Elucidating Ion Transport Phenomena in Sulfide/Polymer Composite Electrolytes for Practical Solid-State Batteries
Corresponding Author: Sang‑Young Lee
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 179
Abstract
Despite the enormous interest in inorganic/polymer composite solid-state electrolytes (CSEs) for solid-state batteries (SSBs), the underlying ion transport phenomena in CSEs have not yet been elucidated. Here, we address this issue by formulating a mechanistic understanding of bi-percolating ion channels formation and ion conduction across inorganic-polymer electrolyte interfaces in CSEs. A model CSE is composed of argyrodite-type Li6PS5Cl (LPSCl) and gel polymer electrolyte (GPE, including Li+-glyme complex as an ion-conducting medium). The percolation threshold of the LPSCl phase in the CSE strongly depends on the elasticity of the GPE phase. Additionally, manipulating the solvation/desolvation behavior of the Li+-glyme complex in the GPE facilitates ion conduction across the LPSCl-GPE interface. The resulting scalable CSE (area = 8 × 6 (cm × cm), thickness ~ 40 μm) can be assembled with a high-mass-loading LiNi0.7Co0.15Mn0.15O2 cathode (areal-mass-loading = 39 mg cm–2) and a graphite anode (negative (N)/positive (P) capacity ratio = 1.1) in order to fabricate an SSB full cell with bi-cell configuration. Under this constrained cell condition, the SSB full cell exhibits high volumetric energy density (480 Wh Lcell−1) and stable cyclability at 25 °C, far exceeding the values reported by previous CSE-based SSBs.
Highlights:
1 Mechanistic understanding of ion transport phenomena in composite solid-state electrolytes (CSEs) for practical solid-state batteries is conducted.
2 Percolation threshold formation of the inorganic (LPSCl) phase in the CSEs depends on elasticity of the gel polymer electrolyte (GPE) phase.
3 Manipulating the solvation/desolvation behavior of the GPE phase facilitates ion conduction across the LPSCl-GPE interfaces.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1, 1–4 (2016). https://doi.org/10.1038/nenergy.2016.141
- A. Banerjee, X. Wang, C. Fang, E.A. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101
- J. Wu, S. Liu, F. Han, X. Yao, C. Wang, Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 33, 2000751 (2021). https://doi.org/10.1002/adma.202000751
- Y. Jin, Q. He, G. Liu, Z. Gu, M. Wu et al., Fluorinated Li10GeP2S12 enables stable all-solid-state lithium batteries. Adv. Mater. 35, 2211047 (2023). https://doi.org/10.1002/adma.202211047
- L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang et al., Interfaces in solid-state lithium batteries. Ada. Mater. 2, 35 (2018). https://doi.org/10.1016/j.joule.2018.07.009
- X. Miao, H. Wang, R. Sun, C. Wang, Z. Zhang et al., Interface engineering of inorganic solid-state electrolytes for high-performance lithium metal batteries. Energy Environ. Sci. 13, 3780–3822 (2020). https://doi.org/10.1039/D0EE01435D
- Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro et al., High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020). https://doi.org/10.1038/s41560-020-0604-y
- T. Dong, J. Zhang, G. Xu, J. Chai, H. Du et al., A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 11, 1197–1203 (2018). https://doi.org/10.1039/C7EE03365F
- D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
- Q. Zhao, S. Stalin, C.-Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5
- W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2, 17035 (2017). https://doi.org/10.1038/nenergy.2017.35
- W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram et al., Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016). https://doi.org/10.1021/jacs.6b05341
- C. Zhao, X.-Q. Zhang, X.-B. Cheng, Q. Zhang, An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. USA 114, 11069 (2017). https://doi.org/10.1073/pnas.1708489114
- D. Tan, A. Banerjee, Z. Chen, Y.S. Meng, From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020). https://doi.org/10.1038/s41565-021-00877-5
- D. Lin, W. Liu, Y. Liu, H.R. Lee, P.-C. Hsu et al., Highionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 16, 459–465 (2016). https://doi.org/10.1021/acs.nanolett.5b04117
- X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu et al., Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785 (2017). https://doi.org/10.1021/jacs.7b06364
- L. Yang, Z. Wang, Y. Feng, R. Tan, Y. Zuo et al., Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li– electrolyte interface for solid state lithium-ion batteries. Adv. Energy Mater. 7, 1701437 (2018). https://doi.org/10.1002/aenm.201701437
- Q. Guo, F. Xu, L. Shen, S. Deng, Z. Wang et al., 20 μm-Thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries. Energy Mater. Adv. 2022, 9753506 (2022). https://doi.org/10.34133/2022/9753506
- Q. Guo, F. Xu, L. Shen, Z. Wang, J. Wang et al., Poly(ethylene glycol) brush on Li6.4La3Zr1.4Ta0.6O1.2 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries. J. Power Sources 498, 229934 (2021). https://doi.org/10.1016/j.jpowsour.2021.229934
- X.C. Chen, X. Liu, A.S. Pandian, K. Lou, F.M. Delnick et al., Determining and minimizing resistance for ion transport at the polymer/ceramic electrolyte interface. ACS Energy Lett. 4, 1080–1085 (2019). https://doi.org/10.1021/acsenergylett.9b00495
- X.C. Chen, R.L. Sacci, N.C. Osti, M. Tyagi, Y. Wang et al., Study of segmental dynamics and ion transport in polymer–ceramic composite electrolytes by quasi-elastic neutron scattering. Mol. Syst. Des. Eng. 4, 379–385 (2019). https://doi.org/10.1039/C9ME90023C
- L. Fan, H. He, C. Nan, Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0
- K.-S. Oh, J.-H. Kim, S.-H. Kim, D. Oh, S.-P. Han et al., Single-ion conducting soft electrolytes for semi-solid lithium metal batteries enabling cell fabrication and operation under ambient conditions. Adv. Energy Mater. 11, 2101813 (2021). https://doi.org/10.1002/aenm.202101813
- S.-K. Cho, K.-S. Oh, J.C. Shin, J.E. Lee, K.M. Lee et al., Anion-rectifying polymeric single lithium-ion conductors. Adv. Funct. Mater. 32, 2107753 (2021). https://doi.org/10.1002/adfm.202107753
- K.-S. Oh, S. Park, J.-S. Kim, Y. Yao, J.-H. Kim et al., Electrostatic covalent organic frameworks as on-demand molecular traps for high-energy Li metal battery electrodes. ACS Energy Lett. 8, 2463–2474 (2023). https://doi.org/10.1021/acsenergylett.3c00600
- J. Evans, C.A. Vincent, P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987). https://doi.org/10.1016/0032-3861(87)90394-6
- D.H. Kim, D.Y. Oh, K.H. Park, Y.E. Choi, Y.J. Nam et al., Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 17, 3013–3020 (2017). https://doi.org/10.1021/acs.nanolett.7b00330
- D.H. Kim, Y.-H. Lee, Y.B. Song, H. Kwak, S.-Y. Lee et al., Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries. ACS Energy Lett. 5, 718–727 (2020). https://doi.org/10.1021/acsenergylett.0c00251
- S.-J. Cho, G.Y. Jung, S.H. Kim, M. Jang, D.-K. Yang et al., Monolithic heterojunction quasi-solid-state battery electrolytes based on thermodynamically immiscible dual phases. Energy Environ. Sci. 12, 559–565 (2019). https://doi.org/10.1039/C8EE01503A
- C. Zhang, H. Dai, P. Lu, L. Wu, B. Zhou et al., Molecular dynamics simulation of distribution and diffusion behaviour of oil–water interfaces. Molecules 24, 1905 (2019). https://doi.org/10.3390/molecules24101905
- C.H. Bennett, Efficient estimation of free energy differences from monte carlo data. J. Comp. Phys. 22, 245–268 (1976). https://doi.org/10.3390/molecules24101905
- Materials Studio 2019, Dassault Systèmes BIOVIA: San Diego, CA, 2019.
- H. Sun, Z. Jin, C. Yang, R.L.C. Akkermans, S.H. Robertson et al., COMPASS II: extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 22, 47 (2016). https://doi.org/10.1007/s00894-016-2909-0
- A.A. Samoletov, C.P. Dettmann, M.A.J. Chaplain, Thermostats for “slow” configurational modes. J. Stat. Phys. 128, 1321–1336 (2007). https://doi.org/10.1007/s10955-007-9365-2
- H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. Di Nola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984). https://doi.org/10.1063/1.448118
- A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012
- D.Y. Oh, Y.J. Nam, K.H. Park, S.H. Jung, S.-J. Cho et al., Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries. Adv. Energy Mater. 5, 1500865 (2015). https://doi.org/10.1002/aenm.201500865
- D.Y. Oh, Y.J. Nam, K.H. Park, S.H. Jung, K.T. Kim et al., Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids. Adv. Energy Mater. 9, 1802927 (2019). https://doi.org/10.1002/aenm.201500865
- J. Zagórski, J.M. Amo, M.J. Cordill, F. Aguesse, L. Buannic et al., Garnet–polymer composite electrolytes: new insights on local li-ion dynamics and electrodeposition stability with Li metal anodes. ACS Appl. Energy Mater. 2, 1734–1746 (2019). https://doi.org/10.1021/acsaem.8b01850
- C.V. Amanchukwu, X. Kong, J. Qin, Y. Cui, Z. Bao, Nonpolar alkanes modify lithium-ion solvation for improved lithium deposition and stripping. Adv. Energy Mater. 9, 1902116 (2019). https://doi.org/10.1002/aenm.201902116
- S. Randau, D. Weber, O. Olaf Kötz, R. Koerver, P. Braun et al., Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020). https://doi.org/10.1038/s41560-020-0565-1
- J.M. Whiteley, P. Taynton, W. Zhang, S.H. Lee, Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix. Adv. Mater. 27, 6922–6927 (2015). https://doi.org/10.1002/adma.201502636
- Z. Zhang, L. Wu, D. Zhou, W. Weng, X. Yao, Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries. Nano Lett. 21, 5233–5239 (2021). https://doi.org/10.1021/acs.nanolett.1c01344
- D.Y. Oh, D.H. Kim, S.H. Jung, J.-G. Han, N.-S. Choi et al., Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries. J. Mater. Chem. A 5, 20771–20779 (2017). https://doi.org/10.1039/C7TA06873E
- M.S. Park, Y.C. Jung, D.W. Kim, Hybrid solid electrolytes composed of poly(1,4-butylene adipate) and lithium aluminum germanium phosphate for all-solid-state Li/LiNi0.6Co0.2Mn0.2O2 cells. Solid State Ion. 315, 65–70 (2018). https://doi.org/10.1016/j.ssi.2017.12.007
- H. Wakayama, H. Yonekura, Y. Kawai, Three-dimensional bicontinuous nanocomposite from a self-assembled block copolymer for a high-capacity all-solid-state lithium battery cathode. Chem. Mater. 28, 4453–4459 (2016). https://doi.org/10.1021/acs.chemmater.6b01665
- T. Ates, M. Keller, J. Kulisch, T. Adermann, S. Passerini, Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. Energy Storage Mater. 18, 31261–31264 (2018). https://doi.org/10.1016/j.ensm.2018.11.011
References
J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1, 1–4 (2016). https://doi.org/10.1038/nenergy.2016.141
A. Banerjee, X. Wang, C. Fang, E.A. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101
J. Wu, S. Liu, F. Han, X. Yao, C. Wang, Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 33, 2000751 (2021). https://doi.org/10.1002/adma.202000751
Y. Jin, Q. He, G. Liu, Z. Gu, M. Wu et al., Fluorinated Li10GeP2S12 enables stable all-solid-state lithium batteries. Adv. Mater. 35, 2211047 (2023). https://doi.org/10.1002/adma.202211047
L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang et al., Interfaces in solid-state lithium batteries. Ada. Mater. 2, 35 (2018). https://doi.org/10.1016/j.joule.2018.07.009
X. Miao, H. Wang, R. Sun, C. Wang, Z. Zhang et al., Interface engineering of inorganic solid-state electrolytes for high-performance lithium metal batteries. Energy Environ. Sci. 13, 3780–3822 (2020). https://doi.org/10.1039/D0EE01435D
Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro et al., High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020). https://doi.org/10.1038/s41560-020-0604-y
T. Dong, J. Zhang, G. Xu, J. Chai, H. Du et al., A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 11, 1197–1203 (2018). https://doi.org/10.1039/C7EE03365F
D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
Q. Zhao, S. Stalin, C.-Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5
W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2, 17035 (2017). https://doi.org/10.1038/nenergy.2017.35
W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram et al., Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016). https://doi.org/10.1021/jacs.6b05341
C. Zhao, X.-Q. Zhang, X.-B. Cheng, Q. Zhang, An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. USA 114, 11069 (2017). https://doi.org/10.1073/pnas.1708489114
D. Tan, A. Banerjee, Z. Chen, Y.S. Meng, From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020). https://doi.org/10.1038/s41565-021-00877-5
D. Lin, W. Liu, Y. Liu, H.R. Lee, P.-C. Hsu et al., Highionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 16, 459–465 (2016). https://doi.org/10.1021/acs.nanolett.5b04117
X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu et al., Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785 (2017). https://doi.org/10.1021/jacs.7b06364
L. Yang, Z. Wang, Y. Feng, R. Tan, Y. Zuo et al., Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li– electrolyte interface for solid state lithium-ion batteries. Adv. Energy Mater. 7, 1701437 (2018). https://doi.org/10.1002/aenm.201701437
Q. Guo, F. Xu, L. Shen, S. Deng, Z. Wang et al., 20 μm-Thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries. Energy Mater. Adv. 2022, 9753506 (2022). https://doi.org/10.34133/2022/9753506
Q. Guo, F. Xu, L. Shen, Z. Wang, J. Wang et al., Poly(ethylene glycol) brush on Li6.4La3Zr1.4Ta0.6O1.2 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries. J. Power Sources 498, 229934 (2021). https://doi.org/10.1016/j.jpowsour.2021.229934
X.C. Chen, X. Liu, A.S. Pandian, K. Lou, F.M. Delnick et al., Determining and minimizing resistance for ion transport at the polymer/ceramic electrolyte interface. ACS Energy Lett. 4, 1080–1085 (2019). https://doi.org/10.1021/acsenergylett.9b00495
X.C. Chen, R.L. Sacci, N.C. Osti, M. Tyagi, Y. Wang et al., Study of segmental dynamics and ion transport in polymer–ceramic composite electrolytes by quasi-elastic neutron scattering. Mol. Syst. Des. Eng. 4, 379–385 (2019). https://doi.org/10.1039/C9ME90023C
L. Fan, H. He, C. Nan, Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0
K.-S. Oh, J.-H. Kim, S.-H. Kim, D. Oh, S.-P. Han et al., Single-ion conducting soft electrolytes for semi-solid lithium metal batteries enabling cell fabrication and operation under ambient conditions. Adv. Energy Mater. 11, 2101813 (2021). https://doi.org/10.1002/aenm.202101813
S.-K. Cho, K.-S. Oh, J.C. Shin, J.E. Lee, K.M. Lee et al., Anion-rectifying polymeric single lithium-ion conductors. Adv. Funct. Mater. 32, 2107753 (2021). https://doi.org/10.1002/adfm.202107753
K.-S. Oh, S. Park, J.-S. Kim, Y. Yao, J.-H. Kim et al., Electrostatic covalent organic frameworks as on-demand molecular traps for high-energy Li metal battery electrodes. ACS Energy Lett. 8, 2463–2474 (2023). https://doi.org/10.1021/acsenergylett.3c00600
J. Evans, C.A. Vincent, P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987). https://doi.org/10.1016/0032-3861(87)90394-6
D.H. Kim, D.Y. Oh, K.H. Park, Y.E. Choi, Y.J. Nam et al., Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 17, 3013–3020 (2017). https://doi.org/10.1021/acs.nanolett.7b00330
D.H. Kim, Y.-H. Lee, Y.B. Song, H. Kwak, S.-Y. Lee et al., Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries. ACS Energy Lett. 5, 718–727 (2020). https://doi.org/10.1021/acsenergylett.0c00251
S.-J. Cho, G.Y. Jung, S.H. Kim, M. Jang, D.-K. Yang et al., Monolithic heterojunction quasi-solid-state battery electrolytes based on thermodynamically immiscible dual phases. Energy Environ. Sci. 12, 559–565 (2019). https://doi.org/10.1039/C8EE01503A
C. Zhang, H. Dai, P. Lu, L. Wu, B. Zhou et al., Molecular dynamics simulation of distribution and diffusion behaviour of oil–water interfaces. Molecules 24, 1905 (2019). https://doi.org/10.3390/molecules24101905
C.H. Bennett, Efficient estimation of free energy differences from monte carlo data. J. Comp. Phys. 22, 245–268 (1976). https://doi.org/10.3390/molecules24101905
Materials Studio 2019, Dassault Systèmes BIOVIA: San Diego, CA, 2019.
H. Sun, Z. Jin, C. Yang, R.L.C. Akkermans, S.H. Robertson et al., COMPASS II: extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 22, 47 (2016). https://doi.org/10.1007/s00894-016-2909-0
A.A. Samoletov, C.P. Dettmann, M.A.J. Chaplain, Thermostats for “slow” configurational modes. J. Stat. Phys. 128, 1321–1336 (2007). https://doi.org/10.1007/s10955-007-9365-2
H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. Di Nola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984). https://doi.org/10.1063/1.448118
A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012
D.Y. Oh, Y.J. Nam, K.H. Park, S.H. Jung, S.-J. Cho et al., Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries. Adv. Energy Mater. 5, 1500865 (2015). https://doi.org/10.1002/aenm.201500865
D.Y. Oh, Y.J. Nam, K.H. Park, S.H. Jung, K.T. Kim et al., Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids. Adv. Energy Mater. 9, 1802927 (2019). https://doi.org/10.1002/aenm.201500865
J. Zagórski, J.M. Amo, M.J. Cordill, F. Aguesse, L. Buannic et al., Garnet–polymer composite electrolytes: new insights on local li-ion dynamics and electrodeposition stability with Li metal anodes. ACS Appl. Energy Mater. 2, 1734–1746 (2019). https://doi.org/10.1021/acsaem.8b01850
C.V. Amanchukwu, X. Kong, J. Qin, Y. Cui, Z. Bao, Nonpolar alkanes modify lithium-ion solvation for improved lithium deposition and stripping. Adv. Energy Mater. 9, 1902116 (2019). https://doi.org/10.1002/aenm.201902116
S. Randau, D. Weber, O. Olaf Kötz, R. Koerver, P. Braun et al., Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020). https://doi.org/10.1038/s41560-020-0565-1
J.M. Whiteley, P. Taynton, W. Zhang, S.H. Lee, Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix. Adv. Mater. 27, 6922–6927 (2015). https://doi.org/10.1002/adma.201502636
Z. Zhang, L. Wu, D. Zhou, W. Weng, X. Yao, Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries. Nano Lett. 21, 5233–5239 (2021). https://doi.org/10.1021/acs.nanolett.1c01344
D.Y. Oh, D.H. Kim, S.H. Jung, J.-G. Han, N.-S. Choi et al., Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries. J. Mater. Chem. A 5, 20771–20779 (2017). https://doi.org/10.1039/C7TA06873E
M.S. Park, Y.C. Jung, D.W. Kim, Hybrid solid electrolytes composed of poly(1,4-butylene adipate) and lithium aluminum germanium phosphate for all-solid-state Li/LiNi0.6Co0.2Mn0.2O2 cells. Solid State Ion. 315, 65–70 (2018). https://doi.org/10.1016/j.ssi.2017.12.007
H. Wakayama, H. Yonekura, Y. Kawai, Three-dimensional bicontinuous nanocomposite from a self-assembled block copolymer for a high-capacity all-solid-state lithium battery cathode. Chem. Mater. 28, 4453–4459 (2016). https://doi.org/10.1021/acs.chemmater.6b01665
T. Ates, M. Keller, J. Kulisch, T. Adermann, S. Passerini, Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. Energy Storage Mater. 18, 31261–31264 (2018). https://doi.org/10.1016/j.ensm.2018.11.011