Stable Cycling of All-Solid-State Lithium Batteries Enabled by Cyano-Molecular Diamond Improved Polymer Electrolytes
Corresponding Author: Jin‑Cheng Zheng
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 217
Abstract
The interfacial instability of the poly(ethylene oxide) (PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batteries. In this work, we have shown an effective additive 1-adamantanecarbonitrile, which contributes to the excellent performance of the poly(ethylene oxide)-based electrolytes. Owing to the strong interaction of the 1-Adamantanecarbonitrile to the polymer matrix and anions, the coordination of the Li+-EO is weakened, and the binding effect of anions is strengthened, thereby improving the Li+ conductivity and the electrochemical stability. The diamond building block on the surface of the lithium anode can suppress the growth of lithium dendrites. Importantly, the 1-Adamantanecarbonitrile also regulates the formation of LiF in the solid electrolyte interface and cathode electrolyte interface, which contributes to the interfacial stability (especially at high voltages) and protects the electrodes, enabling all-solid-state batteries to cycle at high voltages for long periods of time. Therefore, the Li/Li symmetric cell undergoes long-term lithium plating/stripping for more than 2000 h. 1-Adamantanecarbonitrile-poly(ethylene oxide)-based LFP/Li and 4.3 V Ni0.8Mn0.1Co0.1O2/Li all-solid-state batteries achieved stable cycles for 1000 times, with capacity retention rates reaching 85% and 80%, respectively.
Highlights:
1 Additive of 1-adamantanecarbonitrile is used to strengthen the poly(ethylene oxide) based solid polymer electrolytes (SPEs).
2 LiF-based integral cathode/SPE and Li/SPE interfaces are generated.
3 The NMC811/Li all-solid-state performs stable cycle at 45 °C (1000, 80%).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Zhang, L. Huang, H. Xu, X. Zhang, Z. Chen et al., A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience 2, 201–208 (2022). https://doi.org/10.1016/j.esci.2022.03.001
- Y. Yao, Y. Cao, G. Li, C. Liu, Z. Jiang et al., Enhanced electrochemical performance of poly(ethylene oxide) composite polymer electrolyte via incorporating lithiated covalent organic framework. Trans. Tianjin Univ. 28, 67–72 (2022). https://doi.org/10.1007/s12209-021-00300-z
- L. Nie, S. Chen, M. Zhang, T. Gao, Y. Zhang et al., An in situ polymerized interphase engineering for high-voltage all-solid-state lithium-metal batteries. Nano Res. 17, 2687–2692 (2024). https://doi.org/10.1007/s12274-023-6096-x
- Z. Song, F. Chen, M. Martinez-Ibañez, W. Feng, M. Forsyth et al., A reflection on polymer electrolytes for solid-state lithium metal batteries. Nat. Commun. 14, 4884 (2023). https://doi.org/10.1038/s41467-023-40609-y
- H. Wang, H. Cheng, D. Li, F. Li, Y. Wei et al., Lithiated copper polyphthalocyanine with extended π-conjugation induces LiF-rich solid electrolyte interphase toward long-life solid-state lithium-metal batteries. Adv. Energy Mater. 13, 2204425 (2023). https://doi.org/10.1002/aenm.202204425
- J. Li, H. Hu, W. Fang, J. Ding, D. Yuan et al., Impact of fluorine-based lithium salts on SEI for all-solid-state PEO-based lithium metal batteries. Adv. Funct. Mater. 33, 2303718 (2023). https://doi.org/10.1002/adfm.202303718
- Y. Wei, T.-H. Liu, W. Zhou, H. Cheng, X. Liu et al., Enabling all-solid-state Li metal batteries operated at 30 °C by molecular regulation of polymer electrolyte. Adv. Energy Mater. 13, 2203547 (2023). https://doi.org/10.1002/aenm.202203547
- B. Tong, Z. Song, W. Feng, J. Zhu, H. Yu et al., Design of a teflon-like anion for unprecedently enhanced lithium metal polymer batteries. Advanced Energy Materials. 13(15), 2204085 (2023). https://doi.org/10.1002/aenm.202204085
- L. Tang, B. Chen, Z. Zhang, C. Ma, J. Chen et al., Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries. Nat. Commun. 14, 2301 (2023). https://doi.org/10.1038/s41467-023-37997-6
- D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5(9), 2326–2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
- D.J. Brooks, B.V. Merinov, W.A. Goddard, B. Kozinsky, J. Mailoa, Atomistic description of ionic diffusion in peo–litfsi: effect of temperature, molecular weight, and ionic concentration. Macromolecules 51(21), 8987–8995 (2018). https://doi.org/10.1021/acs.macromol.8b01753
- J.K. Eckhardt, T. Fuchs, S. Burkhardt, P.J. Klar, J. Janek et al., Guidelines for impedance analysis of parent metal anodes in solid-state batteries and the role of current constriction at interface voids, heterogeneities, and SEI. Adv. Mater. Interfaces 10, 2202354 (2023). https://doi.org/10.1002/admi.202202354
- N. Wang, Y. Wei, S. Yu, W. Zhang, X. Huang et al., A flexible PEO-based polymer electrolyte with cross-linked network for high-voltage all solid-state lithium-ion battery. J. Mater. Sci. Technol. 183, 206–214 (2024). https://doi.org/10.1016/j.jmst.2023.10.005
- M. Zhang, R. Tan, M. Wang, Z. Zhang, C. John Low et al., Hypercrosslinked porous and coordination polymer materials for electrolyte membranes in lithium-metal batteries. Battery Energy 3, 230050 (2024). https://doi.org/10.1002/bte2.20230050
- Y. An, X. Han, Y. Liu, A. Azhar, J. Na et al., Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 18, 2103617 (2022). https://doi.org/10.1002/smll.202103617
- H. Yan, T. Wang, L. Liu, T. Song, C. Li et al., High voltage stable cycling of all-solid-state lithium metal batteries enabled by top-down direct fluorinated poly(ethylene oxide)-based electrolytes. J. Power. Sources 557, 232559 (2023). https://doi.org/10.1016/j.jpowsour.2022.232559
- L. Liu, T. Wang, L. Sun, T. Song, H. Yan et al., Stable cycling of all-solid-state lithium metal batteries enabled by salt engineering of PEO-based polymer electrolytes. Energy Environ. Mater. 7, 12580 (2024). https://doi.org/10.1002/eem2.12580
- B. Guo, Y. Fu, J. Wang, Y. Gong, Y. Zhao et al., Strategies and characterization methods for achieving high performance PEO-based solid-state lithium-ion batteries. Chem. Commun. 58, 8182–8193 (2022). https://doi.org/10.1039/d2cc02306g
- M.A. Cabañero Martínez, N. Boaretto, A.J. Naylor, F. Alcaide, G.D. Salian et al., Are polymer-based electrolytes ready for high-voltage lithium battery applications? An overview of degradation mechanisms and battery performance. Adv. Energy Mater. 12, 2201264 (2022). https://doi.org/10.1002/aenm.202201264
- G. Homann, L. Stolz, K. Neuhaus, M. Winter, J. Kasnatscheew, Effective optimization of high voltage solid-state lithium batteries by using poly(ethylene oxide)-based polymer electrolyte with semi-interpenetrating network. Adv. Funct. Mater. 30, 2006289 (2020). https://doi.org/10.1002/adfm.202006289
- F. Fu, Y. Zheng, N. Jiang, Y. Liu, C. Sun et al., A dual-salt PEO-based polymer electrolyte with cross-linked polymer network for high-voltage lithium metal batteries. Chem. Eng. J. 450, 137776 (2022). https://doi.org/10.1016/j.cej.2022.137776
- W. Li, J. Liu, D. Zhao, Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016). https://doi.org/10.1038/natrevmats.2016.23
- Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49, 8790–8839 (2020). https://doi.org/10.1039/d0cs00305k
- K.G. Naik, D. Chatterjee, P.P. Mukherjee, Solid electrolyte-cathode interface dictates reaction heterogeneity and anode stability. ACS Appl. Mater. Interfaces 14, 45308–45319 (2022). https://doi.org/10.1021/acsami.2c11339
- J. Guo, W. Zhang, Z. Shen, S. Mao, X. Wang et al., Tuning ion/electron conducting properties at electrified interfaces for practical all-solid-state Li–metal batteries. Adv. Funct. Mater. 32, 2204742 (2022). https://doi.org/10.1002/adfm.202204742
- M. Yi, J. Li, M. Wang, X. Fan, B. Hong et al., Suppressing structural degradation of single crystal nickel-rich cathodes in PEO-based all-solid-state batteries: mechanistic insight and performance. Energy Storage Mater. 54, 579–588 (2023). https://doi.org/10.1016/j.ensm.2022.11.007
- R. Fang, B. Xu, N.S. Grundish, Y. Xia, Y. Li et al., Li2 S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries. Angew. Chem. Int. Ed. 60, 17701–17706 (2021). https://doi.org/10.1002/anie.202106039
- D. Cai, X. Wu, J. Xiang, M. Li, H. Su et al., Ionic-liquid-containing polymer interlayer modified PEO-based electrolyte for stable high-voltage solid-state lithium metal battery. Chem. Eng. J. 424, 130522 (2021). https://doi.org/10.1016/j.cej.2021.130522
- Y. Liu, Y. Zhao, W. Lu, L. Sun, L. Lin et al., PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries. Nano Energy 88, 106205 (2021). https://doi.org/10.1016/j.nanoen.2021.106205
- N. Wu, P.-H. Chien, Y. Li, A. Dolocan, H. Xu et al., Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte. J. Am. Chem. Soc. 142, 2497–2505 (2020). https://doi.org/10.1021/jacs.9b12233
- B. Xu, X. Li, C. Yang, Y. Li, N.S. Grundish et al., Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 143, 6542–6550 (2021). https://doi.org/10.1021/jacs.1c00752
- O. Sheng, J. Zheng, Z. Ju, C. Jin, Y. Wang et al., In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by cryo-TEM. Adv. Mater. 32, e2000223 (2020). https://doi.org/10.1002/adma.202000223
- J. Zheng, C. Sun, Z. Wang, S. Liu, B. An et al., Double ionic-electronic transfer interface layers for all-solid-state lithium batteries. Angew. Chem. Int. Ed. Engl. 60, 18448–18453 (2021). https://doi.org/10.1002/anie.202104183
- H. Xu, P.-H. Chien, J. Shi, Y. Li, N. Wu et al., High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proc. Natl. Acad. Sci. U.S.A. 116, 18815–18821 (2019). https://doi.org/10.1073/pnas.1907507116
- N. Wu, P.-H. Chien, Y. Qian, Y. Li, H. Xu et al., Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte. Angew. Chem. Int. Ed. 59, 4131–4137 (2020). https://doi.org/10.1002/anie.201914478
- J. Shen, Z. Lei, C. Wang, An ion conducting ZIF-8 coating protected PEO based polymer electrolyte for high voltage lithium metal batteries. Chem. Eng. J. 447, 137503 (2022). https://doi.org/10.1016/j.cej.2022.137503
- C. Li, S. Zhou, L. Dai, X. Zhou, B. Zhang et al., Porous polyamine/PEO composite solid electrolyte for high performance solid-state lithium metal batteries. J. Mater. Chem. A 9, 24661–24669 (2021). https://doi.org/10.1039/D1TA04599G
- J. Ma, G. Zhong, P. Shi, Y. Wei, K. Li et al., Constructing a highly efficient “solid–polymer–solid” elastic ion transport network in cathodes activates the room temperature performance of all-solid-state lithium batteries. Energy Environ. Sci. 15, 1503–1511 (2022). https://doi.org/10.1039/D1EE03345J
- H. Schwertfeger, A. Fokin, P. Schreiner, Diamonds are a chemist’s best friend: diamondoid chemistry beyond adamantane. Angew. Chem. Int. Ed. 47, 1022–1036 (2008). https://doi.org/10.1002/anie.200701684
- J. Van Loon, A.V. Kubarev, M.B.J. Roeffaers, Correlating catalyst structure and activity at the nanoscale. ChemNanoMat 4, 6–14 (2018). https://doi.org/10.1002/cnma.201700301
- S. Mohapatra, S. Sharma, A. Sriperumbuduru, S.R. Varanasi, S. Mogurampelly, Effect of succinonitrile on ion transport in PEO-based lithium-ion battery electrolytes. J. Chem. Phys. 156, 214903 (2022). https://doi.org/10.1063/5.0087824
- J. Song, Y. Xu, Y. Zhou, P. Wang, H. Feng et al., Cellulose-assisted vertically heterostructured PEO-based solid electrolytes mitigating Li-succinonitrile corrosion for lithium metal batteries. ACS Appl. Mater. Interfaces 15, 20897–20908 (2023). https://doi.org/10.1021/acsami.2c22562
- M. Abe, S. Nitta, E. Miura, T. Kimachi, K. Inamoto, Nitrile synthesis via desulfonylative–smiles rearrangement. J. Org. Chem. 87, 4460–4467 (2022). https://doi.org/10.1021/acs.joc.1c03011
- W.-C. Geng, H. Sun, D.-S. Guo, Macrocycles containing azo groups: recognition, assembly and application. J. Inclusion Phenom. Macrocycl. Chem. 92, 1–79 (2018). https://doi.org/10.1007/s10847-018-0819-8
- T.D. Kühne, M. Iannuzzi, M. Del Ben, V.V. Rybkin, P. Seewald et al., CP2K: an electronic structure and molecular dynamics software package - Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020). https://doi.org/10.1063/5.0007045
- S. Yang, Z. Liu, Y. Liu, Y. Jiao, Effect of molecular weight on conformational changes of PEO: an infrared spectroscopic analysis. J. Mater. Sci. 50, 1544–1552 (2014). https://doi.org/10.1007/s10853-014-8714-1
- S.J. Wen, T.J. Richardson, D.I. Ghantous, K.A. Striebel, P.N. Ross et al., FTIR characterization of PEO + LiN(CF3SO2)2 electrolytes. J. Electroanal. Chem. 408, 113–118 (1996). https://doi.org/10.1016/0022-0728(96)04536-6
- S. Lascaud, M. Perrier, A. Vallee, S. Besner, J. Prud’homme et al., Phase diagrams and conductivity behavior of Poly(ethylene oxide)-molten salt rubbery electrolytes. Macromolecules 27, 7469–7477 (1994). https://doi.org/10.1021/ma00103a034
- C. Song, Z. Li, J. Peng, X. Wu, H. Peng et al., Enhancing Li ion transfer efficacy in PEO-based solid polymer electrolytes to promote cycling stability of Li-metal batteries. J. Mater. Chem. A 10, 16087–16094 (2022). https://doi.org/10.1039/D2TA03283J
- H.-Y. Zhou, Y. Ou, S.-S. Yan, J. Xie, P. Zhou et al., Supramolecular polymer ion conductor with weakened Li ion solvation enables room temperature all-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 62, e202306948 (2023). https://doi.org/10.1002/anie.202306948
- Y. Li, W. Zhou, X. Chen, X. Lü, Z. Cui et al., Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proc. Natl. Acad. Sci. U.S.A. 113, 13313–13317 (2016). https://doi.org/10.1073/pnas.1615912113
- J.-C. Zheng, Y. Zhu, L. Wu, J.W. Davenport, On the sensitivity of electron and X-ray scattering factors to valence charge distributions. J. Appl. Crystallogr. 38, 648–656 (2005). https://doi.org/10.1107/s0021889805016109
- J.-C. Zheng, L. Wu, Y. Zhu, Aspherical electron scattering factors and their parameterizations for elements from H to Xe. J. Appl. Crystallogr. 42, 1043–1053 (2009). https://doi.org/10.1107/s0021889809033147
- J. Li, W. Li, Y. You, A. Manthiram, Extending the service life of high-Ni layered oxides by tuning the electrode–electrolyte interphase. Adv. Energy Mater. 8, 1801957 (2018). https://doi.org/10.1002/aenm.201801957
- Q. Li, Y. Wang, X. Wang, X. Sun, J.-N. Zhang et al., Investigations on the fundamental process of cathode electrolyte interphase formation and evolution of high-voltage cathodes. ACS Appl. Mater. Interfaces 12, 2319–2326 (2020). https://doi.org/10.1021/acsami.9b16727
- Z. Lv, Q. Zhou, S. Zhang, S. Dong, Q. Wang et al., Cyano-reinforced in situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries. Energy Storage Mater. 37, 215–223 (2021). https://doi.org/10.1016/j.ensm.2021.01.017
References
H. Zhang, L. Huang, H. Xu, X. Zhang, Z. Chen et al., A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience 2, 201–208 (2022). https://doi.org/10.1016/j.esci.2022.03.001
Y. Yao, Y. Cao, G. Li, C. Liu, Z. Jiang et al., Enhanced electrochemical performance of poly(ethylene oxide) composite polymer electrolyte via incorporating lithiated covalent organic framework. Trans. Tianjin Univ. 28, 67–72 (2022). https://doi.org/10.1007/s12209-021-00300-z
L. Nie, S. Chen, M. Zhang, T. Gao, Y. Zhang et al., An in situ polymerized interphase engineering for high-voltage all-solid-state lithium-metal batteries. Nano Res. 17, 2687–2692 (2024). https://doi.org/10.1007/s12274-023-6096-x
Z. Song, F. Chen, M. Martinez-Ibañez, W. Feng, M. Forsyth et al., A reflection on polymer electrolytes for solid-state lithium metal batteries. Nat. Commun. 14, 4884 (2023). https://doi.org/10.1038/s41467-023-40609-y
H. Wang, H. Cheng, D. Li, F. Li, Y. Wei et al., Lithiated copper polyphthalocyanine with extended π-conjugation induces LiF-rich solid electrolyte interphase toward long-life solid-state lithium-metal batteries. Adv. Energy Mater. 13, 2204425 (2023). https://doi.org/10.1002/aenm.202204425
J. Li, H. Hu, W. Fang, J. Ding, D. Yuan et al., Impact of fluorine-based lithium salts on SEI for all-solid-state PEO-based lithium metal batteries. Adv. Funct. Mater. 33, 2303718 (2023). https://doi.org/10.1002/adfm.202303718
Y. Wei, T.-H. Liu, W. Zhou, H. Cheng, X. Liu et al., Enabling all-solid-state Li metal batteries operated at 30 °C by molecular regulation of polymer electrolyte. Adv. Energy Mater. 13, 2203547 (2023). https://doi.org/10.1002/aenm.202203547
B. Tong, Z. Song, W. Feng, J. Zhu, H. Yu et al., Design of a teflon-like anion for unprecedently enhanced lithium metal polymer batteries. Advanced Energy Materials. 13(15), 2204085 (2023). https://doi.org/10.1002/aenm.202204085
L. Tang, B. Chen, Z. Zhang, C. Ma, J. Chen et al., Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries. Nat. Commun. 14, 2301 (2023). https://doi.org/10.1038/s41467-023-37997-6
D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5(9), 2326–2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
D.J. Brooks, B.V. Merinov, W.A. Goddard, B. Kozinsky, J. Mailoa, Atomistic description of ionic diffusion in peo–litfsi: effect of temperature, molecular weight, and ionic concentration. Macromolecules 51(21), 8987–8995 (2018). https://doi.org/10.1021/acs.macromol.8b01753
J.K. Eckhardt, T. Fuchs, S. Burkhardt, P.J. Klar, J. Janek et al., Guidelines for impedance analysis of parent metal anodes in solid-state batteries and the role of current constriction at interface voids, heterogeneities, and SEI. Adv. Mater. Interfaces 10, 2202354 (2023). https://doi.org/10.1002/admi.202202354
N. Wang, Y. Wei, S. Yu, W. Zhang, X. Huang et al., A flexible PEO-based polymer electrolyte with cross-linked network for high-voltage all solid-state lithium-ion battery. J. Mater. Sci. Technol. 183, 206–214 (2024). https://doi.org/10.1016/j.jmst.2023.10.005
M. Zhang, R. Tan, M. Wang, Z. Zhang, C. John Low et al., Hypercrosslinked porous and coordination polymer materials for electrolyte membranes in lithium-metal batteries. Battery Energy 3, 230050 (2024). https://doi.org/10.1002/bte2.20230050
Y. An, X. Han, Y. Liu, A. Azhar, J. Na et al., Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 18, 2103617 (2022). https://doi.org/10.1002/smll.202103617
H. Yan, T. Wang, L. Liu, T. Song, C. Li et al., High voltage stable cycling of all-solid-state lithium metal batteries enabled by top-down direct fluorinated poly(ethylene oxide)-based electrolytes. J. Power. Sources 557, 232559 (2023). https://doi.org/10.1016/j.jpowsour.2022.232559
L. Liu, T. Wang, L. Sun, T. Song, H. Yan et al., Stable cycling of all-solid-state lithium metal batteries enabled by salt engineering of PEO-based polymer electrolytes. Energy Environ. Mater. 7, 12580 (2024). https://doi.org/10.1002/eem2.12580
B. Guo, Y. Fu, J. Wang, Y. Gong, Y. Zhao et al., Strategies and characterization methods for achieving high performance PEO-based solid-state lithium-ion batteries. Chem. Commun. 58, 8182–8193 (2022). https://doi.org/10.1039/d2cc02306g
M.A. Cabañero Martínez, N. Boaretto, A.J. Naylor, F. Alcaide, G.D. Salian et al., Are polymer-based electrolytes ready for high-voltage lithium battery applications? An overview of degradation mechanisms and battery performance. Adv. Energy Mater. 12, 2201264 (2022). https://doi.org/10.1002/aenm.202201264
G. Homann, L. Stolz, K. Neuhaus, M. Winter, J. Kasnatscheew, Effective optimization of high voltage solid-state lithium batteries by using poly(ethylene oxide)-based polymer electrolyte with semi-interpenetrating network. Adv. Funct. Mater. 30, 2006289 (2020). https://doi.org/10.1002/adfm.202006289
F. Fu, Y. Zheng, N. Jiang, Y. Liu, C. Sun et al., A dual-salt PEO-based polymer electrolyte with cross-linked polymer network for high-voltage lithium metal batteries. Chem. Eng. J. 450, 137776 (2022). https://doi.org/10.1016/j.cej.2022.137776
W. Li, J. Liu, D. Zhao, Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016). https://doi.org/10.1038/natrevmats.2016.23
Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49, 8790–8839 (2020). https://doi.org/10.1039/d0cs00305k
K.G. Naik, D. Chatterjee, P.P. Mukherjee, Solid electrolyte-cathode interface dictates reaction heterogeneity and anode stability. ACS Appl. Mater. Interfaces 14, 45308–45319 (2022). https://doi.org/10.1021/acsami.2c11339
J. Guo, W. Zhang, Z. Shen, S. Mao, X. Wang et al., Tuning ion/electron conducting properties at electrified interfaces for practical all-solid-state Li–metal batteries. Adv. Funct. Mater. 32, 2204742 (2022). https://doi.org/10.1002/adfm.202204742
M. Yi, J. Li, M. Wang, X. Fan, B. Hong et al., Suppressing structural degradation of single crystal nickel-rich cathodes in PEO-based all-solid-state batteries: mechanistic insight and performance. Energy Storage Mater. 54, 579–588 (2023). https://doi.org/10.1016/j.ensm.2022.11.007
R. Fang, B. Xu, N.S. Grundish, Y. Xia, Y. Li et al., Li2 S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries. Angew. Chem. Int. Ed. 60, 17701–17706 (2021). https://doi.org/10.1002/anie.202106039
D. Cai, X. Wu, J. Xiang, M. Li, H. Su et al., Ionic-liquid-containing polymer interlayer modified PEO-based electrolyte for stable high-voltage solid-state lithium metal battery. Chem. Eng. J. 424, 130522 (2021). https://doi.org/10.1016/j.cej.2021.130522
Y. Liu, Y. Zhao, W. Lu, L. Sun, L. Lin et al., PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries. Nano Energy 88, 106205 (2021). https://doi.org/10.1016/j.nanoen.2021.106205
N. Wu, P.-H. Chien, Y. Li, A. Dolocan, H. Xu et al., Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte. J. Am. Chem. Soc. 142, 2497–2505 (2020). https://doi.org/10.1021/jacs.9b12233
B. Xu, X. Li, C. Yang, Y. Li, N.S. Grundish et al., Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 143, 6542–6550 (2021). https://doi.org/10.1021/jacs.1c00752
O. Sheng, J. Zheng, Z. Ju, C. Jin, Y. Wang et al., In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by cryo-TEM. Adv. Mater. 32, e2000223 (2020). https://doi.org/10.1002/adma.202000223
J. Zheng, C. Sun, Z. Wang, S. Liu, B. An et al., Double ionic-electronic transfer interface layers for all-solid-state lithium batteries. Angew. Chem. Int. Ed. Engl. 60, 18448–18453 (2021). https://doi.org/10.1002/anie.202104183
H. Xu, P.-H. Chien, J. Shi, Y. Li, N. Wu et al., High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proc. Natl. Acad. Sci. U.S.A. 116, 18815–18821 (2019). https://doi.org/10.1073/pnas.1907507116
N. Wu, P.-H. Chien, Y. Qian, Y. Li, H. Xu et al., Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte. Angew. Chem. Int. Ed. 59, 4131–4137 (2020). https://doi.org/10.1002/anie.201914478
J. Shen, Z. Lei, C. Wang, An ion conducting ZIF-8 coating protected PEO based polymer electrolyte for high voltage lithium metal batteries. Chem. Eng. J. 447, 137503 (2022). https://doi.org/10.1016/j.cej.2022.137503
C. Li, S. Zhou, L. Dai, X. Zhou, B. Zhang et al., Porous polyamine/PEO composite solid electrolyte for high performance solid-state lithium metal batteries. J. Mater. Chem. A 9, 24661–24669 (2021). https://doi.org/10.1039/D1TA04599G
J. Ma, G. Zhong, P. Shi, Y. Wei, K. Li et al., Constructing a highly efficient “solid–polymer–solid” elastic ion transport network in cathodes activates the room temperature performance of all-solid-state lithium batteries. Energy Environ. Sci. 15, 1503–1511 (2022). https://doi.org/10.1039/D1EE03345J
H. Schwertfeger, A. Fokin, P. Schreiner, Diamonds are a chemist’s best friend: diamondoid chemistry beyond adamantane. Angew. Chem. Int. Ed. 47, 1022–1036 (2008). https://doi.org/10.1002/anie.200701684
J. Van Loon, A.V. Kubarev, M.B.J. Roeffaers, Correlating catalyst structure and activity at the nanoscale. ChemNanoMat 4, 6–14 (2018). https://doi.org/10.1002/cnma.201700301
S. Mohapatra, S. Sharma, A. Sriperumbuduru, S.R. Varanasi, S. Mogurampelly, Effect of succinonitrile on ion transport in PEO-based lithium-ion battery electrolytes. J. Chem. Phys. 156, 214903 (2022). https://doi.org/10.1063/5.0087824
J. Song, Y. Xu, Y. Zhou, P. Wang, H. Feng et al., Cellulose-assisted vertically heterostructured PEO-based solid electrolytes mitigating Li-succinonitrile corrosion for lithium metal batteries. ACS Appl. Mater. Interfaces 15, 20897–20908 (2023). https://doi.org/10.1021/acsami.2c22562
M. Abe, S. Nitta, E. Miura, T. Kimachi, K. Inamoto, Nitrile synthesis via desulfonylative–smiles rearrangement. J. Org. Chem. 87, 4460–4467 (2022). https://doi.org/10.1021/acs.joc.1c03011
W.-C. Geng, H. Sun, D.-S. Guo, Macrocycles containing azo groups: recognition, assembly and application. J. Inclusion Phenom. Macrocycl. Chem. 92, 1–79 (2018). https://doi.org/10.1007/s10847-018-0819-8
T.D. Kühne, M. Iannuzzi, M. Del Ben, V.V. Rybkin, P. Seewald et al., CP2K: an electronic structure and molecular dynamics software package - Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020). https://doi.org/10.1063/5.0007045
S. Yang, Z. Liu, Y. Liu, Y. Jiao, Effect of molecular weight on conformational changes of PEO: an infrared spectroscopic analysis. J. Mater. Sci. 50, 1544–1552 (2014). https://doi.org/10.1007/s10853-014-8714-1
S.J. Wen, T.J. Richardson, D.I. Ghantous, K.A. Striebel, P.N. Ross et al., FTIR characterization of PEO + LiN(CF3SO2)2 electrolytes. J. Electroanal. Chem. 408, 113–118 (1996). https://doi.org/10.1016/0022-0728(96)04536-6
S. Lascaud, M. Perrier, A. Vallee, S. Besner, J. Prud’homme et al., Phase diagrams and conductivity behavior of Poly(ethylene oxide)-molten salt rubbery electrolytes. Macromolecules 27, 7469–7477 (1994). https://doi.org/10.1021/ma00103a034
C. Song, Z. Li, J. Peng, X. Wu, H. Peng et al., Enhancing Li ion transfer efficacy in PEO-based solid polymer electrolytes to promote cycling stability of Li-metal batteries. J. Mater. Chem. A 10, 16087–16094 (2022). https://doi.org/10.1039/D2TA03283J
H.-Y. Zhou, Y. Ou, S.-S. Yan, J. Xie, P. Zhou et al., Supramolecular polymer ion conductor with weakened Li ion solvation enables room temperature all-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 62, e202306948 (2023). https://doi.org/10.1002/anie.202306948
Y. Li, W. Zhou, X. Chen, X. Lü, Z. Cui et al., Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proc. Natl. Acad. Sci. U.S.A. 113, 13313–13317 (2016). https://doi.org/10.1073/pnas.1615912113
J.-C. Zheng, Y. Zhu, L. Wu, J.W. Davenport, On the sensitivity of electron and X-ray scattering factors to valence charge distributions. J. Appl. Crystallogr. 38, 648–656 (2005). https://doi.org/10.1107/s0021889805016109
J.-C. Zheng, L. Wu, Y. Zhu, Aspherical electron scattering factors and their parameterizations for elements from H to Xe. J. Appl. Crystallogr. 42, 1043–1053 (2009). https://doi.org/10.1107/s0021889809033147
J. Li, W. Li, Y. You, A. Manthiram, Extending the service life of high-Ni layered oxides by tuning the electrode–electrolyte interphase. Adv. Energy Mater. 8, 1801957 (2018). https://doi.org/10.1002/aenm.201801957
Q. Li, Y. Wang, X. Wang, X. Sun, J.-N. Zhang et al., Investigations on the fundamental process of cathode electrolyte interphase formation and evolution of high-voltage cathodes. ACS Appl. Mater. Interfaces 12, 2319–2326 (2020). https://doi.org/10.1021/acsami.9b16727
Z. Lv, Q. Zhou, S. Zhang, S. Dong, Q. Wang et al., Cyano-reinforced in situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries. Energy Storage Mater. 37, 215–223 (2021). https://doi.org/10.1016/j.ensm.2021.01.017