Covalently Bonded Ni Sites in Black Phosphorene with Electron Redistribution for Efficient Metal-Lightweighted Water Electrolysis
Corresponding Author: Zhengfei Dai
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 115
Abstract
The metal-lightweighted electrocatalysts for water splitting are highly desired for sustainable and economic hydrogen energy deployments, but challengeable. In this work, a low-content Ni-functionalized approach triggers the high capability of black phosphorene (BP) with hydrogen and oxygen evolution reaction (HER/OER) bifunctionality. Through a facile in situ electro-exfoliation route, the ionized Ni sites are covalently functionalized in BP nanosheets with electron redistribution and controllable metal contents. It is found that the as-fabricated Ni-BP electrocatalysts can drive the water splitting with much enhanced HER and OER activities. In 1.0 M KOH electrolyte, the optimized 1.5 wt% Ni-functionalized BP nanosheets have readily achieved low overpotentials of 136 mV for HER and 230 mV for OER at 10 mA cm−2. Moreover, the covalently bonding between Ni and P has also strengthened the catalytic stability of the Ni-functionalized BP electrocatalyst, stably delivering the overall water splitting for 50 h at 20 mA cm−2. Theoretical calculations have revealed that Ni–P covalent binding can regulate the electronic structure and optimize the reaction energy barrier to improve the catalytic activity effectively. This work confirms that Ni-functionalized BP is a suitable candidate for electrocatalytic overall water splitting, and provides effective strategies for constructing metal-lightweighted economic electrocatalysts.
Highlights:
1 Black phosphorene (BP) was functionalized by the ionized Ni through an in situ electrochemical exfoliation method.
2 Just 1.5 wt% Ni-functionalized BP can stably deliver the efficient alkaline H2/O2 evolution electrocatalysis.
3 Optimized intermediate chemisorption is enabled by Ni–P covalent bonding and electron redistributed surface.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.-W. Jiang, H.S. Park, Negative Poisson’s ratio in single-layer black phosphorus. Nat. Commun. 5, 4727 (2014). https://doi.org/10.1038/ncomms5727
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
- J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). https://doi.org/10.1038/ncomms5475
- J. Zhu, G. Xiao, X. Zuo, Two-dimensional black phosphorus: an emerging anode material for lithium-ion batteries. Nano-Micro Lett. 12, 120 (2020). https://doi.org/10.1007/s40820-020-00453-x
- J. Cheng, L. Gao, T. Li, S. Mei, C. Wang et al., Two-dimensional black phosphorus nanomaterials: emerging advances in electrochemical energy storage science. Nano-Micro Lett. 12, 179 (2020). https://doi.org/10.1007/s40820-020-00510-5
- M. Fortin-Deschênes, F. Xia, Synthesis of black phosphorus films. Nat. Mater. 22, 681–682 (2023). https://doi.org/10.1038/s41563-023-01548-7
- Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai et al., Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction. Angew. Chem. Int. Ed. 55, 13849–13853 (2016). https://doi.org/10.1002/anie.201607393
- L. Zeng, X. Zhang, Y. Liu, X. Yang, J. Wang et al., Surface and interface control of black phosphorus. Chem 8, 632–662 (2022). https://doi.org/10.1016/j.chempr.2021.11.022
- Y. Zhang, C. Ma, J. Xie, H. Ågren, H. Zhang, Black phosphorus/polymers: status and challenges. Adv. Mater. 33, e2100113 (2021). https://doi.org/10.1002/adma.202100113
- X. Wang, R.K.M. Raghupathy, C.J. Querebillo, Z. Liao, D. Li et al., Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for electrocatalytic oxygen reactions. Adv. Mater. 33, e2008752 (2021). https://doi.org/10.1002/adma.202008752
- J. Mei, T. He, J. Bai, D. Qi, A. Du et al., Surface-dependent intermediate adsorption modulation on iridium-modified black phosphorus electrocatalysts for efficient pH-universal water splitting. Adv. Mater. 33, e2104638 (2021). https://doi.org/10.1002/adma.202104638
- V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Adsorption of metal adatoms on single-layer phosphorene. Phys. Chem. Chem. Phys. 17, 992–1000 (2015). https://doi.org/10.1039/c4cp03890h
- J. Lu, X. Zhang, D. Liu, N. Yang, H. Huang et al., Modulation of phosphorene for optimal hydrogen evolution reaction. ACS Appl. Mater. Interfaces 11, 37787–37795 (2019). https://doi.org/10.1021/acsami.9b13666
- H. Qiao, H. Liu, Z. Huang, Q. Ma, S. Luo et al., Black phosphorus nanosheets modified with Au nanops as high conductivity and high activity electrocatalyst for oxygen evolution reaction. Adv. Energy Mater. 10, 2002424 (2020). https://doi.org/10.1002/aenm.202002424
- B. Yang, B. Wan, Q. Zhou, Y. Wang, W. Hu et al., Te-doped black phosphorus field-effect transistors. Adv. Mater. 28, 9408–9415 (2016). https://doi.org/10.1002/adma.201603723
- Y. Liu, P. Gao, T. Zhang, X. Zhu, M. Zhang et al., Azide passivation of black phosphorus nanosheets: covalent functionalization affords ambient stability enhancement. Angew. Chem. Int. Ed. 58, 1479–1483 (2019). https://doi.org/10.1002/anie.201813218
- Z. Sofer, J. Luxa, D. Bouša, D. Sedmidubský, P. Lazar et al., The covalent functionalization of layered black phosphorus by nucleophilic reagents. Angew. Chem. Int. Ed. 56, 9891–9896 (2017). https://doi.org/10.1002/anie.201705722
- M. Vanni, M. Bellini, S. Borsacchi, L. Calucci, M. Caporali et al., Interlayer coordination of Pd–Pd units in exfoliated black phosphorus. J. Am. Chem. Soc. 143, 10088–10098 (2021). https://doi.org/10.1021/jacs.1c01754
- P. Zhou, M. Luo, S. Guo, Optimizing the semiconductor–metal-single-atom interaction for photocatalytic reactivity. Nat. Rev. Chem. 6, 823–838 (2022). https://doi.org/10.1038/s41570-022-00434-1
- Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian et al., Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 15, 95 (2023). https://doi.org/10.1007/s40820-023-01066-w
- B. Singh, M.B. Gawande, A.D. Kute, R.S. Varma, P. Fornasiero et al., Single-atom (iron-based) catalysts: synthesis and applications. Chem. Rev. 121, 13620–13697 (2021). https://doi.org/10.1021/acs.chemrev.1c00158
- R.G. Kadam, T. Zhang, D. Zaoralová, M. Medveď, A. Bakandritsos et al., Single co-atoms as electrocatalysts for efficient hydrazine oxidation reaction. Small 17, e2006477 (2021). https://doi.org/10.1002/smll.202006477
- E. Khare, N. Holten-Andersen, M.J. Buehler, Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties. Nat. Rev. Mater. 6, 421–436 (2021). https://doi.org/10.1038/s41578-020-00270-z
- P. Vishnoi, A. Saraswat, C.N.R. Rao, Chemically functionalized phosphorenes and their use in the water splitting reaction. J. Mater. Chem. A 10, 19534–19551 (2022). https://doi.org/10.1039/D2TA01932A
- W. Fu, J. Wan, H. Zhang, J. Li, W. Chen et al., Photoinduced loading of electron-rich Cu single atoms by moderate coordination for hydrogen evolution. Nat. Commun. 13, 5496 (2022). https://doi.org/10.1038/s41467-022-33275-z
- L. Zeng, Z. Zhao, F. Lv, Z. Xia, S.-Y. Lu et al., Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer. Nat. Commun. 13, 3822 (2022). https://doi.org/10.1038/s41467-022-31406-0
- S. Li, B. Chen, Y. Wang, M.Y. Ye, P.A. van Aken et al., Oxygen-evolving catalytic atoms on metal carbides. Nat. Mater. 20, 1240–1247 (2021). https://doi.org/10.1038/s41563-021-01006-2
- H. Liu, J. Cheng, W. He, Y. Li, J. Mao et al., Interfacial electronic modulation of Ni3S2 nanosheet arrays decorated with Au nanops boosts overall water splitting. Appl. Catal. B Environ. 304, 120935 (2022). https://doi.org/10.1016/j.apcatb.2021.120935
- T. Liang, S. Lenus, Y. Liu, Y. Chen, T. Sakthivel et al., Interface and M3+/M2+ valence dual-engineering on nickel cobalt sulfoselenide/black phosphorus heterostructure for efficient water splitting electrocatalysis. Energy Environ. Mater. 6, 12332 (2023). https://doi.org/10.1002/eem2.12332
- C. Wang, Q. He, U. Halim, Y. Liu, E. Zhu et al., Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018). https://doi.org/10.1038/nature25774
- J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
- X. Wang, Q. Li, P. Shi, J. Fan, Y. Min et al., Nickel nitride ps supported on 2D activated graphene-black phosphorus heterostructure: an efficient electrocatalyst for the oxygen evolution reaction. Small 15, e1901530 (2019). https://doi.org/10.1002/smll.201901530
- W. Yang, B. Ling, B. Hu, H. Yin, J. Mao et al., Synergistic N-heterocyclic carbene/palladium-catalyzed umpolung 1, 4-addition of aryl iodides to enals. Angew. Chem. Int. Ed. 59, 161–166 (2020). https://doi.org/10.1002/anie.201912584
- S.J. Song, I.S. Raja, Y.B. Lee, M.S. Kang, H.J. Seo et al., Comparison of cytotoxicity of black phosphorus nanosheets in different types of fibroblasts. Biomater. Res. 23, 23 (2019). https://doi.org/10.1186/s40824-019-0174-x
- Y. Liu, Y. Chen, Y. Tian, T. Sakthivel, H. Liu et al., Synergizing hydrogen spillover and deprotonation by the internal polarization field in a MoS2/NiPS3 vertical heterostructure for boosted water electrolysis. Adv. Mater. 34, e2203615 (2022). https://doi.org/10.1002/adma.202203615
- Y. Wang, X. Li, Z. Huang, H. Wang, Z. Chen et al., Amorphous Mo-doped NiS0.5 Se0.5 Nanosheets@Crystalline NiS0.5 Se0.5 nanorods for high current-density electrocatalytic water splitting in neutral media. Angew. Chem. Int. Ed. 62, e202215256 (2023). https://doi.org/10.1002/anie.202215256
- Y. Wang, X. Li, M. Zhang, J. Zhang, Z. Chen et al., Highly active and durable single-atom tungsten-doped NiS0.5 Se0.5 nanosheet @ NiS0.5 Se0.5 nanorod heterostructures for water splitting. Adv. Mater. 34, e2107053 (2022). https://doi.org/10.1002/adma.202107053
- L. Su, D. Gong, N. Yao, Y. Li, Z. Li et al., Modification of the intermediate binding energies on Ni/Ni3N heterostructure for enhanced alkaline hydrogen oxidation reaction. Adv. Funct. Mater. 31, 2106156 (2021). https://doi.org/10.1002/adfm.202106156
- Y. Bai, Y. Wu, X. Zhou, Y. Ye, K. Nie et al., Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution. Nat. Commun. 13, 6094 (2022). https://doi.org/10.1038/s41467-022-33846-0
- X. Wang, S. Xi, P. Huang, Y. Du, H. Zhong et al., Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611, 702–708 (2022). https://doi.org/10.1038/s41586-022-05296-7
- Y. Lin, H. Wang, C.-K. Peng, L. Bu, C.-L. Chiang et al., Co-induced electronic optimization of hierarchical NiFe LDH for oxygen evolution. Small 16, e2002426 (2020). https://doi.org/10.1002/smll.202002426
- L. Li, L. Wang, X. Peng, S. Tao, M.-H. Zeng, Nickel–salen as a model for bifunctional OER/UOR electrocatalysts: pyrolysis temperature–electrochemical activity interconnection. Inorg. Chem. Front. 9, 1973–1983 (2022). https://doi.org/10.1039/d2qi00226d
- P.F. Liu, X. Li, S. Yang, M.Y. Zu, P. Liu et al., Ni2P(O)/Fe2P(O) interface can boost oxygen evolution electrocatalysis. ACS Energy Lett. 2, 2257–2263 (2017). https://doi.org/10.1021/acsenergylett.7b00638
- W. Zhai, Y. Chen, Y. Liu, T. Sakthivel, Y. Ma et al., Bimetal-incorporated black phosphorene with surface electron deficiency for efficient anti-reconstruction water electrolysis. Adv. Funct. Mater. 33, 2301565 (2023). https://doi.org/10.1002/adfm.202301565
- W. Ni, T. Wang, F. Héroguel, A. Krammer, S. Lee et al., An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells. Nat. Mater. 21, 804–810 (2022). https://doi.org/10.1038/s41563-022-01221-5
- J. Wang, J. Yu, J. Wang, K. Wang, L. Yu et al., Adsorbed p-aminothiophenol molecules on platinum nanops improve electrocatalytic hydrogen evolution. Small 19, e2207135 (2023). https://doi.org/10.1002/smll.202207135
- J. Wang, S.-J. Kim, J. Liu, Y. Gao, S. Choi et al., Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4, 212–222 (2021). https://doi.org/10.1038/s41929-021-00578-1
- H. Lei, L. Ma, Q. Wan, S. Tan, B. Yang et al., Promoting surface reconstruction of NiFe layered double hydroxide for enhanced oxygen evolution. Adv. Energy Mater. 12, 2202522 (2022). https://doi.org/10.1002/aenm.202202522
- J. Mei, J. Shang, T. He, D. Qi, L. Kou et al., 2D/2D black phosphorus/nickel hydroxide heterostructures for promoting oxygen evolution via electronic structure modulation and surface reconstruction. Adv. Energy Mater. 12, 2270104 (2022). https://doi.org/10.1002/aenm.202270104
- T. Wu, S. Xu, Z. Zhang, M. Luo, R. Wang et al., Bimetal modulation stabilizing a metallic heterostructure for efficient overall water splitting at large current density. Adv. Sci. 9, e2202750 (2022). https://doi.org/10.1002/advs.202202750
- D. S. Hongzhiwei Technology, Version 2021A, China. https://iresearch.net.cn/cloudSoftware. Accessed Oct 2022
- Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
- B. Zhang, Y. Chen, J. Wang, H. Pan, W. Sun, Supported sub-nanometer clusters for electrocatalysis applications. Adv. Funct. Mater. 32, 2202227 (2022). https://doi.org/10.1002/adfm.202202227
- Z. Yuan, J. Li, M. Yang, Z. Fang, J. Jian et al., Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: dual modulation roles of directional interfacial charge transfer. J. Am. Chem. Soc. 141, 4972–4979 (2019). https://doi.org/10.1021/jacs.9b00154
References
J.-W. Jiang, H.S. Park, Negative Poisson’s ratio in single-layer black phosphorus. Nat. Commun. 5, 4727 (2014). https://doi.org/10.1038/ncomms5727
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). https://doi.org/10.1038/ncomms5475
J. Zhu, G. Xiao, X. Zuo, Two-dimensional black phosphorus: an emerging anode material for lithium-ion batteries. Nano-Micro Lett. 12, 120 (2020). https://doi.org/10.1007/s40820-020-00453-x
J. Cheng, L. Gao, T. Li, S. Mei, C. Wang et al., Two-dimensional black phosphorus nanomaterials: emerging advances in electrochemical energy storage science. Nano-Micro Lett. 12, 179 (2020). https://doi.org/10.1007/s40820-020-00510-5
M. Fortin-Deschênes, F. Xia, Synthesis of black phosphorus films. Nat. Mater. 22, 681–682 (2023). https://doi.org/10.1038/s41563-023-01548-7
Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai et al., Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction. Angew. Chem. Int. Ed. 55, 13849–13853 (2016). https://doi.org/10.1002/anie.201607393
L. Zeng, X. Zhang, Y. Liu, X. Yang, J. Wang et al., Surface and interface control of black phosphorus. Chem 8, 632–662 (2022). https://doi.org/10.1016/j.chempr.2021.11.022
Y. Zhang, C. Ma, J. Xie, H. Ågren, H. Zhang, Black phosphorus/polymers: status and challenges. Adv. Mater. 33, e2100113 (2021). https://doi.org/10.1002/adma.202100113
X. Wang, R.K.M. Raghupathy, C.J. Querebillo, Z. Liao, D. Li et al., Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for electrocatalytic oxygen reactions. Adv. Mater. 33, e2008752 (2021). https://doi.org/10.1002/adma.202008752
J. Mei, T. He, J. Bai, D. Qi, A. Du et al., Surface-dependent intermediate adsorption modulation on iridium-modified black phosphorus electrocatalysts for efficient pH-universal water splitting. Adv. Mater. 33, e2104638 (2021). https://doi.org/10.1002/adma.202104638
V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Adsorption of metal adatoms on single-layer phosphorene. Phys. Chem. Chem. Phys. 17, 992–1000 (2015). https://doi.org/10.1039/c4cp03890h
J. Lu, X. Zhang, D. Liu, N. Yang, H. Huang et al., Modulation of phosphorene for optimal hydrogen evolution reaction. ACS Appl. Mater. Interfaces 11, 37787–37795 (2019). https://doi.org/10.1021/acsami.9b13666
H. Qiao, H. Liu, Z. Huang, Q. Ma, S. Luo et al., Black phosphorus nanosheets modified with Au nanops as high conductivity and high activity electrocatalyst for oxygen evolution reaction. Adv. Energy Mater. 10, 2002424 (2020). https://doi.org/10.1002/aenm.202002424
B. Yang, B. Wan, Q. Zhou, Y. Wang, W. Hu et al., Te-doped black phosphorus field-effect transistors. Adv. Mater. 28, 9408–9415 (2016). https://doi.org/10.1002/adma.201603723
Y. Liu, P. Gao, T. Zhang, X. Zhu, M. Zhang et al., Azide passivation of black phosphorus nanosheets: covalent functionalization affords ambient stability enhancement. Angew. Chem. Int. Ed. 58, 1479–1483 (2019). https://doi.org/10.1002/anie.201813218
Z. Sofer, J. Luxa, D. Bouša, D. Sedmidubský, P. Lazar et al., The covalent functionalization of layered black phosphorus by nucleophilic reagents. Angew. Chem. Int. Ed. 56, 9891–9896 (2017). https://doi.org/10.1002/anie.201705722
M. Vanni, M. Bellini, S. Borsacchi, L. Calucci, M. Caporali et al., Interlayer coordination of Pd–Pd units in exfoliated black phosphorus. J. Am. Chem. Soc. 143, 10088–10098 (2021). https://doi.org/10.1021/jacs.1c01754
P. Zhou, M. Luo, S. Guo, Optimizing the semiconductor–metal-single-atom interaction for photocatalytic reactivity. Nat. Rev. Chem. 6, 823–838 (2022). https://doi.org/10.1038/s41570-022-00434-1
Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian et al., Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 15, 95 (2023). https://doi.org/10.1007/s40820-023-01066-w
B. Singh, M.B. Gawande, A.D. Kute, R.S. Varma, P. Fornasiero et al., Single-atom (iron-based) catalysts: synthesis and applications. Chem. Rev. 121, 13620–13697 (2021). https://doi.org/10.1021/acs.chemrev.1c00158
R.G. Kadam, T. Zhang, D. Zaoralová, M. Medveď, A. Bakandritsos et al., Single co-atoms as electrocatalysts for efficient hydrazine oxidation reaction. Small 17, e2006477 (2021). https://doi.org/10.1002/smll.202006477
E. Khare, N. Holten-Andersen, M.J. Buehler, Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties. Nat. Rev. Mater. 6, 421–436 (2021). https://doi.org/10.1038/s41578-020-00270-z
P. Vishnoi, A. Saraswat, C.N.R. Rao, Chemically functionalized phosphorenes and their use in the water splitting reaction. J. Mater. Chem. A 10, 19534–19551 (2022). https://doi.org/10.1039/D2TA01932A
W. Fu, J. Wan, H. Zhang, J. Li, W. Chen et al., Photoinduced loading of electron-rich Cu single atoms by moderate coordination for hydrogen evolution. Nat. Commun. 13, 5496 (2022). https://doi.org/10.1038/s41467-022-33275-z
L. Zeng, Z. Zhao, F. Lv, Z. Xia, S.-Y. Lu et al., Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer. Nat. Commun. 13, 3822 (2022). https://doi.org/10.1038/s41467-022-31406-0
S. Li, B. Chen, Y. Wang, M.Y. Ye, P.A. van Aken et al., Oxygen-evolving catalytic atoms on metal carbides. Nat. Mater. 20, 1240–1247 (2021). https://doi.org/10.1038/s41563-021-01006-2
H. Liu, J. Cheng, W. He, Y. Li, J. Mao et al., Interfacial electronic modulation of Ni3S2 nanosheet arrays decorated with Au nanops boosts overall water splitting. Appl. Catal. B Environ. 304, 120935 (2022). https://doi.org/10.1016/j.apcatb.2021.120935
T. Liang, S. Lenus, Y. Liu, Y. Chen, T. Sakthivel et al., Interface and M3+/M2+ valence dual-engineering on nickel cobalt sulfoselenide/black phosphorus heterostructure for efficient water splitting electrocatalysis. Energy Environ. Mater. 6, 12332 (2023). https://doi.org/10.1002/eem2.12332
C. Wang, Q. He, U. Halim, Y. Liu, E. Zhu et al., Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018). https://doi.org/10.1038/nature25774
J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
X. Wang, Q. Li, P. Shi, J. Fan, Y. Min et al., Nickel nitride ps supported on 2D activated graphene-black phosphorus heterostructure: an efficient electrocatalyst for the oxygen evolution reaction. Small 15, e1901530 (2019). https://doi.org/10.1002/smll.201901530
W. Yang, B. Ling, B. Hu, H. Yin, J. Mao et al., Synergistic N-heterocyclic carbene/palladium-catalyzed umpolung 1, 4-addition of aryl iodides to enals. Angew. Chem. Int. Ed. 59, 161–166 (2020). https://doi.org/10.1002/anie.201912584
S.J. Song, I.S. Raja, Y.B. Lee, M.S. Kang, H.J. Seo et al., Comparison of cytotoxicity of black phosphorus nanosheets in different types of fibroblasts. Biomater. Res. 23, 23 (2019). https://doi.org/10.1186/s40824-019-0174-x
Y. Liu, Y. Chen, Y. Tian, T. Sakthivel, H. Liu et al., Synergizing hydrogen spillover and deprotonation by the internal polarization field in a MoS2/NiPS3 vertical heterostructure for boosted water electrolysis. Adv. Mater. 34, e2203615 (2022). https://doi.org/10.1002/adma.202203615
Y. Wang, X. Li, Z. Huang, H. Wang, Z. Chen et al., Amorphous Mo-doped NiS0.5 Se0.5 Nanosheets@Crystalline NiS0.5 Se0.5 nanorods for high current-density electrocatalytic water splitting in neutral media. Angew. Chem. Int. Ed. 62, e202215256 (2023). https://doi.org/10.1002/anie.202215256
Y. Wang, X. Li, M. Zhang, J. Zhang, Z. Chen et al., Highly active and durable single-atom tungsten-doped NiS0.5 Se0.5 nanosheet @ NiS0.5 Se0.5 nanorod heterostructures for water splitting. Adv. Mater. 34, e2107053 (2022). https://doi.org/10.1002/adma.202107053
L. Su, D. Gong, N. Yao, Y. Li, Z. Li et al., Modification of the intermediate binding energies on Ni/Ni3N heterostructure for enhanced alkaline hydrogen oxidation reaction. Adv. Funct. Mater. 31, 2106156 (2021). https://doi.org/10.1002/adfm.202106156
Y. Bai, Y. Wu, X. Zhou, Y. Ye, K. Nie et al., Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution. Nat. Commun. 13, 6094 (2022). https://doi.org/10.1038/s41467-022-33846-0
X. Wang, S. Xi, P. Huang, Y. Du, H. Zhong et al., Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611, 702–708 (2022). https://doi.org/10.1038/s41586-022-05296-7
Y. Lin, H. Wang, C.-K. Peng, L. Bu, C.-L. Chiang et al., Co-induced electronic optimization of hierarchical NiFe LDH for oxygen evolution. Small 16, e2002426 (2020). https://doi.org/10.1002/smll.202002426
L. Li, L. Wang, X. Peng, S. Tao, M.-H. Zeng, Nickel–salen as a model for bifunctional OER/UOR electrocatalysts: pyrolysis temperature–electrochemical activity interconnection. Inorg. Chem. Front. 9, 1973–1983 (2022). https://doi.org/10.1039/d2qi00226d
P.F. Liu, X. Li, S. Yang, M.Y. Zu, P. Liu et al., Ni2P(O)/Fe2P(O) interface can boost oxygen evolution electrocatalysis. ACS Energy Lett. 2, 2257–2263 (2017). https://doi.org/10.1021/acsenergylett.7b00638
W. Zhai, Y. Chen, Y. Liu, T. Sakthivel, Y. Ma et al., Bimetal-incorporated black phosphorene with surface electron deficiency for efficient anti-reconstruction water electrolysis. Adv. Funct. Mater. 33, 2301565 (2023). https://doi.org/10.1002/adfm.202301565
W. Ni, T. Wang, F. Héroguel, A. Krammer, S. Lee et al., An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells. Nat. Mater. 21, 804–810 (2022). https://doi.org/10.1038/s41563-022-01221-5
J. Wang, J. Yu, J. Wang, K. Wang, L. Yu et al., Adsorbed p-aminothiophenol molecules on platinum nanops improve electrocatalytic hydrogen evolution. Small 19, e2207135 (2023). https://doi.org/10.1002/smll.202207135
J. Wang, S.-J. Kim, J. Liu, Y. Gao, S. Choi et al., Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4, 212–222 (2021). https://doi.org/10.1038/s41929-021-00578-1
H. Lei, L. Ma, Q. Wan, S. Tan, B. Yang et al., Promoting surface reconstruction of NiFe layered double hydroxide for enhanced oxygen evolution. Adv. Energy Mater. 12, 2202522 (2022). https://doi.org/10.1002/aenm.202202522
J. Mei, J. Shang, T. He, D. Qi, L. Kou et al., 2D/2D black phosphorus/nickel hydroxide heterostructures for promoting oxygen evolution via electronic structure modulation and surface reconstruction. Adv. Energy Mater. 12, 2270104 (2022). https://doi.org/10.1002/aenm.202270104
T. Wu, S. Xu, Z. Zhang, M. Luo, R. Wang et al., Bimetal modulation stabilizing a metallic heterostructure for efficient overall water splitting at large current density. Adv. Sci. 9, e2202750 (2022). https://doi.org/10.1002/advs.202202750
D. S. Hongzhiwei Technology, Version 2021A, China. https://iresearch.net.cn/cloudSoftware. Accessed Oct 2022
Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
B. Zhang, Y. Chen, J. Wang, H. Pan, W. Sun, Supported sub-nanometer clusters for electrocatalysis applications. Adv. Funct. Mater. 32, 2202227 (2022). https://doi.org/10.1002/adfm.202202227
Z. Yuan, J. Li, M. Yang, Z. Fang, J. Jian et al., Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: dual modulation roles of directional interfacial charge transfer. J. Am. Chem. Soc. 141, 4972–4979 (2019). https://doi.org/10.1021/jacs.9b00154