Liu, Y. An, X. Xu, G. Zeng et al., Stable all-solid-state potassium battery operating at room temperature with a composite polymer electrolyte and a sustainable organic cathode. J. Power. Sources 399, 294–298 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.124
B. Kim, H. Kang, K. Kim, R.Y. Wang, M.J. Park, All-solid-state lithium-organic batteries comprising single-ion polymer nanop electrolytes. ChemSusChem 13, 2271–2279 (2020). https://doi.org/10.1002/cssc.202000117
W. Li, L. Chen, Y. Sun, C. Wang, Y. Wang et al., All-solid-state secondary lithium battery using solid polymer electrolyte and anthraquinone cathode. Solid State Ion. 300, 114–119 (2017). https://doi.org/10.1016/j.ssi.2016.12.013
Y. Shi, Y. Chen, Y. Liang, J. Andrews, H. Dong et al., Chemically inert covalently networked triazole-based solid polymer electrolytes for stable all-solid-state lithium batteries. J. Mater. Chem. A 7, 19691–19695 (2019). https://doi.org/10.1039/C9TA05885K
M. Lécuyer, J. Gaubicher, A.-L. Barrès, F. Dolhem, M. Deschamps et al., A rechargeable lithium/quinone battery using a commercial polymer electrolyte. Electrochem. Commun. 55, 22–25 (2015). https://doi.org/10.1016/j.elecom.2015.03.010
M. Lécuyer, M. Deschamps, D. Guyomard, J. Gaubicher, P. Poizot, Electrochemical assessment of indigo carmine dye in lithium metal polymer technology. Molecules 26, 3079 (2021). https://doi.org/10.3390/molecules26113079
W. Wei, L. Li, L. Zhang, J. Hong, G. He, An all-solid-state Li-organic battery with quinone-based polymer cathode and composite polymer electrolyte. Electrochem. Commun. 90, 21–25 (2018). https://doi.org/10.1016/j.elecom.2018.03.006
S. Muench, R. Burges, A. Lex-Balducci, J.C. Brendel, M. Jäger et al., Printable ionic liquid-based gel polymer electrolytes for solid state all-organic batteries. Energy Storage Mater. 25, 750–755 (2020). https://doi.org/10.1016/j.ensm.2019.09.011
J. Zhang, Z. Chen, Q. Ai, T. Terlier, F. Hao et al., Microstructure engineering of solid-state composite cathode via solvent-assisted processing. Joule 5, 1845–1859 (2021). https://doi.org/10.1016/j.joule.2021.05.017
F. Hao, X. Chi, Y. Liang, Y. Zhang, R. Xu et al., Taming active material-solid electrolyte interfaces with organic cathode for all-solid-state batteries. Joule 3, 1349–1359 (2019). https://doi.org/10.1016/j.joule.2019.03.017
X. Zhou, Y. Zhang, M. Shen, Z. Fang, T. Kong et al., A highly stable Li-organic all-solid-state battery based on sulfide electrolytes. Adv. Energy Mater. 12, 2103932 (2022). https://doi.org/10.1002/aenm.202103932
Z. Yang, F. Wang, Z. Hu, J. Chu, H. Zhan et al., Room-temperature all-solid-state lithium–organic batteries based on sulfide electrolytes and organodisulfide cathodes. Adv. Energy Mater. 11, 2102962 (2021). https://doi.org/10.1002/aenm.202102962