Weakly Polarized Organic Cation-Modified Hydrated Vanadium Oxides for High-Energy Efficiency Aqueous Zinc-Ion Batteries
Corresponding Author: Guozhong Cao
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 129
Abstract
Vanadium oxides, particularly hydrated forms like V2O5·nH2O (VOH), stand out as promising cathode candidates for aqueous zinc ion batteries due to their adjustable layered structure, unique electronic characteristics, and high theoretical capacities. However, challenges such as vanadium dissolution, sluggish Zn2+ diffusion kinetics, and low operating voltage still hinder their direct application. In this study, we present a novel vanadium oxide ([C6H6N(CH3)3]1.08V8O20·0.06H2O, TMPA-VOH), developed by pre-inserting trimethylphenylammonium (TMPA+) cations into VOH. The incorporation of weakly polarized organic cations capitalizes on both ionic pre-intercalation and molecular pre-intercalation effects, resulting in a phase and morphology transition, an expansion of the interlayer distance, extrusion of weakly bonded interlayer water, and a substantial increase in V4+ content. These modifications synergistically reduce the electrostatic interactions between Zn2+ and the V–O lattice, enhancing structural stability and reaction kinetics during cycling. As a result, TMPA-VOH achieves an elevated open circuit voltage and operation voltage, exhibits a large specific capacity (451 mAh g–1 at 0.1 A g–1) coupled with high energy efficiency (89%), the significantly-reduced battery polarization, and outstanding rate capability and cycling stability. The concept introduced in this study holds great promise for the development of high-performance oxide-based energy storage materials.
Highlights:
1 A vanadium oxide (TMPA-VOH) is synthesized with trimethylphenylammonium cations chemically pre-inserted into hydrated vanadium oxide.
2 The pre-intercalation of weakly polarized organic cations strategically utilizes both ionic and molecular pre-intercalation effects.
3 TMPA-VOH, with modified crystal structure and morphology, increased V4+ content, and weakened electrostatic interactions between Zn2+ and the V-O lattice, demonstrates enhanced voltage, storage capacity, structural stability, and reaction kinetics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Scrosati, J. Hassoun, Y.K. Sun, Lithium-ion batteries a look into the future. Energy Environ. Sci. 4(9), 3287–3295 (2011). https://doi.org/10.1039/c1ee01388b
- A. Manthiram, A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020). https://doi.org/10.1038/s41467-020-15355-0
- Z. Xing, S. Wang, A. Yu, Z. Chen, Aqueous intercalation-type electrode materials for grid-level energy storage: beyond the limits of lithium and sodium. Nano Energy 50, 229–244 (2018). https://doi.org/10.1016/j.nanoen.2018.05.049
- H. Zheng, S. Wang, S. Liu, J. Wu, J. Guan et al., The heterointerface between Fe1/NC and selenides boosts reversible oxygen electrocatalysis. Adv. Funct. Mater. 33, 2300815 (2023). https://doi.org/10.1002/adfm.202300815
- D. Deng, J. Wu, Q. Feng, X. Zhao, M. Liu et al., Highly reversible zinc-air batteries at–40 ℃ enabled by anion-mediated biomimetic fat. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202308762
- X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120, 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- R. Trócoli, F. La Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem 8, 481–485 (2015). https://doi.org/10.1002/cssc.201403143
- H. Cui, L. Ma, Z. Huang, Z. Chen, C. Zhi, Organic materials-based cathode for zinc ion battery. SmartMat 3, 565–581 (2022). https://doi.org/10.1002/smm2.1110
- Q. Zong, Y. Wu, C. Liu, Q. Wang, Y. Zhuang et al., Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries. Energy Storage Mater. 52, 250–283 (2022). https://doi.org/10.1016/j.ensm.2022.08.007
- Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous Zn-vanadium oxide battery. Nano-Micro Lett. 14, 154 (2022). https://doi.org/10.1007/s40820-022-00907-4
- Y. Wang, Y. Zhang, G. Gao, Y. Fan, R. Wang et al., Effectively modulating oxygen vacancies in flower-like δ-MnO2 nanostructures for large capacity and high-rate zinc-ion storage. Nano-Micro Lett. 15, 219 (2023). https://doi.org/10.1007/s40820-023-01194-3
- X. Jia, R. Tian, C. Liu, J. Zheng, M. Tian et al., Stability and kinetics enhancement of hydrated vanadium oxide via sodium-ion pre-intercalation. Mater. Today Energy 28, 101063 (2022). https://doi.org/10.1016/j.mtener.2022.101063
- C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12, 2273–2285 (2019). https://doi.org/10.1039/C9EE00956F
- S. Tepavcevic, H. Xiong, V.R. Stamenkovic, X. Zuo, M. Balasubramanian et al., Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6, 530–538 (2012). https://doi.org/10.1021/nn203869a
- Q. Wang, S. Tang, Z. Wang, J. Wu, Y. Bai et al., Electrolyte tuned robust interface toward fast-charging Zn–air battery with atomic Mo site catalyst. Adv. Funct. Mater. 33, 2307390 (2023). https://doi.org/10.1002/adfm.202307390
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
- D. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast et al., Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11, 881–892 (2018). https://doi.org/10.1039/C8EE00378E
- Y. Li, D. Zhang, S. Huang, H.Y. Yang, Guest-species-incorporation in manganese/vanadium-based oxides: towards high performance aqueous zinc-ion batteries. Nano Energy 85, 105969 (2021). https://doi.org/10.1016/j.nanoen.2021.105969
- C. Liu, M. Tian, M. Wang, J. Zheng, S. Wang et al., Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries. J. Mater. Chem. A 8, 7713–7723 (2020). https://doi.org/10.1039/d0ta01468k
- L. Xing, C. Zhang, M. Li, P. Hu, X. Zhang et al., Revealing excess Al3+ preinsertion on altering diffusion paths of aluminum vanadate for zinc-ion batteries. Energy Storage Mater. 52, 291–298 (2022). https://doi.org/10.1016/j.ensm.2022.07.044
- M. Tian, C. Liu, J. Zheng, X. Jia, E.P. Jahrman et al., Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Storage Mater. 29, 9–16 (2020). https://doi.org/10.1016/j.ensm.2020.03.024
- Z. Liu, H. Sun, L. Qin, X. Cao, J. Zhou et al., Interlayer doping in layered vanadium oxides for low-cost energy storage: sodium-ion batteries and aqueous zinc-ion batteries. ChemNanoMat 6, 1553–1566 (2020). https://doi.org/10.1002/cnma.202000384
- Q. Zhao, A. Song, S. Ding, R. Qin, Y. Cui et al., Preintercalation strategy in manganese oxides for electrochemical energy storage: review and prospects. Adv. Mater. 32, e2002450 (2020). https://doi.org/10.1002/adma.202002450
- L. Ma, N. Li, C. Long, B. Dong, D. Fang et al., Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv. Funct. Mater. 29, 1906142 (2019). https://doi.org/10.1002/adfm.201906142
- X. Zhao, L. Mao, Q. Cheng, F. Liao, G. Yang et al., Interlayer engineering of preintercalated layered oxides as cathode for emerging multivalent metal-ion batteries: zinc and beyond. Energy Storage Mater. 38, 397–437 (2021). https://doi.org/10.1016/j.ensm.2021.03.005
- S. Liu, H. Zhu, B. Zhang, G. Li, H. Zhu et al., Tuning the kinetics of zinc-ion insertion/extraction in V2 O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 32, e2001113 (2020). https://doi.org/10.1002/adma.202001113
- S. Zanarini, F. Di Lupo, A. Bedini, S. Vankova, N. Garino et al., Three-colored electrochromic lithiated vanadium oxides: the role of surface superoxides in the electro-generation of the red state. J. Mater. Chem. C 2, 8854–8857 (2014). https://doi.org/10.1039/C4TC01123F
- H.T. Evans Jr., J.E. Post, D.R. Ross, J.A. Nelen, The crystal structure and crystal chemistry of fernandinite and corvusite. Can. Mineral. 32, 339–351 (1994)
- N. Baffier, L. Znaidi, J.C. Badot, Ionic hydration number in V2O5 intercalated xerogels V2O5 intercalated xerogels Mx(H2O)yV2O5. J. Chem. Soc. Faraday Trans. 86(14), 2623–2628 (1990). https://doi.org/10.1039/FT9908602623
- V. Bondarenka, S. Grebinskij, S. Kaciulis, G. Mattogno, S. Mickevicius et al., XPS study of vanadium–yttrium hydrates. J. Electron Spectrosc. Relat. Phenom. 120, 131–135 (2001). https://doi.org/10.1016/s0368-2048(01)00312-7
- S. Ameen, M.S. Akhtar, Y.S. Kim, H.S. Shin, Synthesis and electrochemical impedance properties of CdS nanops decorated polyaniline nanorods. Chem. Eng. J. 181–182, 806–812 (2012). https://doi.org/10.1016/j.cej.2011.11.111
- Y. Zhang, R. Huang, X. Wang, Z. Wang, B. Song et al., Facile large-scale preparation of vanadium pentoxide-polypyrrole composite for aqueous zinc-ion batteries. J. Alloys Compd. 907, 164434 (2022). https://doi.org/10.1016/j.jallcom.2022.164434
- Y. Tong, S. Su, X. Li, B. Liang, J. Peng et al., Synergistic iron ion and alkylammonium cation intercalated vanadium oxide cathode for highly efficient aqueous zinc ion battery. J. Power. Sources 528, 231226 (2022). https://doi.org/10.1016/j.jpowsour.2022.231226
- Q. Wang, Q. Feng, Y. Lei, S. Tang, L. Xu et al., Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 13, 3689 (2022). https://doi.org/10.1038/s41467-022-31383-4
- G.A. Sawatzky, D. Post, X-ray photoelectron and Auger spectroscopy study of some vanadium oxides. Phys. Rev. B 20, 1546–1555 (1979). https://doi.org/10.1103/physrevb.20.1546
- F. Ureña-Begara, A. Crunteanu, J.-P. Raskin, Raman and XPS characterization of vanadium oxide thin films with temperature. Appl. Surf. Sci. 403, 717–727 (2017). https://doi.org/10.1016/j.apsusc.2017.01.160
- V. Bondarenka, Valence of vanadium in hydrated compounds. Lithuanian J. Phys. 47, 333–342 (2007). https://doi.org/10.3952/lithjphys.47309
- E. Hryha, E. Rutqvist, L. Nyborg, Stoichiometric vanadium oxides studied by XPS. Surf. Interface Anal. 44(8), 1022–1025 (2012). https://doi.org/10.1002/sia.3844
- L.R. De Jesus, G.A. Horrocks, Y. Liang, A. Parija, C. Jaye et al., Mapping polaronic states and lithiation gradients in individual V2O5 nanowires. Nat. Commun. 7, 12022 (2016). https://doi.org/10.1038/ncomms12022
- D. Goodacre, M. Blum, C. Buechner, H. Hoek, S.M. Gericke et al., Water orption on vanadium oxide thin films in ambient relative humidity. J. Chem. Phys. 152, 044715 (2020). https://doi.org/10.1063/1.5138959
- H. Gökce, S. Bahçeli, Vibrational analysis of trimethylphenyl ammonium chloride. Z. Für Naturforschung A 64, 127–131 (2009). https://doi.org/10.1515/zna-2009-1-218
- T. Hu, Z. Feng, Y. Zhang, Y. Liu, J. Sun et al., “Double guarantee mechanism” of Ca2+-intercalation and rGO-integration ensures hydrated vanadium oxide with high performance for aqueous zinc-ion batteries. Inorg. Chem. Front. 8, 79–89 (2021). https://doi.org/10.1039/D0QI00954G
- T. Hu, Y. Liu, Y. Zhang, M. Chen, J. Zheng et al., 3D hierarchical porous V3O7·H2O nanobelts/CNT/reduced graphene oxide integrated composite with synergistic effect for supercapacitors with high capacitance and long cycling life. J. Colloid Interface Sci. 531, 382–393 (2018). https://doi.org/10.1016/j.jcis.2018.07.060
- C. O’Dwyer, D. Navas, V. Lavayen, E. Benavente, M.A. Santa Ana, G. Gonzalez, S.B. Newcomb, C.M. Sotomayor Torres, Nano-urchin: the formation and structure of high-density spherical clusters of vanadium oxide nanotubes. Chem. Mater. 18(13), 3016–3022 (2006). https://doi.org/10.1021/cm0603809
- E. Ruiz-Hitzky, B. al, Interlayer orption of ammonia and pyridine in V2O5 xerogel. J. Chem. Soc. Faraday Trans. Phys. Chem. Condensed Phases. 82(5), 1597–1604 (1986). https://doi.org/10.1039/f19868201597
- L. Soltane, F. Sediri, Hydrothermal synthesis and characterization of mesoporous rod-like hybrid organic-inorganic nanocrystalline based vanadium oxide. Ceram. Int. 40, 1531–1538 (2014). https://doi.org/10.1016/j.ceramint.2013.07.039
- J. Dong, Y. Jiang, Q. Wei, S. Tan, Y. Xu et al., Strongly coupled pyridine-V2 O5 ·nH2 O nanowires with intercalation pseudocapacitance and stabilized layer for high energy sodium ion capacitors. Small 15, e1900379 (2019). https://doi.org/10.1002/smll.201900379
- X. Xu, Y. Qian, C. Wang, Z. Bai, C. Wang et al., Enhanced charge transfer and reaction kinetics of vanadium pentoxide for zinc storage via nitrogen interstitial doping. Chem. Eng. J. 451, 138770 (2023). https://doi.org/10.1016/j.cej.2022.138770
- M. Occhiuzzi, D. Cordischi, R. Dragone, Reactivity of some vanadium oxides: an EPR and XRD study. J. Solid State Chem. 178, 1551–1558 (2005). https://doi.org/10.1016/j.jssc.2005.02.019
- Y. Zheng, Z. Yao, Z. Shadike, M. Lei, J. Liu et al., Defect-concentration-mediated T-Nb2O5 anodes for durable and fast-charging Li-ion batteries. Adv. Funct. Mater. 32, 2107060 (2022). https://doi.org/10.1002/adfm.202107060
- A. Eftekhari, Energy efficiency: a critically important but neglected factor in battery research. Sustain. Energy Fuels 1, 2053–2060 (2017). https://doi.org/10.1039/C7SE00350A
- M. Wang, J. Zhang, L. Zhang, J. Li, W. Wang et al., Graphene-like vanadium oxygen hydrate (VOH) nanosheets intercalated and exfoliated by polyaniline (PANI) for aqueous zinc-ion batteries (ZIBs). ACS Appl. Mater. Interfaces 12, 31564–31574 (2020). https://doi.org/10.1021/acsami.0c10183
- K. Zhu, T. Wu, K. Huang, NaCa0.6V6O16·3H2O as an ultra-stable cathode for Zn-ion batteries: the roles of pre-inserted dual-cations and structural water in V3O8 layer. Adv. Energy Mater. 9, 1901968 (2019). https://doi.org/10.1002/aenm.201901968
- F. Zhang, X. Sun, M. Du, X. Zhang, W. Dong et al., Weaker interactions in Zn2+ and organic ion-pre-intercalated vanadium oxide toward highly reversible zinc-ion batteries. Energy Environ. Mater. 4, 620–630 (2021). https://doi.org/10.1002/eem2.12145
- P. He, G. Zhang, X. Liao, M. Yan, X. Xu et al., Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8, 1702463 (2018). https://doi.org/10.1002/aenm.201702463
- C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57, 3943–3948 (2018). https://doi.org/10.1002/anie.201713291
- S. Zhang, L. Chen, D. Dong, Y. Kong, J. Zhang et al., AmV2O5 with binary phases as high-performance cathode materials for zinc-ion batteries: effect of the pre-intercalated cations A and reversible transformation of coordination polyhedra. ACS Appl. Mater. Interfaces 14, 24415–24424 (2022). https://doi.org/10.1021/acsami.2c04252
- B. Feng, D. Sun, H. Wang, S. Tan, H. Zhang, A simple method for the synthesis of KV3O80.42H2O nanorod and its lithium insertion/deinsertion properties. Int. J. Electrochem. Sci. 8, 1095–1102 (2013). https://doi.org/10.1016/s1452-3981(23)14083-1
- D. Bin, W. Huo, Y. Yuan, J. Huang, Y. Liu et al., Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery. Chem 6, 968–984 (2020). https://doi.org/10.1016/j.chempr.2020.02.001
- P.Y. Zavalij, M.S. Whittingham, Structural chemistry of vanadium oxides with open frameworks. Acta Crystallogr. B 55, 627–663 (1999). https://doi.org/10.1107/s0108768199004000
- J. Liu, J. Wang, C. Xu, H. Jiang, C. Li et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 (2017). https://doi.org/10.1002/advs.201700322
- V. Verma, S. Kumar, W. Manalastas Jr., J. Zhao, R. Chua et al., Layered VOPO4 as a cathode material for rechargeable zinc-ion battery: effect of polypyrrole intercalation in the host and water concentration in the electrolyte. ACS Appl. Energy Mater. 2, 8667–8674 (2019). https://doi.org/10.1021/acsaem.9b01632
- J. Lai, H. Zhu, X. Zhu, H. Koritala, Y. Wang, Interlayer-expanded V6O13·nH2O architecture constructed for an advanced rechargeable aqueous zinc-ion battery. ACS Appl. Energy Mater. 2, 1988–1996 (2019). https://doi.org/10.1021/acsaem.8b02054
- M. Du, C. Liu, F. Zhang, W. Dong, X. Zhang et al., Tunable layered (Na, Mn)V8O20· n H2O cathode material for high-performance aqueous zinc ion batteries. Adv. Sci. 7, 2000083 (2020). https://doi.org/10.1002/advs.202000083
- L.G. Mar, P.Y. Timbrell, R.N. Lamb, An XPS study of zinc oxide thin film growth on copper using zinc acetate as a precursor. Thin Solid Films 223, 341–347 (1993). https://doi.org/10.1016/0040-6090(93)90542-w
- H. Liang, Z. Cao, F. Ming, W. Zhang, D.H. Anjum et al., Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett. 19, 3199–3206 (2019). https://doi.org/10.1021/acs.nanolett.9b00697
- J.-J. Ye, P.-H. Li, H.-R. Zhang, Z.-Y. Song, T. Fan et al., Manipulating oxygen vacancies to spur ion kinetics in V2O5 structures for superior aqueous zinc-ion batteries. Adv. Funct. Mater. 33, 2305659 (2023). https://doi.org/10.1002/adfm.202305659
- W. Leng, X. Liu, Y. Gong, Chromium vanadate with unsaturated coordination sites for high-performance zinc-ion battery. Chem. Eng. J. 431, 134034 (2022). https://doi.org/10.1016/j.cej.2021.134034
- Z. Feng, J. Sun, Y. Liu, H. Jiang, T. Hu et al., Polypyrrole-intercalation tuning lamellar structure of V2O5·nH2O boosts fast zinc-ion kinetics for aqueous zinc-ion battery. J. Power. Sources 536, 231489 (2022). https://doi.org/10.1016/j.jpowsour.2022.231489
- J. Zheng, C. Liu, M. Tian, X. Jia, E.P. Jahrman et al., Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate. Nano Energy 70, 104519 (2020). https://doi.org/10.1016/j.nanoen.2020.104519
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139, 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
References
B. Scrosati, J. Hassoun, Y.K. Sun, Lithium-ion batteries a look into the future. Energy Environ. Sci. 4(9), 3287–3295 (2011). https://doi.org/10.1039/c1ee01388b
A. Manthiram, A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020). https://doi.org/10.1038/s41467-020-15355-0
Z. Xing, S. Wang, A. Yu, Z. Chen, Aqueous intercalation-type electrode materials for grid-level energy storage: beyond the limits of lithium and sodium. Nano Energy 50, 229–244 (2018). https://doi.org/10.1016/j.nanoen.2018.05.049
H. Zheng, S. Wang, S. Liu, J. Wu, J. Guan et al., The heterointerface between Fe1/NC and selenides boosts reversible oxygen electrocatalysis. Adv. Funct. Mater. 33, 2300815 (2023). https://doi.org/10.1002/adfm.202300815
D. Deng, J. Wu, Q. Feng, X. Zhao, M. Liu et al., Highly reversible zinc-air batteries at–40 ℃ enabled by anion-mediated biomimetic fat. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202308762
X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120, 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
R. Trócoli, F. La Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem 8, 481–485 (2015). https://doi.org/10.1002/cssc.201403143
H. Cui, L. Ma, Z. Huang, Z. Chen, C. Zhi, Organic materials-based cathode for zinc ion battery. SmartMat 3, 565–581 (2022). https://doi.org/10.1002/smm2.1110
Q. Zong, Y. Wu, C. Liu, Q. Wang, Y. Zhuang et al., Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries. Energy Storage Mater. 52, 250–283 (2022). https://doi.org/10.1016/j.ensm.2022.08.007
Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous Zn-vanadium oxide battery. Nano-Micro Lett. 14, 154 (2022). https://doi.org/10.1007/s40820-022-00907-4
Y. Wang, Y. Zhang, G. Gao, Y. Fan, R. Wang et al., Effectively modulating oxygen vacancies in flower-like δ-MnO2 nanostructures for large capacity and high-rate zinc-ion storage. Nano-Micro Lett. 15, 219 (2023). https://doi.org/10.1007/s40820-023-01194-3
X. Jia, R. Tian, C. Liu, J. Zheng, M. Tian et al., Stability and kinetics enhancement of hydrated vanadium oxide via sodium-ion pre-intercalation. Mater. Today Energy 28, 101063 (2022). https://doi.org/10.1016/j.mtener.2022.101063
C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12, 2273–2285 (2019). https://doi.org/10.1039/C9EE00956F
S. Tepavcevic, H. Xiong, V.R. Stamenkovic, X. Zuo, M. Balasubramanian et al., Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6, 530–538 (2012). https://doi.org/10.1021/nn203869a
Q. Wang, S. Tang, Z. Wang, J. Wu, Y. Bai et al., Electrolyte tuned robust interface toward fast-charging Zn–air battery with atomic Mo site catalyst. Adv. Funct. Mater. 33, 2307390 (2023). https://doi.org/10.1002/adfm.202307390
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
D. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast et al., Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11, 881–892 (2018). https://doi.org/10.1039/C8EE00378E
Y. Li, D. Zhang, S. Huang, H.Y. Yang, Guest-species-incorporation in manganese/vanadium-based oxides: towards high performance aqueous zinc-ion batteries. Nano Energy 85, 105969 (2021). https://doi.org/10.1016/j.nanoen.2021.105969
C. Liu, M. Tian, M. Wang, J. Zheng, S. Wang et al., Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries. J. Mater. Chem. A 8, 7713–7723 (2020). https://doi.org/10.1039/d0ta01468k
L. Xing, C. Zhang, M. Li, P. Hu, X. Zhang et al., Revealing excess Al3+ preinsertion on altering diffusion paths of aluminum vanadate for zinc-ion batteries. Energy Storage Mater. 52, 291–298 (2022). https://doi.org/10.1016/j.ensm.2022.07.044
M. Tian, C. Liu, J. Zheng, X. Jia, E.P. Jahrman et al., Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Storage Mater. 29, 9–16 (2020). https://doi.org/10.1016/j.ensm.2020.03.024
Z. Liu, H. Sun, L. Qin, X. Cao, J. Zhou et al., Interlayer doping in layered vanadium oxides for low-cost energy storage: sodium-ion batteries and aqueous zinc-ion batteries. ChemNanoMat 6, 1553–1566 (2020). https://doi.org/10.1002/cnma.202000384
Q. Zhao, A. Song, S. Ding, R. Qin, Y. Cui et al., Preintercalation strategy in manganese oxides for electrochemical energy storage: review and prospects. Adv. Mater. 32, e2002450 (2020). https://doi.org/10.1002/adma.202002450
L. Ma, N. Li, C. Long, B. Dong, D. Fang et al., Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv. Funct. Mater. 29, 1906142 (2019). https://doi.org/10.1002/adfm.201906142
X. Zhao, L. Mao, Q. Cheng, F. Liao, G. Yang et al., Interlayer engineering of preintercalated layered oxides as cathode for emerging multivalent metal-ion batteries: zinc and beyond. Energy Storage Mater. 38, 397–437 (2021). https://doi.org/10.1016/j.ensm.2021.03.005
S. Liu, H. Zhu, B. Zhang, G. Li, H. Zhu et al., Tuning the kinetics of zinc-ion insertion/extraction in V2 O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 32, e2001113 (2020). https://doi.org/10.1002/adma.202001113
S. Zanarini, F. Di Lupo, A. Bedini, S. Vankova, N. Garino et al., Three-colored electrochromic lithiated vanadium oxides: the role of surface superoxides in the electro-generation of the red state. J. Mater. Chem. C 2, 8854–8857 (2014). https://doi.org/10.1039/C4TC01123F
H.T. Evans Jr., J.E. Post, D.R. Ross, J.A. Nelen, The crystal structure and crystal chemistry of fernandinite and corvusite. Can. Mineral. 32, 339–351 (1994)
N. Baffier, L. Znaidi, J.C. Badot, Ionic hydration number in V2O5 intercalated xerogels V2O5 intercalated xerogels Mx(H2O)yV2O5. J. Chem. Soc. Faraday Trans. 86(14), 2623–2628 (1990). https://doi.org/10.1039/FT9908602623
V. Bondarenka, S. Grebinskij, S. Kaciulis, G. Mattogno, S. Mickevicius et al., XPS study of vanadium–yttrium hydrates. J. Electron Spectrosc. Relat. Phenom. 120, 131–135 (2001). https://doi.org/10.1016/s0368-2048(01)00312-7
S. Ameen, M.S. Akhtar, Y.S. Kim, H.S. Shin, Synthesis and electrochemical impedance properties of CdS nanops decorated polyaniline nanorods. Chem. Eng. J. 181–182, 806–812 (2012). https://doi.org/10.1016/j.cej.2011.11.111
Y. Zhang, R. Huang, X. Wang, Z. Wang, B. Song et al., Facile large-scale preparation of vanadium pentoxide-polypyrrole composite for aqueous zinc-ion batteries. J. Alloys Compd. 907, 164434 (2022). https://doi.org/10.1016/j.jallcom.2022.164434
Y. Tong, S. Su, X. Li, B. Liang, J. Peng et al., Synergistic iron ion and alkylammonium cation intercalated vanadium oxide cathode for highly efficient aqueous zinc ion battery. J. Power. Sources 528, 231226 (2022). https://doi.org/10.1016/j.jpowsour.2022.231226
Q. Wang, Q. Feng, Y. Lei, S. Tang, L. Xu et al., Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 13, 3689 (2022). https://doi.org/10.1038/s41467-022-31383-4
G.A. Sawatzky, D. Post, X-ray photoelectron and Auger spectroscopy study of some vanadium oxides. Phys. Rev. B 20, 1546–1555 (1979). https://doi.org/10.1103/physrevb.20.1546
F. Ureña-Begara, A. Crunteanu, J.-P. Raskin, Raman and XPS characterization of vanadium oxide thin films with temperature. Appl. Surf. Sci. 403, 717–727 (2017). https://doi.org/10.1016/j.apsusc.2017.01.160
V. Bondarenka, Valence of vanadium in hydrated compounds. Lithuanian J. Phys. 47, 333–342 (2007). https://doi.org/10.3952/lithjphys.47309
E. Hryha, E. Rutqvist, L. Nyborg, Stoichiometric vanadium oxides studied by XPS. Surf. Interface Anal. 44(8), 1022–1025 (2012). https://doi.org/10.1002/sia.3844
L.R. De Jesus, G.A. Horrocks, Y. Liang, A. Parija, C. Jaye et al., Mapping polaronic states and lithiation gradients in individual V2O5 nanowires. Nat. Commun. 7, 12022 (2016). https://doi.org/10.1038/ncomms12022
D. Goodacre, M. Blum, C. Buechner, H. Hoek, S.M. Gericke et al., Water orption on vanadium oxide thin films in ambient relative humidity. J. Chem. Phys. 152, 044715 (2020). https://doi.org/10.1063/1.5138959
H. Gökce, S. Bahçeli, Vibrational analysis of trimethylphenyl ammonium chloride. Z. Für Naturforschung A 64, 127–131 (2009). https://doi.org/10.1515/zna-2009-1-218
T. Hu, Z. Feng, Y. Zhang, Y. Liu, J. Sun et al., “Double guarantee mechanism” of Ca2+-intercalation and rGO-integration ensures hydrated vanadium oxide with high performance for aqueous zinc-ion batteries. Inorg. Chem. Front. 8, 79–89 (2021). https://doi.org/10.1039/D0QI00954G
T. Hu, Y. Liu, Y. Zhang, M. Chen, J. Zheng et al., 3D hierarchical porous V3O7·H2O nanobelts/CNT/reduced graphene oxide integrated composite with synergistic effect for supercapacitors with high capacitance and long cycling life. J. Colloid Interface Sci. 531, 382–393 (2018). https://doi.org/10.1016/j.jcis.2018.07.060
C. O’Dwyer, D. Navas, V. Lavayen, E. Benavente, M.A. Santa Ana, G. Gonzalez, S.B. Newcomb, C.M. Sotomayor Torres, Nano-urchin: the formation and structure of high-density spherical clusters of vanadium oxide nanotubes. Chem. Mater. 18(13), 3016–3022 (2006). https://doi.org/10.1021/cm0603809
E. Ruiz-Hitzky, B. al, Interlayer orption of ammonia and pyridine in V2O5 xerogel. J. Chem. Soc. Faraday Trans. Phys. Chem. Condensed Phases. 82(5), 1597–1604 (1986). https://doi.org/10.1039/f19868201597
L. Soltane, F. Sediri, Hydrothermal synthesis and characterization of mesoporous rod-like hybrid organic-inorganic nanocrystalline based vanadium oxide. Ceram. Int. 40, 1531–1538 (2014). https://doi.org/10.1016/j.ceramint.2013.07.039
J. Dong, Y. Jiang, Q. Wei, S. Tan, Y. Xu et al., Strongly coupled pyridine-V2 O5 ·nH2 O nanowires with intercalation pseudocapacitance and stabilized layer for high energy sodium ion capacitors. Small 15, e1900379 (2019). https://doi.org/10.1002/smll.201900379
X. Xu, Y. Qian, C. Wang, Z. Bai, C. Wang et al., Enhanced charge transfer and reaction kinetics of vanadium pentoxide for zinc storage via nitrogen interstitial doping. Chem. Eng. J. 451, 138770 (2023). https://doi.org/10.1016/j.cej.2022.138770
M. Occhiuzzi, D. Cordischi, R. Dragone, Reactivity of some vanadium oxides: an EPR and XRD study. J. Solid State Chem. 178, 1551–1558 (2005). https://doi.org/10.1016/j.jssc.2005.02.019
Y. Zheng, Z. Yao, Z. Shadike, M. Lei, J. Liu et al., Defect-concentration-mediated T-Nb2O5 anodes for durable and fast-charging Li-ion batteries. Adv. Funct. Mater. 32, 2107060 (2022). https://doi.org/10.1002/adfm.202107060
A. Eftekhari, Energy efficiency: a critically important but neglected factor in battery research. Sustain. Energy Fuels 1, 2053–2060 (2017). https://doi.org/10.1039/C7SE00350A
M. Wang, J. Zhang, L. Zhang, J. Li, W. Wang et al., Graphene-like vanadium oxygen hydrate (VOH) nanosheets intercalated and exfoliated by polyaniline (PANI) for aqueous zinc-ion batteries (ZIBs). ACS Appl. Mater. Interfaces 12, 31564–31574 (2020). https://doi.org/10.1021/acsami.0c10183
K. Zhu, T. Wu, K. Huang, NaCa0.6V6O16·3H2O as an ultra-stable cathode for Zn-ion batteries: the roles of pre-inserted dual-cations and structural water in V3O8 layer. Adv. Energy Mater. 9, 1901968 (2019). https://doi.org/10.1002/aenm.201901968
F. Zhang, X. Sun, M. Du, X. Zhang, W. Dong et al., Weaker interactions in Zn2+ and organic ion-pre-intercalated vanadium oxide toward highly reversible zinc-ion batteries. Energy Environ. Mater. 4, 620–630 (2021). https://doi.org/10.1002/eem2.12145
P. He, G. Zhang, X. Liao, M. Yan, X. Xu et al., Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8, 1702463 (2018). https://doi.org/10.1002/aenm.201702463
C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57, 3943–3948 (2018). https://doi.org/10.1002/anie.201713291
S. Zhang, L. Chen, D. Dong, Y. Kong, J. Zhang et al., AmV2O5 with binary phases as high-performance cathode materials for zinc-ion batteries: effect of the pre-intercalated cations A and reversible transformation of coordination polyhedra. ACS Appl. Mater. Interfaces 14, 24415–24424 (2022). https://doi.org/10.1021/acsami.2c04252
B. Feng, D. Sun, H. Wang, S. Tan, H. Zhang, A simple method for the synthesis of KV3O80.42H2O nanorod and its lithium insertion/deinsertion properties. Int. J. Electrochem. Sci. 8, 1095–1102 (2013). https://doi.org/10.1016/s1452-3981(23)14083-1
D. Bin, W. Huo, Y. Yuan, J. Huang, Y. Liu et al., Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery. Chem 6, 968–984 (2020). https://doi.org/10.1016/j.chempr.2020.02.001
P.Y. Zavalij, M.S. Whittingham, Structural chemistry of vanadium oxides with open frameworks. Acta Crystallogr. B 55, 627–663 (1999). https://doi.org/10.1107/s0108768199004000
J. Liu, J. Wang, C. Xu, H. Jiang, C. Li et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 (2017). https://doi.org/10.1002/advs.201700322
V. Verma, S. Kumar, W. Manalastas Jr., J. Zhao, R. Chua et al., Layered VOPO4 as a cathode material for rechargeable zinc-ion battery: effect of polypyrrole intercalation in the host and water concentration in the electrolyte. ACS Appl. Energy Mater. 2, 8667–8674 (2019). https://doi.org/10.1021/acsaem.9b01632
J. Lai, H. Zhu, X. Zhu, H. Koritala, Y. Wang, Interlayer-expanded V6O13·nH2O architecture constructed for an advanced rechargeable aqueous zinc-ion battery. ACS Appl. Energy Mater. 2, 1988–1996 (2019). https://doi.org/10.1021/acsaem.8b02054
M. Du, C. Liu, F. Zhang, W. Dong, X. Zhang et al., Tunable layered (Na, Mn)V8O20· n H2O cathode material for high-performance aqueous zinc ion batteries. Adv. Sci. 7, 2000083 (2020). https://doi.org/10.1002/advs.202000083
L.G. Mar, P.Y. Timbrell, R.N. Lamb, An XPS study of zinc oxide thin film growth on copper using zinc acetate as a precursor. Thin Solid Films 223, 341–347 (1993). https://doi.org/10.1016/0040-6090(93)90542-w
H. Liang, Z. Cao, F. Ming, W. Zhang, D.H. Anjum et al., Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett. 19, 3199–3206 (2019). https://doi.org/10.1021/acs.nanolett.9b00697
J.-J. Ye, P.-H. Li, H.-R. Zhang, Z.-Y. Song, T. Fan et al., Manipulating oxygen vacancies to spur ion kinetics in V2O5 structures for superior aqueous zinc-ion batteries. Adv. Funct. Mater. 33, 2305659 (2023). https://doi.org/10.1002/adfm.202305659
W. Leng, X. Liu, Y. Gong, Chromium vanadate with unsaturated coordination sites for high-performance zinc-ion battery. Chem. Eng. J. 431, 134034 (2022). https://doi.org/10.1016/j.cej.2021.134034
Z. Feng, J. Sun, Y. Liu, H. Jiang, T. Hu et al., Polypyrrole-intercalation tuning lamellar structure of V2O5·nH2O boosts fast zinc-ion kinetics for aqueous zinc-ion battery. J. Power. Sources 536, 231489 (2022). https://doi.org/10.1016/j.jpowsour.2022.231489
J. Zheng, C. Liu, M. Tian, X. Jia, E.P. Jahrman et al., Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate. Nano Energy 70, 104519 (2020). https://doi.org/10.1016/j.nanoen.2020.104519
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139, 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471