Shining Light on Anion-Mixed Nanocatalysts for Efficient Water Electrolysis: Fundamentals, Progress, and Perspectives
Corresponding Author: Zhengfei Dai
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 43
Abstract
Hydrogen with high energy density and zero carbon emission is widely acknowledged as the most promising candidate toward world's carbon neutrality and future sustainable eco-society. Water-splitting is a constructive technology for unpolluted and high-purity H2 production, and a series of non-precious electrocatalysts have been developed over the past decade. To further improve the catalytic activities, metal doping is always adopted to modulate the 3d-electronic configuration and electron-donating/accepting (e-DA) properties, while for anion doping, the electronegativity variations among different non-metal elements would also bring some potential in the modulations of e-DA and metal valence for tuning the performances. In this review, we summarize the recent developments of the many different anion-mixed transition metal compounds (e.g., nitrides, halides, phosphides, chalcogenides, oxyhydroxides, and borides/borates) for efficient water electrolysis applications. First, we have introduced the general information of water-splitting and the description of anion-mixed electrocatalysts and highlighted their complementary functions of mixed anions. Furthermore, some latest advances of anion-mixed compounds are also categorized for hydrogen and oxygen evolution electrocatalysis. The rationales behind their enhanced electrochemical performances are discussed. Last but not least, the challenges and future perspectives are briefly proposed for the anion-mixed water dissociation catalysts.
Highlights:
1 This review introduces recent advances of various anion-mixed transition metal compounds (e.g., nitrides, halides, phosphides, chalcogenides, (oxy)hydroxides, and borides) for efficient water electrolysis applications in detail.
2 The challenges and future perspectives are proposed and analyzed for the anion-mixed water dissociation catalysts, including polyanion-mixed and metal-free catalyst, progressive synthesis strategies, advanced in situ characterizations, and atomic level structure–activity relationship.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Lyu, Q. Wang, S.M. Choi, Y. Yin, Noble-metal-free electrocatalysts for oxygen evolution. Small 15(1), 1804201 (2018). https://doi.org/10.1002/smll.201804201
- P.W. Du, R. Eisenberg, Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ. Sci. 5(3), 6012–6021 (2012). https://doi.org/10.1039/c2ee03250c
- H.M. Chen, C.K. Chen, R.S. Liu, L. Zhang, J. Zhang et al., Nano-architecture and material designs for water splitting photoelectrodes. Chem. Soc. Rev. 41(17), 5654–5671 (2012). https://doi.org/10.1039/c2cs35019j
- J. Ke, F. He, H. Wu, S. Lyu, J. Liu et al., Nanocarbon-enhanced 2D photoelectrodes: a new paradigm in photoelectrochemical water splitting. Nano-Micro Lett. 13, 24 (2021). https://doi.org/10.1007/s40820-020-00545-8
- Z.P. Ifkovits, J.M. Evans, M.C. Meier, K.M. Papadantonakis, N.S. Lewis, Decoupled electrochemical water-splitting systems: a review and prospective. Energy Environ. Sci. 14(9), 4740–4759 (2021). https://doi.org/10.1039/D1EE01226F
- C. Kuo, M. Neumann, K. Balamurugan, H.J. Park, S. Kang et al., Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Sci. Rep. 6(1), 20904 (2016). https://doi.org/10.1038/srep20904
- B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich et al., Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352(6283), 333–337 (2016). https://doi.org/10.1126/science.aaf1525
- D.D. Babu, Y. Huang, G. Anandhababu, M.A. Ghausi, Y. Wang, Mixed-metal-organic framework self-template synthesis of porous hybrid oxyphosphides for efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 9(44), 38621–38628 (2017). https://doi.org/10.1021/acsami.7b13359
- W. Qian, S. Xu, X. Zhang, C. Li, W. Yang et al., Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Lett. 13, 156 (2021). https://doi.org/10.1007/s40820-021-00681-9
- L. Ouyang, J. Jiang, K. Chen, M. Zhu, Z. Liu, Hydrogen production via hydrolysis and alcoholysis of light metal-based materials: a review. Nano-Micro Lett. 13, 134 (2021). https://doi.org/10.1007/s40820-021-00657-9
- L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 49(10), 3072–3106 (2020). https://doi.org/10.1039/D0CS00013B
- Y. Chen, K. Rui, J. Zhu, S.X. Dou, W. Sun, Recent progress on nickel-based oxide/(oxy)hydroxide electrocatalysts for the oxygen evolution reaction. Chem 25(3), 703–713 (2018). https://doi.org/10.1002/chem.201802068
- R. Boppella, J. Tan, J. Yun, S.V. Manorama, J. Moon, Anion-mediated transition metal electrocatalysts for efficient water electrolysis: recent advances and future perspectives. Coord. Chem. Rev. 427, 213552 (2021). https://doi.org/10.1016/j.ccr.2020.213552
- Y. Yan, B.Y. Xia, B. Zhao, X. Wang, A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 4(45), 17587–17603 (2016). https://doi.org/10.1039/c6ta08075h
- N.K. Chaudhari, H. Jin, B. Kim, K. Lee, Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 9(34), 12231–12247 (2017). https://doi.org/10.1039/c7nr04187j
- N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017). https://doi.org/10.1039/c6cs00328a
- V. Vij, S. Sultan, A.M. Harzandi, A. Meena, J.N. Tiwari et al., Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 7(10), 7196–7225 (2017). https://doi.org/10.1021/acscatal.7b01800
- R. Gusmao, Z. Sofer, M. Pumera, Metal phosphorous trichalcogenides (MPCh3): from synthesis to contemporary energy challenges. Angew. Chem. Int. Ed. 58(28), 9326–9337 (2019). https://doi.org/10.1002/anie.201810309
- H. Wang, C. Tang, B. Li, Q. Zhang, A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis. Inorg. Chem. Front. 5(3), 521–534 (2018). https://doi.org/10.1039/c7qi00780a
- Y. Yan, T. He, B. Zhao, K. Qi, H. Liu et al., Metal/covalent–organic frameworks-based electrocatalysts for water splitting. J. Mater. Chem. A 6(33), 15905–15926 (2018). https://doi.org/10.1039/c8ta05985c
- G. Zhao, K. Rui, S.X. Dou, W. Sun, Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv. Funct. Mater. 28(43), 1803291 (2018). https://doi.org/10.1002/adfm.201803291
- P. Li, W. Chen, Recent advances in one-dimensional nanostructures for energy electrocatalysis. Chin. J. Catal. 40(1), 4–22 (2019). https://doi.org/10.1016/S1872-2067(18)63177-8
- H. Zhang, A.W. Maijenburg, X. Li, S.L. Schweizer, R.B. Wehrspohn, Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Adv. Funct. Mater. 30(34), 2003261 (2020). https://doi.org/10.1002/adfm.202003261
- H. Wang, H.W. Lee, Y. Deng, Z. Lu, P.C. Hsu et al., Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015). https://doi.org/10.1038/ncomms8261
- B. Jin, X. Zhou, L. Huang, M. Licklederer, M. Yang et al., Aligned MoOx/MoS2 core–shell nanotubular structures with a high density of reactive sites based on self-ordered anodic molybdenum oxide nanotubes. Angew. Chem. Int. Ed. Engl. 55(40), 12252–12256 (2016). https://doi.org/10.1002/anie.201605551
- B. Konkena, J. Masa, W. Xia, M. Muhler, W. Schuhmann, MoSSe@reduced graphene oxide nanocomposite heterostructures as efficient and stable electrocatalysts for the hydrogen evolution reaction. Nano Energy 29, 46–53 (2016). https://doi.org/10.1016/j.nanoen.2016.04.018
- C. Tang, H.F. Wang, X. Chen, B.Q. Li, T.Z. Hou et al., Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 28(32), 6845–6851 (2016). https://doi.org/10.1002/adma.201601406
- W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang et al., Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 52(7), 1486–1489 (2016). https://doi.org/10.1039/c5cc08064a
- K. Liang, L. Guo, K. Marcus, S. Zhang, Z. Yang et al., Overall water splitting with room-temperature synthesized NiFe oxyfluoride nanoporous films. ACS Catal. 7(12), 8406–8412 (2017). https://doi.org/10.1021/acscatal.7b02991
- F. Yan, C. Zhu, C. Li, S. Zhang, X. Zhang et al., Highly stable three-dimensional nickel-iron oxyhydroxide catalysts for oxygen evolution reaction at high current densities. Electrochim. Acta 245, 770–779 (2017). https://doi.org/10.1016/j.electacta.2017.05.200
- X. Fan, Y. Liu, S. Chen, J. Shi, J. Wang et al., Defect-enriched iron fluoride-oxide nanoporous thin films bifunctional catalyst for water splitting. Nat. Commun. 9, 1809 (2018). https://doi.org/10.1038/s41467-018-04248-y
- J. Huang, Y. Sun, Y. Zhang, G. Zou, C. Yan et al., A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation. Adv. Mater. 30(5), 1705045 (2018). https://doi.org/10.1002/adma.201705045
- X. Ma, W. Zhang, Y. Deng, C. Zhong, W. Hu et al., Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. Nanoscale 10(10), 4816–4824 (2018). https://doi.org/10.1039/c7nr09424h
- M. Sial, H. Lin, X. Wang, Microporous 2D NiCoFe phosphate nanosheets supported on Ni foam for efficient overall water splitting in alkaline media. Nanoscale 10(27), 12975–12980 (2018). https://doi.org/10.1039/c8nr03350a
- P. Xu, J. Li, J. Luo, L. Wei, D. Zhang et al., (Fe0.2Ni0.8)0.96S tubular spheres supported on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Sci. Rep. 8(1), 9425 (2018). https://doi.org/10.1038/s41598-018-27477-z
- S. Gupta, M.K. Patel, A. Miotello, N. Patel, Metal boride-based catalysts for electrochemical water-splitting: a review. Adv. Funct. Mater. 30(1), 1906481 (2020). https://doi.org/10.1002/adfm.201906481
- G. Su, S. Chen, H. Dong, Y. Cheng, Q. Liu et al., Tuning the electronic structure of layered vanadium pentoxide by pre-intercalation of potassium ions for superior room/low-temperature aqueous zinc-ion batteries. Nanoscale 13(4), 2399–2407 (2021). https://doi.org/10.1039/D0NR07358J
- N. Wang, A. Xu, P. Ou, S.-F. Hung, A. Ozden et al., Boride-derived oxygen-evolution catalysts. Nat. Commun. 12, 6089 (2021). https://doi.org/10.1038/s41467-021-26307-7
- X.Y. Yu, X.W. Lou, Mixed metal sulfides for electrochemical energy storage and conversion. Adv. Energy Mater. 8(3), 1701592 (2018). https://doi.org/10.1002/aenm.201701592
- X. Liu, J. Du, C. Li, X. Han, X. Hu et al., The anion effect on the oxygen reduction of MnX (X = O, S, and Se) catalysts. J. Mater. Chem. A 3(7), 3425–3431 (2015). https://doi.org/10.1039/c4ta05995f
- S.W. Kim, N. Pereira, N.A. Chernova, F. Omenya, P. Gao et al., Structure stabilization by mixed anions in oxyfluoride cathodes for high-energy lithium Batteries. ACS Nano 9(10), 10076–10084 (2015). https://doi.org/10.1021/acsnano.5b03643
- Y. Liu, T. Liang, Y. Li, Y. Zhao, Z. Guo et al., Silicene oxide: a potential Battery500 cathode for sealed non-aqueous lithium-oxygen batteries. Mater. Today Energy 18, 100503 (2020). https://doi.org/10.1016/j.mtener.2020.100503
- X. Yin, L. Yang, Q. Gao, Core–shell nanostructured electrocatalysts for water splitting. Nanoscale 12(30), 15944–15969 (2020). https://doi.org/10.1039/D0NR03719B
- J. Cui, C. Li, F. Zhang, Development of mixed-anion photocatalysts with wide visible-light absorption bands for solar water splitting. Chemsuschem 12(9), 1872–1888 (2019). https://doi.org/10.1002/cssc.201801829
- N. Yao, P. Li, Z. Zhou, R. Meng, G. Cheng et al., Nitrogen engineering on 3D dandelion-flower-like CoS2 for high-performance overall water splitting. Small 15(31), 1901993 (2019). https://doi.org/10.1002/smll.201901993
- H. Zhang, W. Zhou, J. Dong, X. Lu, X. Lou, Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. Energy Environ. Sci. 12(11), 3348–3355 (2019). https://doi.org/10.1039/c9ee02787d
- C. Pei, H. Chen, B. Dong, X. Yu, L. Feng, Electrochemical oxygen evolution reaction efficiently catalyzed by a novel porous iron–cobalt–fluoride nanocube easily derived from 3-dimensional Prussian blue analogue. J. Power Sources 424, 131–137 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.089
- P. Cai, J. Huang, J. Chen, Z. Wen, Oxygen-containing amorphous cobalt sulfide porous nanocubes as high-activity electrocatalysts for the oxygen evolution reaction in an alkaline/neutral medium. Angew. Chem. Int. Ed. 56(17), 4858–4861 (2017). https://doi.org/10.1002/anie.201701280
- Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou et al., Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4(4), 329–338 (2019). https://doi.org/10.1038/s41560-019-0355-9
- A. Nelson, K.E. Fritz, S. Honrao, R.G. Hennig, R.D. Robinson et al., Increased activity in hydrogen evolution electrocatalysis for partial anionic substitution in cobalt oxysulfide nanoparticles. J. Mater. Chem. A 4(8), 2842–2848 (2016). https://doi.org/10.1039/c5ta08706f
- P.T. Babar, B.S. Pawar, A.C. Lokhande, M.G. Gang, J.S. Jang et al., Annealing temperature dependent catalytic water oxidation activity of iron oxyhydroxide thin films. J. Energy Chem. 26(4), 757–761 (2017). https://doi.org/10.1016/j.jechem.2017.04.012
- S. Ganguli, S. Das, S. Kumari, H.R. Inta, A.K. Tiwari et al., Effect of intrinsic properties of anions on the electrocatalytic activity of NiCo2O4 and NiCo2OxS4–x grown by chemical bath deposition. ACS Omega 3(8), 9066–9074 (2018). https://doi.org/10.1021/acsomega.8b00952
- J. Bai, T. Meng, D. Guo, S. Wang, B. Mao et al., Co9S8@MoS2 core–shell heterostructures as trifunctional electrocatalysts for overall water splitting and Zn–air batteries. ACS Appl. Mater. Interfaces 10(2), 1678–1689 (2018). https://doi.org/10.1021/acsami.7b14997
- J. An, X. Wang, M. Ming, J. Li, N. Ye, Determination of sulfonamides in milk by capillary electrophoresis with PEG@MoS2 as a dispersive solid-phase extraction sorbent. R. Soc. Open Sci. 5(5), 172104 (2018). https://doi.org/10.1098/rsos.172104
- B. Chang, L. Deng, S. Wang, D. Shi, Z. Ai et al., A vanadium–nickel oxynitride layer for enhanced electrocatalytic nitrogen fixation in neutral media. J. Mater. Chem. A 8(1), 91–96 (2020). https://doi.org/10.1039/C9TA11378A
- H. Kageyama, K. Hayashi, K. Maeda, J.P. Attfield, Z. Hiroi et al., Expanding frontiers in materials chemistry and physics with multiple anions. Nat. Commun. 9, 772 (2018). https://doi.org/10.1038/s41467-018-02838-4
- S.R. Lingampalli, K. Manjunath, S. Shenoy, U.V. Waghmare, C.N. Rao, Zn2NF and related analogues of ZnO. J. Am. Chem. Soc. 138(26), 8228–8234 (2016). https://doi.org/10.1021/jacs.6b04198
- L. Chen, J. Chang, Y. Zhang, Z. Gao, D. Wu et al., Fluorine anion-enriched nickel hydroxyl oxide as an efficient oxygen evolution reaction electrocatalyst. Chem. Commun. 55(23), 3406–3409 (2019). https://doi.org/10.1039/c9cc00555b
- B. Li, S. Zhang, C. Tang, X. Cui, Q. Zhang, Anionic regulated NiFe (oxy) sulfide electrocatalysts for water oxidation. Small 13(25), 1700610 (2017). https://doi.org/10.1002/smll.201700610
- S. Wan, J. Qi, W. Zhang, W. Wang, S. Zhang et al., Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv. Mater. 29(28), 1700286 (2017). https://doi.org/10.1002/adma.201700286
- L. Peng, J. Wang, Y. Nie, K. Xiong, Y. Wang et al., Dual-ligand synergistic modulation: a satisfactory strategy for simultaneously improving the activity and stability of oxygen evolution electrocatalysts. ACS Catal. 7(12), 8184–8191 (2017). https://doi.org/10.1021/acscatal.7b01971
- J.K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J.G. Chen et al., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152(3), J23 (2005). https://doi.org/10.1149/1.1856988
- J.S. Yoo, X. Rong, Y. Liu, A.M. Kolpak, Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 8(5), 4628–4636 (2018). https://doi.org/10.1021/acscatal.8b00612
- Z. Dai, H. Geng, J. Wang, Y. Luo, B. Li et al., Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting. ACS Nano 11(11), 11031–11040 (2017). https://doi.org/10.1021/acsnano.7b05050
- J. Luo, H. Wang, G. Su, Y. Tang, H. Liu et al., Self-supported nickel phosphosulphide nanosheets for highly efficient and stable overall water splitting. J. Mater. Chem. A 5(28), 14865–14872 (2017). https://doi.org/10.1039/C7TA02651J
- B. Song, K. Li, Y. Yin, T. Wu, L. Dang et al., Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution. ACS Catal. 7(12), 8549–8557 (2017). https://doi.org/10.1021/acscatal.7b02575
- J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang et al., Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135(47), 17881–17888 (2013). https://doi.org/10.1021/ja408329q
- M. Caban-Acevedo, M.L. Stone, J.R. Schmidt, J.G. Thomas, Q. Ding et al., Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 14(12), 1245–1251 (2015). https://doi.org/10.1038/nmat4410
- B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 45, 71–129 (2000). https://doi.org/10.1016/S0360-0564(02)45013-4
- M. Li, H. Liu, L. Feng, Fluoridation-induced high-performance catalysts for the oxygen evolution reaction: a mini review. Electrochem. Commun. 122, 106901 (2020). https://doi.org/10.1016/j.elecom.2020.106901
- R. Zhang, M. Zhang, H. Yang, G. Li, S. Xing et al., Creating fluorine-doped MoS2 edge electrodes with enhanced hydrogen evolution activity. Small Methods 5(11), 2100612 (2021). https://doi.org/10.1002/smtd.202100612
- J. Zhang, M. Wu, Z. Shi, M. Jiang, W. Jian et al., Composition and interface engineering of alloyed MoS2xSe2(1–x) nanotubes for enhanced hydrogen evolution reaction activity. Small 12(32), 4379–4385 (2016). https://doi.org/10.1002/smll.201601496
- J. Yu, W.-J. Li, G. Kao, C.-Y. Xu, R. Chen et al., In-situ growth of CNTs encapsulating P-doped NiSe2 nanoparticles on carbon framework as efficient bifunctional electrocatalyst for overall water splitting. J. Energy Chem. 60, 111–120 (2021). https://doi.org/10.1016/j.jechem.2020.12.030
- H. Sun, X. Xu, Z. Yan, X. Chen, L. Jiao et al., Superhydrophilic amorphous Co-B-P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. J. Mater. Chem. A 6(44), 22062–22069 (2018). https://doi.org/10.1039/C8TA02999G
- N. Zhang, Y. Chai, Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy Environ. Sci. 14(9), 4647–4671 (2021). https://doi.org/10.1039/D1EE01277K
- M.E. Kreider, M.B. Stevens, Y. Liu, A.M. Patel, M.J. Statt et al., Nitride or oxynitride? Elucidating the composition–activity relationships in molybdenum nitride electrocatalysts for the oxygen reduction reaction. Chem. Mater. 32(7), 2946–2960 (2020). https://doi.org/10.1021/acs.chemmater.9b05212
- L. Yuan, S. Liu, S. Xu, X. Yang, J. Bian et al., Modulation of Volmer step for efficient alkaline water splitting implemented by titanium oxide promoting surface reconstruction of cobalt carbonate hydroxide. Nano Energy 82, 105732 (2021). https://doi.org/10.1016/j.nanoen.2020.105732
- G. Zeng, T.A. Pham, S. Vanka, G. Liu, C. Song et al., Development of a photoelectrochemically self-improving Si/GaN photocathode for efficient and durable H2 production. Nat. Mater. 20(8), 1130–1135 (2021). https://doi.org/10.1038/s41563-021-00965-w
- M. Ahmed, G. Xinxin, A review of metal oxynitrides for photocatalysis. Inorg. Chem. Front. 3(5), 578–590 (2016). https://doi.org/10.1039/c5qi00202h
- A.K. Tareen, G.S. Priyanga, S. Behara, T. Thomas, M. Yang, Mixed ternary transition metal nitrides: a comprehensive review of synthesis, electronic structure, and properties of engineering relevance. Prog. Solid State Chem. 53, 1–26 (2019). https://doi.org/10.1016/j.progsolidstchem.2018.11.001
- M. Chisaka, A. Ishihara, K.-I. Ota, H. Muramoto, Synthesis of carbon-supported titanium oxynitride nanoparticles as cathode catalyst for polymer electrolyte fuel cells. Electrochim. Acta 113, 735–740 (2013). https://doi.org/10.1016/j.electacta.2013.06.048
- A. Miura, Low-temperature synthesis and rational design of nitrides and oxynitrides for novel functional material development. J. Ceram. Soc. Jpn. 125(7), 552–558 (2017). https://doi.org/10.2109/jcersj2.17055
- B. Cao, G.M. Veith, R.E. Diaz, J. Liu, E.A. Stach et al., Cobalt molybdenum oxynitrides: synthesis, structural characterization, and catalytic activity for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52(41), 10753–10757 (2013). https://doi.org/10.1002/anie.201303197
- W. Liu, Y. Hou, Z. Lin, S. Yang, C. Yu et al., Porous cobalt oxynitride nanosheets for efficient electrocatalytic water oxidation. Chemsuschem 11(9), 1479–1485 (2018). https://doi.org/10.1002/cssc.201800380
- N.R. Mucha, J. Som, J. Choi, S. Shaji, R.K. Gupta et al., High-performance titanium oxynitride thin films for electrocatalytic water oxidation. ACS Appl. Energy Mater. 3(9), 8366–8374 (2020). https://doi.org/10.1021/acsaem.0c00988
- J. Di, H. Zhu, J. Xia, J. Bao, P. Zhang et al., High-performance electrolytic oxygen evolution with a seamless armor core-shell FeCoNi oxynitride. Nanoscale 11(15), 7239–7246 (2019). https://doi.org/10.1039/c8nr10191d
- A. Miura, C. Rosero-Navarro, Y. Masubuchi, M. Higuchi, S. Kikkawa et al., Nitrogen-rich manganese oxynitrides with enhanced catalytic activity in the oxygen reduction reaction. Angew. Chem. Int. Ed. 55(28), 7963–7967 (2016). https://doi.org/10.1002/anie.201601568
- H. Tan, Z. Liu, D. Chao, P. Hao, D. Jia et al., Partial nitridation-induced electrochemistry enhancement of ternary oxide nanosheets for fiber energy storage device. Adv. Energy Mater. 8(21), 1800685 (2018). https://doi.org/10.1002/aenm.201800685
- S. Wang, L. Li, Y. Shao, L. Zhang, Y. Li et al., Transition-metal oxynitride: a facile strategy for improving electrochemical capacitor storage. Adv. Mater. 31(10), 1806088 (2019). https://doi.org/10.1002/adma.201806088
- S. Dutta, A. Indra, Y. Feng, H. Han, T. Song, Promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride–oxynitride. Appl. Catal. B 241, 521–527 (2019). https://doi.org/10.1016/j.apcatb.2018.09.061
- J. Xiong, J. Di, C. Yan, M. Xu, J. Yu et al., Size-dependent activity of iron–nickel oxynitride towards electrocatalytic oxygen evolution. ChemNanoMat 5(7), 883–887 (2019). https://doi.org/10.1002/cnma.201900127
- Z. Kou, T. Wang, H. Wu, L. Zheng, S. Mu et al., Twinned tungsten carbonitride nanocrystals boost hydrogen evolution activity and stability. Small 15(19), 1900248 (2019). https://doi.org/10.1002/smll.201900248
- H. Fu, Q. Zhang, J. Luo, L. Shen, X. Chen et al., Boosting HER activities of 3D flower-Like tungsten carbonitride via anions regulation. ACS Sustain. Chem. Eng. 37(8), 14109–14116 (2020). https://doi.org/10.1021/acssuschemeng.0c04773
- Z. Zeng, X. Chen, K. Weng, Y. Wu, P. Zhang et al., Computational screening study of double transition metal carbonitrides M′2M″CNO2-MXene as catalysts for hydrogen evolution reaction. npj Comput. Mater. 7(1), 80 (2021). https://doi.org/10.1038/s41524-021-00550-4
- Y. Zhao, K. Kamiya, K. Hashimoto, S. Nakanishi, In situ CO2-emission assisted synthesis of molybdenum carbonitride nanomaterial as hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 137(1), 110–113 (2015). https://doi.org/10.1021/ja5114529
- H. Wei, J. Wang, Q. Lin, Y. Zou, X.a. Chen et al., Incorporating ultra-small N-doped Mo2C nanoparticles onto 3D N-doped flower-like carbon nanospheres for robust electrocatalytic hydrogen evolution. Nano Energy 86, 106047 (2021). https://doi.org/10.1016/j.nanoen.2021.106047
- B. Chang, L. Li, D. Shi, H. Jiang, Z. Ai et al., Metal-free boron carbonitride with tunable boron Lewis acid sites for enhanced nitrogen electroreduction to ammonia. Appl. Catal. B 283, 119622 (2021). https://doi.org/10.1016/j.apcatb.2020.119622
- D. Shi, B. Chang, Z. Ai, H. Jiang, F. Chen et al., Boron carbonitride with tunable B/N Lewis acid/base sites for enhanced electrocatalytic overall water splitting. Nanoscale 13(5), 2849–2854 (2021). https://doi.org/10.1039/D0NR06857H
- J. Wang, Y. Shin, J.R. Paudel, J.D. Grassi, R.K. Sah et al., Strain-induced anion-site occupancy in perovskite oxyfluoride films. Chem. Mater. 33(5), 1811–1820 (2021). https://doi.org/10.1021/acs.chemmater.0c04793
- K. Lemoine, J. Lhoste, A. Hemon-Ribaud, N. Heidary, V. Maisonneuve et al., Investigation of mixed-metal (oxy)fluorides as a new class of water oxidation electrocatalysts. Chem. Sci. 10(40), 9209–9218 (2019). https://doi.org/10.1039/c9sc04027g
- H. Han, J. Woo, Y.-R. Hong, Y.-C. Chung, S. Mhin, Polarized electronic configuration in transition metal–fluoride oxide hollow nanoprism for highly efficient and robust water splitting. ACS Appl. Mater. Interfaces 2(6), 3999–4007 (2019). https://doi.org/10.1021/acsaem.9b00449
- X.L. Cao, C.L. Hu, F. Kong, J.G. Mao, Cs(TaO2)3(SeO3)2 and Cs(TiOF)3(SeO3)2: structural and second harmonic generation changes induced by the different d(0)-TM coordination octahedra. Inorg. Chem. 54(8), 3875–3882 (2015). https://doi.org/10.1021/acs.inorgchem.5b00052
- Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan et al., Growth of large-area 2D MoS2(1–x)Se2x semiconductor alloys. Adv. Mater. 26(17), 2648–2653 (2014). https://doi.org/10.1002/adma.201306095
- B. Hua, M. Li, W. Pang, W. Tang, S. Zhao et al., Activating p-blocking centers in perovskite for efficient water splitting. Chem 4(12), 2902–2916 (2018). https://doi.org/10.1016/j.chempr.2018.09.012
- K.v. Lemoine, Z. Gohari-Bajestani, R. Moury, A. Terry, A. Guiet et al., Amorphous iron-manganese oxyfluorides, promising catalysts for oxygen evolution reaction under acidic media. ACS Appl. Energy Mater. 4(2), 1173–1181 (2021). https://doi.org/10.1021/acsaem.0c02417
- K. Huang, Z. Zhao, H. Du, P. Du, H. Wang et al., Rapid thermal annealing toward high-quality 2D cobalt fluoride oxide as an advanced oxygen evolution electrocatalyst. ACS Sustainable Chem. Eng. 8(18), 6905–6913 (2020). https://doi.org/10.1021/acssuschemeng.0c00830
- H. Svengren, N. Torapava, I. Athanassiadis, S.I. Ali, M. Johnsson, A transition metal oxofluoride offering advantages in electrocatalysis and potential use in applications. Faraday Discuss. 188, 481–498 (2016). https://doi.org/10.1039/c5fd00169b
- L. Lei, D. Huang, Y. Chen, S. Chen, R. Deng, Design of an amorphous and defect-rich CoMoOF layer as a pH-universal catalyst for the hydrogen evolution reaction. J. Mater. Chem. A. 9(13), 8730–8739 (2021). https://doi.org/10.1039/D1TA00505G
- B. Zhang, S. Hu, Turning Ni-based hydroxide into an efficient hydrogen evolution electrocatalyst by fluoride incorporation. Electrochem. Commun. 86, 108–112 (2018). https://doi.org/10.1016/j.elecom.2017.12.001
- B. Zhang, K. Jiang, H. Wang, S. Hu, Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst. Nano Lett. 19(1), 530–537 (2019). https://doi.org/10.1021/acs.nanolett.8b04466
- Q. Xu, H. Jiang, X. Duan, Z. Jiang, Y. Hu et al., Fluorination-enabled reconstruction of NiFe electrocatalysts for efficient water oxidation. Nano Lett. 21(1), 492–499 (2020). https://doi.org/10.1021/acs.nanolett.0c03950
- F. Ma, Q. Wu, M. Liu, L. Zheng, F. Tong et al., Surface fluorination engineering of NiFe Prussian blue analogue derivatives for highly efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 13(4), 5142–5152 (2021). https://doi.org/10.1021/acsami.0c20886
- Y.A. Zhu, W.J. Dai, X. Zhong, T. Lu, Y. Pan, In-situ reconstruction of non-noble multi-metal core–shell oxyfluorides for water oxidation. J. Colloid Interface Sci. 602, 55–63 (2021). https://doi.org/10.1016/j.jcis.2021.05.170
- Y.P. Zhu, J. Yin, E. Abou-Hamad, X. Liu, W. Chen et al., Highly stable phosphonate-based MOFs with engineered bandgaps for efficient photocatalytic hydrogen production. Adv. Mater. 32(16), 1906368 (2020). https://doi.org/10.1002/adma.201906368
- J. Balamurugan, T.T. Nguyen, V. Aravindan, N.H. Kim, J.H. Lee, Highly reversible water splitting cell building from hierarchical 3D nickel manganese oxyphosphide nanosheets. Nano Energy 69, 104432 (2020). https://doi.org/10.1016/j.nanoen.2019.104432
- J. Duan, S. Chen, A. Vasileff, S.Z. Qiao, Anion and cation modulation in metal compounds for bifunctional overall water splitting. ACS Nano 10(9), 8738–8745 (2016). https://doi.org/10.1021/acsnano.6b04252
- R.A. Marquez-Montes, K. Kawashima, Y.J. Son, J.A. Weeks, H.H. Sun et al., Mass transport-enhanced electrodeposition of Ni–S–P–O films on nickel foam for electrochemical water splitting. J. Mater. Chem. A 9(12), 7736–7749 (2021). https://doi.org/10.1039/D0TA12097A
- B.Y. Guan, L. Yu, X.W. Lou, General synthesis of multishell mixed-metal oxyphosphide particles with enhanced electrocatalytic activity in the oxygen evolution reaction. Angew. Chem. Int. Ed. 56(9), 2386–2389 (2017). https://doi.org/10.1002/anie.201611804
- P. Zhang, X.F. Lu, J. Nai, S.Q. Zang, X.W.D. Lou, Construction of hierarchical Co–Fe oxyphosphide microtubes for electrocatalytic overall water splitting. Adv. Sci. 6(17), 1900576 (2019). https://doi.org/10.1002/advs.201900576
- Q. Zhang, W. Chen, G.L. Chen, J. Huang, B. Ouyang et al., Trimetallic octahedral Ni–Co–W phosphoxide sprouted from plasma-defect-engineered Ni–Co support for ultrahigh-performance electrocatalytic hydrogen evolution. ACS Sustain. Chem. Eng. 9(22), 7454–7465 (2021). https://doi.org/10.1021/acssuschemeng.1c00730
- Y. Jia, W. Cai, X. Li, X.Y. Yu, Z. Hong, Fe ions modulated formation of hollow NiFe oxyphosphide spheres with enhanced oxygen evolution performance. Chem. Commun. 55(95), 14371–14374 (2019). https://doi.org/10.1039/c9cc07747b
- H. Xu, P. Song, C. Liu, Y. Zhang, Y. Du, Facile construction of ultrafine nickel-zinc oxyphosphide nanosheets as high-performance electrocatalysts for oxygen evolution reaction. J. Colloid Interface Sci. 530, 58–66 (2018). https://doi.org/10.1016/j.jcis.2018.06.061
- H. Xu, K. Zhang, C. Liu, L. Tian, Y. Du, 3D–1D heterostructure of CoZn oxyphosphide nanosheets anchored on carbon nanotubes as electrocatalysts for the oxygen evolution reaction. ChemElectroChem 5(18), 2558–2563 (2018). https://doi.org/10.1002/celc.201800656
- S.A. Khalate, S.A. Kadam, Y.-R. Ma, S.S. Pujari, S.J. Marje et al., Hydrothermally synthesized iron phosphate hydroxide thin film electrocatalyst for electrochemical water splitting. Electrochim. Acta 319, 118–128 (2019). https://doi.org/10.1016/j.electacta.2019.06.162
- Y. Zhang, T. Qu, F. Bi, P. Hao, M. Li et al., Trimetallic (Co/Ni/Cu) hydroxyphosphate nanosheet array as efficient and durable electrocatalyst for oxygen evolution reaction. ACS Sustain. Chem. Eng. 12(6), 16859–16866 (2018). https://doi.org/10.1021/acssuschemeng.8b04180
- V. Mani, S. Anantharaj, S. Mishra, N. Kalaiselvi, S. Kundu, Iron hydroxyphosphate and Sn-incorporated iron hydroxyphosphate: efficient and stable electrocatalysts for oxygen evolution reaction. Catal.: Sci. Technol. 7(21), 5092–5104 (2017). https://doi.org/10.1039/c7cy00515f
- P. Babar, A. Lokhande, E. Jo, B. Pawar, M. Gang et al., Facile electrosynthesis of Fe (Ni/Co) hydroxyphosphate as a bifunctional electrocatalyst for efficient water splitting. J. Ind. Eng. Chem. 70, 116–123 (2019). https://doi.org/10.1016/j.jiec.2018.09.041
- X. Yu, Z. Yu, X. Zhang, P. Li, B. Sun et al., Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting. Nano Energy 71, 104652 (2020). https://doi.org/10.1016/j.nanoen.2020.104652
- C.X. Zhao, J.N. Liu, J. Wang, D. Ren, B.Q. Li et al., Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 50(13), 7745–7778 (2021). https://doi.org/10.1039/d1cs00135c
- X. Bao, D.Y. Petrovykh, P. Alpuim, D.G. Stroppa, N. Guldris et al., Amorphous oxygen-rich molybdenum oxysulfide decorated p-type silicon microwire Arrays for efficient photoelectrochemical water reduction. Nano Energy 16, 130–142 (2015). https://doi.org/10.1016/j.nanoen.2015.06.014
- D. Thanh Tran, T. Kshetri, N. Dinh Chuong, J. Gautam, H. Van Hien et al., Emerging core-shell nanostructured catalysts of transition metal encapsulated by two-dimensional carbon materials for electrochemical applications. Nano Today 22, 100–131 (2018). https://doi.org/10.1016/j.nantod.2018.08.006
- L. Liu, Nano-aggregates of cobalt nickel oxysulfide as a high-performance electrode material for supercapacitors. Nanoscale 5(23), 11615–11619 (2013). https://doi.org/10.1039/c3nr03533f
- J. Fu, F.M. Hassan, C. Zhong, J. Lu, H. Liu et al., Defect engineering of chalcogen-tailored oxygen electrocatalysts for rechargeable quasi-solid-state zinc-air batteries. Adv. Mater. 29(35), 1702526 (2017). https://doi.org/10.1002/adma.201702526
- H. Kim, J. Kim, S.-K. Kim, S.H. Ahn, A transition metal oxysulfide cathode for the proton exchange membrane water electrolyzer. Appl. Catal. B 232, 93–100 (2018). https://doi.org/10.1016/j.apcatb.2018.03.023
- Y. Zhang, X. Wang, D. Hu, C. Xue, W. Wang et al., Monodisperse ultrasmall manganese-doped multimetallic oxysulfide nanoparticles as highly efficient oxygen reduction electrocatalyst. ACS Appl. Mater. Interfaces 10(16), 13413–13424 (2018). https://doi.org/10.1021/acsami.7b19498
- C. Li, X. Zhao, Y. Liu, W. Wei, Y. Lin, 3D Ni–Co sulfoxide nanosheet arrays electrodeposited on Ni foam: a bifunctional electrocatalyst towards efficient and stable water splitting. Electrochim. Acta 292, 347–356 (2018). https://doi.org/10.1016/j.electacta.2018.06.159
- D.T. Tran, H.T. Le, N.H. Kim, J.H. Lee, Highly efficient overall water splitting over a porous interconnected network by nickel cobalt oxysulfide interfacial assembled Cu@Cu2S nanowires. J. Mater. Chem. A 8(29), 14746–14756 (2020). https://doi.org/10.1039/D0TA04638H
- J. Liu, Y. Yang, B. Ni, H. Li, X. Wang, Fullerene-like nickel oxysulfide hollow nanospheres as bifunctional electrocatalysts for water splitting. Small 13(6), 1602637 (2017). https://doi.org/10.1002/smll.201602637
- D.J. Goossens, D. James, J. Dong, R.E. Whitfield, L. Noren et al., Local order in layered NiPS3 and Ni0.7Mg0.3PS3. J. Phys.: Condens. Matter. 23(6), 065401 (2011). https://doi.org/10.1088/0953-8984/23/6/065401
- N. Ismail, M. Madian, A.A. El-Meligi, Synthesis of NiPS3 and CoPS and its hydrogen storage capacity. J. Alloys Compd. 588, 573–577 (2014). https://doi.org/10.1016/j.jallcom.2013.11.073
- J. Li, Z. Xia, X. Zhou, Y. Qin, Y. Ma et al., Quaternary pyrite-structured nickel/cobalt phosphosulfide nanowires on carbon cloth as efficient and robust electrodes for water electrolysis. Nano Res. 10(3), 814–825 (2017). https://doi.org/10.1007/s12274-016-1335-z
- P. He, X. Yu, X. Lou, Carbon-incorporated nickel–cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem. Int. Ed. 56(14), 3897–3900 (2017). https://doi.org/10.1002/anie.201612635
- J. Chang, Y. Ouyang, J. Ge, J. Wang, C. Liu et al., Cobalt phosphosulfide in the tetragonal phase: a highly active and durable catalyst for the hydrogen evolution reaction. J. Mater. Chem. A 6(26), 12353–12360 (2018). https://doi.org/10.1039/c8ta03951h
- Y. Li, S. Niu, D. Rakov, Y. Wang, M. Caban-Acevedo et al., Metal organic framework-derived CoPS/N-doped carbon for efficient electrocatalytic hydrogen evolution. Nanoscale 10(15), 7291–7297 (2018). https://doi.org/10.1039/c8nr01811a
- J. Li, C. Zhang, H. Ma, T. Wang, Z. Guo et al., Modulating interfacial charge distribution of single atoms confined in molybdenum phosphosulfide heterostructures for high efficiency hydrogen evolution. Chem. Eng. J. 414, 128834 (2021). https://doi.org/10.1016/j.cej.2021.128834
- K. Maiti, K. Kim, K.-J. Noh, J.W. Han, Synergistic coupling ensuing cobalt phosphosulfide encapsulated by heteroatom-doped two-dimensional graphene shell as an excellent catalyst for oxygen electroreduction. Chem. Eng. J. 423, 130233 (2021). https://doi.org/10.1016/j.cej.2021.130233
- Y. Tong, P.Z. Chen, L. Chen, X.J. Cui, Dual vacancies confined in nickel phosphosulfide nanosheets enabling robust overall water splitting. Chemsuschem 14(12), 2576–2584 (2021). https://doi.org/10.1002/cssc.202100720
- J. Kibsgaard, T.F. Jaramillo, Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 53(52), 14433–14437 (2014). https://doi.org/10.1002/anie.201408222
- S. Sarkar, S. Sampath, Equiatomic ternary chalcogenide: PdPS and its reduced graphene oxide composite for efficient electrocatalytic hydrogen evolution. Chem. Commun. 50(55), 7359–7362 (2014). https://doi.org/10.1039/c4cc02364a
- D. Mukherjee, P.M. Austeria, S. Sampath, Two-dimensional, few-layer phosphochalcogenide, FePS3: a new catalyst for electrochemical hydrogen evolution over wide pH range. ACS Energy Lett. 1(2), 367–372 (2016). https://doi.org/10.1021/acsenergylett.6b00184
- D. Lim, C. Lim, M. Hwang, M. Kim, S.E. Shim et al., Facile synthesis of flower-like P-doped nickel–iron disulfide microspheres as advanced electrocatalysts for the oxygen evolution reaction. J. Power Sources 490, 229552 (2021). https://doi.org/10.1016/j.jpowsour.2021.229552
- T.A. Shifa, F. Wang, K. Liu, Z. Cheng, K. Xu et al., Efficient catalysis of hydrogen evolution reaction from WS2(1–x)P2x nanoribbons. Small 13(16), 1603706 (2017). https://doi.org/10.1002/smll.201603706
- S. Xue, L. Chen, Z. Liu, H.-M. Cheng, W. Ren, NiPS3 nanosheet–graphene composites as highly efficient electrocatalysts for oxygen evolution reaction. ACS Nano 12(6), 5297–5305 (2018). https://doi.org/10.1021/acsnano.7b09146
- L. Yin, X. Ding, W. Wei, Y. Wang, Z. Zhu et al., Improving catalysis for electrochemical water splitting using phosphosulphide surface. Inorg. Chem. Front. 7(12), 2388–2395 (2020). https://doi.org/10.1039/D0QI00295J
- J. Mann, Q. Ma, P.M. Odenthal, M. Isarraraz, D. Le et al., 2-Dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1–x)Se2x monolayers. Adv. Mater. 26(9), 1399–1404 (2014). https://doi.org/10.1002/adma.201304389
- O.E. Meiron, L. Houben, M. Bar-Sadan, Understanding the formation mechanism and the 3D structure of Mo(SxSe1−x)2 nanoflowers. RSC Adv. 5(107), 88108–88114 (2015). https://doi.org/10.1039/c5ra16853h
- Q. Gong, L. Cheng, C. Liu, M. Zhang, Q. Feng et al., Ultrathin MoS2(1–x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 5(4), 2213–2219 (2015). https://doi.org/10.1021/cs501970w
- R. Bose, V.R. Jothi, B. Koh, C. Jung, S.C. Yi, Molybdenum sulphoselenophosphide spheroids as an effective catalyst for hydrogen evolution reaction. Small 14(8), 1703862 (2018). https://doi.org/10.1002/smll.201703862
- J. Huang, Y. Jiang, T. An, M. Cao, Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting. J. Mater. Chem. A. 8(48), 25465–25498 (2020). https://doi.org/10.1039/D0TA08802A
- K. Xu, F. Wang, Z. Wang, X. Zhan, Q. Wang et al., Component-controllable WS2(1–x)Se2x nanotubes for efficient hydrogen evolution reaction. ACS Nano 8(8), 8468–8476 (2014). https://doi.org/10.1021/nn503027k
- Q. Fu, L. Yang, W. Wang, A. Han, J. Huang et al., Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(1–x)Se2x with a tunable band gap. Adv. Mater. 27(32), 4732–4738 (2015). https://doi.org/10.1002/adma.201500368
- R. Bar-Ziv, O.E. Meiron, M. Bar-Sadan, Enhancing the catalytic activity of the alkaline hydrogen evolution reaction by tuning the S/Se ratio in the Mo(SxSe1−x)2 catalyst. Nanoscale 10(34), 16211–16216 (2018). https://doi.org/10.1039/c8nr05738a
- J. Sun, X. Hu, Z. Huang, T. Huang, X. Wang et al., Atomically thin defect-rich Ni–Se–S hybrid nanosheets as hydrogen evolution reaction electrocatalysts. Nano Res. 13(8), 2056–2062 (2020). https://doi.org/10.1007/s12274-020-2807-8
- K. Liu, F. Wang, K. Xu, T.A. Shifa, Z. Cheng et al., CoS2xSe2(1–x) nanowire array: an efficient ternary electrocatalyst for the hydrogen evolution reaction. Nanoscale 8(8), 4699–4704 (2016). https://doi.org/10.1039/c5nr07735d
- H. Zhou, F. Yu, J. Sun, H. Zhu, I.K. Mishra et al., Highly efficient hydrogen evolution from edge-oriented WS2(1–x)Se2x particles on three-dimensional porous NiSe2 foam. Nano Lett. 16(12), 7604–7609 (2016). https://doi.org/10.1021/acs.nanolett.6b03467
- S. Hussain, K. Akbar, D. Vikraman, K. Karuppasamy, H.-S. Kim et al., Synthesis of MoS2(1–x)Se2x and WS2(1–x)Se2x alloys for enhanced hydrogen evolution reaction performance. Inorg. Chem. Front. 4(12), 2068–2074 (2017). https://doi.org/10.1039/c7qi00457e
- Q. Gong, S. Sheng, H. Ye, N. Han, L. Cheng et al., MoxW1−x(SySe1−y)2 alloy nanoflakes for high-performance electrocatalytic hydrogen evolution. Part. Part. Syst. Charact. 33(8), 576–582 (2016). https://doi.org/10.1002/ppsc.201500255
- M. Smialkowski, D. Siegmund, K. Pellumbi, L. Hensgen, H. Antoni et al., Seleno-analogues of pentlandites (Fe4.5Ni4.5S8−YSeY, Y = 1–6): tuning bulk Fe/Ni sulphoselenides for hydrogen evolution. Chem. Commun. 55(60), 8792–8795 (2019). https://doi.org/10.1039/c9cc01842e
- H.-P. Komsa, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenide alloys: stability and electronic properties. J. Phys. Chem. Lett. 3(23), 3652–3656 (2012). https://doi.org/10.1021/jz301673x
- T. Kosmala, H. Coy Diaz, H.-P. Komsa, Y. Ma, A.V. Krasheninnikov et al., Metallic twin boundaries boost the hydrogen evolution reaction on the basal plane of molybdenum selenotellurides. Adv. Energy Mater. 8(20), 1800031 (2018). https://doi.org/10.1002/aenm.201800031
- S. Dutta, C. Ray, Y. Negishi, T. Pal, Facile synthesis of unique hexagonal nanoplates of Zn/Co hydroxy sulfate for efficient electrocatalytic oxygen evolution reaction. ACS Appl. Mater. Interfaces 9(9), 8134–8141 (2017). https://doi.org/10.1021/acsami.7b00030
- C.-X. Zhao, B.-Q. Li, M. Zhao, J.-N. Liu, L.-D. Zhao et al., Precise anionic regulation of NiFe hydroxysulfide assisted by electrochemical reactions for efficient electrocatalysis. Energy Environ. Sci. 13(6), 1711–1716 (2020). https://doi.org/10.1039/C9EE03573G
- L. Huang, H. Wu, Y. Zhang, One-step synthesis of CoPSe–CoSe2/CNTs as efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 331, 135362 (2020). https://doi.org/10.1016/j.electacta.2019.135362
- Y. Liu, Q. Feng, W. Liu, Q. Li, Y. Wang et al., Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy 81, 105641 (2021). https://doi.org/10.1016/j.nanoen.2020.105641
- K. Liu, F. Wang, T.A. Shifa, Z. Wang, K. Xu et al., An efficient ternary CoP2xSe2(1–x) nanowire array for overall water splitting. Nanoscale 9(11), 3995–4001 (2017). https://doi.org/10.1039/c7nr00460e
- Y. Hou, M. Qiu, T. Zhang, X. Zhuang, C.S. Kim et al., Ternary porous cobalt phosphoselenide nanosheets: an efficient electrocatalyst for electrocatalytic and photoelectrochemical water splitting. Adv. Mater. 29(35), 1701589 (2017). https://doi.org/10.1002/adma.201701589
- R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas et al., Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11(6), 550–557 (2012). https://doi.org/10.1038/nmat3313
- M. Fang, D. Han, W.B. Xu, Y. Shen, Y. Lu et al., Surface-guided formation of amorphous mixed-metal oxyhydroxides on ultrathin MnO2 nanosheet arrays for efficient electrocatalytic oxygen evolution. Adv. Energy Mater. 10(27), 2001059 (2020). https://doi.org/10.1002/aenm.202001059
- W. Hua, H. Sun, L. Ren, Y. Li, J. Wang, 2-Methylimidazole-induced reconstruction of cobalt (oxy) hydroxide electrocatalysts toward efficient water oxidation. Chem. Eng. J. 420, 129717 (2021). https://doi.org/10.1016/j.cej.2021.129717
- C. Kim, S.H. Kim, S. Lee, I. Kwon, S. Kim et al., Boosting overall water splitting by incorporating sulfur into NiFe (oxy) hydroxide. J. Energy Chem. 64, 364–371 (2022). https://doi.org/10.1016/j.jechem.2021.04.067
- Z. Kuang, S. Liu, X. Li, M. Wang, X. Ren et al., Topotactically constructed nickel-iron (oxy) hydroxide with abundant in-situ produced high-valent iron species for efficient water oxidation. J. Energy Chem. 57, 212–218 (2021). https://doi.org/10.1016/j.jechem.2020.09.014
- L. Lei, D. Huang, C. Zhou, S. Chen, X. Yan et al., Demystifying the active roles of NiFe-based oxides/(oxy) hydroxides for electrochemical water splitting under alkaline conditions. Coord. Chem. Rev. 408, 213177 (2020). https://doi.org/10.1016/j.ccr.2019.213177
- C. Li, J. Zhao, L. Xie, J. Wu, Q. Ren et al., Surface-adsorbed carboxylate ligands on layered double hydroxides/metal-organic frameworks promote the electrocatalytic oxygen evolution reaction. Angew. Chem. Int. Ed. 60(33), 18129–18137 (2021). https://doi.org/10.1002/ange.202104148
- J. Dong, Y. Wang, Q. Jiang, Z.-A. Nan, F.R. Fan et al., Charged droplet-driven fast formation of nickel–iron (oxy) hydroxides with rich oxygen defects for boosting overall water splitting. J. Mater. Chem. A. 9(35), 20058–20067 (2021). https://doi.org/10.1039/D1TA05332A
- L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136(18), 6744–6753 (2014). https://doi.org/10.1021/ja502379c
- M.S. Burke, L.J. Enman, A.S. Batchellor, S. Zou, S.W. Boettcher, Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem. Mater. 27(22), 7549–7558 (2015). https://doi.org/10.1021/acs.chemmater.5b03148
- D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai et al., Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137(3), 1305–1313 (2015). https://doi.org/10.1021/ja511559d
- S.R. Mellsop, A. Gardiner, B. Johannessen, A.T. Marshall, Structure and transformation of oxy-hydroxide films on Ni anodes below and above the oxygen evolution potential in alkaline electrolytes. Electrochim. Acta 168, 356–364 (2015). https://doi.org/10.1016/j.electacta.2015.04.020
- F. Dionigi, P. Strasser, NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 6(23), 1600621 (2016). https://doi.org/10.1002/aenm.201600621
- L.J. Enman, M.S. Burke, A.S. Batchellor, S.W. Boettcher, Effects of intentionally incorporated metal cations on the oxygen evolution electrocatalytic activity of nickel (oxy) hydroxide in alkaline media. ACS Catal. 6(4), 2416–2423 (2016). https://doi.org/10.1021/acscatal.5b02924
- M. Gorlin, J. Ferreira de Araujo, H. Schmies, D. Bernsmeier, S. Dresp et al., Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: The role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 139(5), 2070–2082 (2017). https://doi.org/10.1021/jacs.6b12250
- M.B. Stevens, C.D.M. Trang, L.J. Enman, J. Deng, S.W. Boettcher, Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 139(33), 11361–11364 (2017). https://doi.org/10.1021/jacs.7b07117
- K. Zhu, W. Luo, G. Zhu, J. Wang, Y. Zhu et al., Interface-engineered Ni(OH)2/beta-like FeOOH electrocatalysts for highly efficient and stable oxygen evolution reaction. Chem. Asian. J. 12(20), 2720–2726 (2017). https://doi.org/10.1002/asia.201700964
- J. Shen, M. Wang, L. Zhao, J. Jiang, H. Liu et al., Self-supported stainless steel nanocone array coated with a layer of Ni–Fe oxides/(oxy) hydroxides as a highly active and robust electrode for water oxidation. ACS Appl. Mater. Interfaces 10(10), 8786–8796 (2018). https://doi.org/10.1021/acsami.8b00498
- X. Wu, Y. Zhao, T. Xing, P. Zhang, F. Li et al., Hierarchically structured FeNiOxHy electrocatalyst formed by in situ transformation of metal phosphate for efficient oxygen evolution reaction. Chemsuschem 11(11), 1761–1767 (2018). https://doi.org/10.1002/cssc.201800407
- J. Liu, J. Xiao, Z. Wang, H. Yuan, Z. Lu et al., Structural and electronic engineering of Ir-doped Ni-(oxy) hydroxide nanosheets for enhanced oxygen evolution activity. ACS Catal. 11(9), 5386–5395 (2021). https://doi.org/10.1021/acscatal.1c00110
- S.H. Ye, Z.X. Shi, J.X. Feng, Y.X. Tong, G.R. Li, Activating CoOOH porous nanosheet arrays by partial Iron substitution for efficient oxygen evolution reaction. Angew. Chem. Int. Ed. Engl. 57(10), 2672–2676 (2018). https://doi.org/10.1002/anie.201712549
- C. Huang, Y. Zhong, J. Chen, J. Li, W. Zhang et al., Fe induced nanostructure reorganization and electronic structure modulation over CoNi (oxy) hydroxide nanorod arrays for boosting oxygen evolution reaction. Chem. Eng. J. 403, 126304 (2021). https://doi.org/10.1016/j.cej.2020.126304
- X. Bo, Y. Li, X. Chen, C. Zhao, Operando Raman spectroscopy reveals Cr-induced-phase reconstruction of NiFe and CoFe oxyhydroxides for enhanced electrocatalytic water oxidation. Chem. Mater. 32(10), 4303–4311 (2020). https://doi.org/10.1021/acs.chemmater.0c01067
- J.T. Mefford, A.R. Akbashev, M. Kang, C.L. Bentley, W.E. Gent et al., Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593(7857), 67–73 (2021). https://doi.org/10.1038/s41586-021-03454-x
- L. Zhang, W. Cai, N. Bao, Top-level design strategy to construct an advanced high-entropy Co-Cu-Fe-Mo (oxy) hydroxide electrocatalyst for the oxygen evolution reaction. Adv. Mater. 33(22), 2100745 (2021). https://doi.org/10.1002/adma.202100745
- J. Liu, Y. Ji, J. Nai, X. Niu, Y. Luo et al., Ultrathin amorphous cobalt-vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction. Energy Environ. Sci. 11(7), 1736–1741 (2018). https://doi.org/10.1039/c8ee00611c
- Z.-F. Huang, S. Xi, J. Song, S. Dou, X. Li et al., Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nat. Commun. 12, 3992 (2021). https://doi.org/10.1038/s41467-021-24182-w
- S. Gupta, N. Patel, R. Fernandes, R. Kadrekar, A. Dashora et al., Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl. Catal. B 192, 126–133 (2016). https://doi.org/10.1016/j.apcatb.2016.03.032
- X. Ai, X. Zou, H. Chen, Y. Su, X. Feng et al., Transition–metal–boron intermetallics with strong interatomic d–sp orbital hybridization for high-performance electrocatalysis. Angew. Chem. Int. Ed. 59(10), 3961–3965 (2020). https://doi.org/10.1002/anie.201915663
- F. Ma, S. Wang, X. Liang, C. Wang, F. Tong et al., Ni3B as a highly efficient and selective catalyst for the electrosynthesis of hydrogen peroxide. Appl. Catal. B 279, 119371 (2020). https://doi.org/10.1016/j.apcatb.2020.119371
- J. Kim, H. Kim, S.-K. Kim, S.H. Ahn, Electrodeposited amorphous Co–P–B ternary catalyst for hydrogen evolution reaction. J. Mater. Chem. A 6(15), 6282–6288 (2018). https://doi.org/10.1039/C7TA11033B
- M. Ma, D. Liu, S. Hao, R. Kong, G. Du et al., A nickel–borate–phosphate nanoarray for efficient and durable water oxidation under benign conditions. Inorg. Chem. Front. 4(5), 840–844 (2017). https://doi.org/10.1039/C6QI00594B
- W. Wang, D. Liu, S. Hao, F. Qu, Y. Ma et al., High-efficiency and durable water oxidation under mild pH conditions: an iron phosphate-borate nanosheet array as a non-noble-metal catalyst electrode. Inorg. Chem. 56(6), 3131–3135 (2017). https://doi.org/10.1021/acs.inorgchem.6b03171
- X. Ma, S. Zhang, Y. He, T. He, H. Li et al., Boron and phosphorus co-doped NiVFe LDHs@NF as a highly efficient self-supporting electrocatalyst for the hydrogen evolution reaction. J. Electroanal. Chem. 886, 115107 (2021). https://doi.org/10.1016/j.jelechem.2021.115107
- Q. Li, W. Cui, J. Tian, Z. Xing, Q. Liu et al., N-doped carbon-coated tungsten oxynitride nanowire arrays for highly efficient electrochemical hydrogen evolution. Chemsuschem 8(15), 2487–2491 (2015). https://doi.org/10.1002/cssc.201500398
- Y. Li, K.A. Kuttiyiel, L. Wu, Y. Zhu, E. Fujita et al., Enhancing electrocatalytic performance of bifunctional cobalt–manganese–oxynitride nanocatalysts on graphene. Chemsuschem 10(1), 68–73 (2017). https://doi.org/10.1002/cssc.201601188
- K.K. Yong Zhao, K. Hashimoto, S. Nakanishi, Hydrogen evolution by tungsten carbonitride nanoelectrocatalysts synthesized by the formation of a tungsten acid/polymer hybridIn situ. Angew. Commun. 125(51), 13883–13886 (2013). https://doi.org/10.1002/anie.201307527
- J. Wang, D. Liu, L. Zhang, Y. Qian, C. Chen et al., Rational design of 2D super holey metal carboniride leaf-like nanostructure for efficient oxygen electrocatalysis. Carbon 164, 287–295 (2020). https://doi.org/10.1016/j.carbon.2020.04.014
- H. Zhang, P. An, W. Zhou, B.Y. Guan, P. Zhang et al., Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 4(1), eaao6657 (2018). https://doi.org/10.1126/sciadv.aao6657
- W. Liu, E. Hu, H. Jiang, Y. Xiang, Z. Weng et al., A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nat. Commun. 7, 10771 (2016). https://doi.org/10.1038/ncomms10771
- K. Li, D. Rakov, W. Zhang, P. Xu, Improving the intrinsic electrocatalytic hydrogen evolution activity of few-layer NiPS3 by cobalt doping. Chem. Commun. 53(58), 8199–8202 (2017). https://doi.org/10.1039/C7CC03173D
- Z. Wu, X. Li, W. Liu, Y. Zhong, Q. Gan et al., Materials chemistry of iron phosphosulfide nanoparticles: synthesis, solid state chemistry, surface structure, and electrocatalysis for the hydrogen evolution reaction. ACS Catal. 7(6), 4026–4032 (2017). https://doi.org/10.1021/acscatal.7b00466
- Y. Xin, X. Kan, L.Y. Gan, Z. Zhang, Heterogeneous bimetallic phosphide/sulfide nanocomposite for efficient solar-energy-driven overall water splitting. ACS Nano 11(10), 10303–10312 (2017). https://doi.org/10.1021/acsnano.7b05020
- Y. Liu, Y. Du, W.-K. Gao, B. Dong, Y. Han et al., Surface phosphorsulfurization of NiCo2O4 nanoneedles supported on carbon cloth with enhanced electrocatalytic activity for hydrogen evolution. Electrochim. Acta 290, 339–346 (2018). https://doi.org/10.1016/j.electacta.2018.09.053
- Z. Liu, Y. Wang, R. Chen, C. Chen, H. Yang et al., Quaternary bimetallic phosphosulphide nanosheets derived from prussian blue analogues: origin of the ultra-high activity for oxygen evolution. J. Power Sources 403, 90–96 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.078
- D.J. Li, J. Kang, H.J. Lee, D.S. Choi, S.H. Koo et al., High activity hydrogen evolution catalysis by uniquely designed amorphous/metal interface of core–shell phosphosulfide/N-doped CNTs. Adv. Energy Mater. 8(13), 1702806 (2018). https://doi.org/10.1002/aenm.201702806
- F. Wang, J. Li, F. Wang, T.A. Shifa, Z. Cheng et al., Enhanced electrochemical H2 evolution by few-layered metallic WS2(1–x)Se2x nanoribbons. Adv. Funct. Mater. 25(38), 6077–6083 (2015). https://doi.org/10.1002/adfm.201502680
- K. Wang, C. Zhou, D. Xi, Z. Shi, C. He et al., Component-controllable synthesis of Co(SxSe1−x)2 nanowires supported by carbon fiber paper as high-performance electrode for hydrogen evolution reaction. Nano Energy 18, 1–11 (2015). https://doi.org/10.1016/j.nanoen.2015.10.001
- L. Yang, Q. Fu, W. Wang, J. Huang, J. Huang et al., Large-area synthesis of monolayered MoS2(1–x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity. Nanoscale 7(23), 10490–10497 (2015). https://doi.org/10.1039/c5nr02652k
- M. Zou, J. Chen, L. Xiao, H. Zhu, T. Yang et al., WSe2 and W(SexS1−x)2 nanoflakes grown on carbon nanofibers for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 3(35), 18090–18097 (2015). https://doi.org/10.1039/c5ta04426j
- X. Chen, Z. Wang, Y. Qiu, J. Zhang, G. Liu et al., Controlled growth of vertical 3D MoS2(1–x)Se2x nanosheets for an efficient and stable hydrogen evolution reaction. J. Mater. Chem. A 4(46), 18060–18066 (2016). https://doi.org/10.1039/c6ta07904k
- H. Zhou, F. Yu, Y. Huang, J. Sun, Z. Zhu et al., Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nat. Commun. 7, 12765 (2016). https://doi.org/10.1038/ncomms12765
- L. Fang, W. Li, Y. Guan, Y. Feng, H. Zhang et al., Tuning unique peapod-like Co(SxSe1−x)2 nanoparticles for efficient overall water splitting. Adv. Funct. Mater. 27(24), 1701008 (2017). https://doi.org/10.1002/adfm.201701008
- K. Liang, Y. Yan, L. Guo, K. Marcus, Z. Li et al., Strained W(SexS1–x)2 nanoporous films for highly efficient hydrogen evolution. ACS Energy Lett. 2(6), 1315–1320 (2017). https://doi.org/10.1021/acsenergylett.7b00326
- Y.-F. Jiang, C.-Z. Yuan, X. Zhou, Y.-N. Liu, Z.-W. Zhao et al., Selenium phosphorus co-doped cobalt oxide nanosheets anchored on Co foil: a self-supported and stable bifunctional electrode for efficient electrochemical water splitting. Electrochim. Acta 292, 247–255 (2018). https://doi.org/10.1016/j.electacta.2018.09.162
- J. Huang, J. Chen, T. Yao, J. He, S. Jiang et al., CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem. Int. Ed. 54(30), 8722–8727 (2015). https://doi.org/10.1002/anie.201502836
- X. Han, C. Yu, S. Zhou, C. Zhao, H. Huang et al., Ultrasensitive iron-triggered nanosized Fe–CoOOH integrated with graphene for highly efficient oxygen evolution. Adv. Energy Mater. 7(14), 1602148 (2017). https://doi.org/10.1002/aenm.201602148
- Y. Pi, Q. Shao, P. Wang, F. Lv, S. Guo et al., Trimetallic oxyhydroxide coralloids for efficient oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 56(16), 4502–4506 (2017). https://doi.org/10.1002/anie.201701533
- Y.-J. Ye, N. Zhang, X.-X. Liu, Amorphous NiFe(oxy)hydroxide nanosheet integrated partially exfoliated graphite foil for high efficiency oxygen evolution reaction. J. Mater. Chem. A 5(46), 24208–24216 (2017). https://doi.org/10.1039/c7ta06906e
- E. Lee, A.H. Park, H.U. Park, Y.U. Kwon, Facile sonochemical synthesis of amorphous NiFe-(oxy)hydroxide nanoparticles as superior electrocatalysts for oxygen evolution reaction. Ultrason. Sonochem. 40(Pt A), 552–557 (2018). https://doi.org/10.1016/j.ultsonch.2017.07.048
- M. Lee, H.-S. Oh, M.K. Cho, J.-P. Ahn, Y.J. Hwang et al., Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide to nickel hydroxide in an oxygen evolution reaction. Appl. Catal. B 233, 130–135 (2018). https://doi.org/10.1016/j.apcatb.2018.03.083
- N. Zhang, B. Yang, Y. He, Y. He, X. Liu et al., Serpentine Ni3Ge2O5(OH)4 nanosheets with tailored layers and size for efficient oxygen evolution reactions. Small 14(48), 1803015 (2018). https://doi.org/10.1002/smll.201803015
- X. Zhang, Y. Liang, Nickel hydr(oxy)oxide nanoparticles on metallic MoS2 nanosheets: a synergistic electrocatalyst for hydrogen evolution reaction. Adv. Sci. 5(2), 1700644 (2018). https://doi.org/10.1002/advs.201700644
- MathSciNet
- B. Wang, C. Tang, H.F. Wang, X. Chen, R. Cao et al., A nanosized CoNi hydroxide@hydroxysulfide core–shell heterostructure for enhanced oxygen evolution. Adv. Mater. 31(4), 1805658 (2018). https://doi.org/10.1002/adma.201805658
- C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu et al., Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 13(1), 86–95 (2020). https://doi.org/10.1039/c9ee02388g
- H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 12(1), 322–333 (2019). https://doi.org/10.1039/C8EE03276A
- X. Wang, Y. Liang, W. An, J. Hu, Y. Zhu et al., Removal of chromium (VI) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light. Appl. Catal. B 219, 53–62 (2017). https://doi.org/10.1016/j.apcatb.2017.07.008
- Y. Guo, J. Tang, Z. Wang, Y.-M. Kang, Y. Bando et al., Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 47, 494–502 (2018). https://doi.org/10.1016/j.nanoen.2018.03.012
- J. Zhang, H. Yang, B. Liu, Coordination engineering of single-atom catalysts for the oxygen reduction reaction: a review. Adv. Energy Mater. 11(3), 2002473 (2021). https://doi.org/10.1002/aenm.202002473
- X. Wang, Y. Feng, P. Dong, J. Huang, A mini review on carbon quantum dots: preparation, properties, and electrocatalytic application. Front. Chem. 7, 671 (2019). https://doi.org/10.3389/fchem.2019.00671
References
F. Lyu, Q. Wang, S.M. Choi, Y. Yin, Noble-metal-free electrocatalysts for oxygen evolution. Small 15(1), 1804201 (2018). https://doi.org/10.1002/smll.201804201
P.W. Du, R. Eisenberg, Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ. Sci. 5(3), 6012–6021 (2012). https://doi.org/10.1039/c2ee03250c
H.M. Chen, C.K. Chen, R.S. Liu, L. Zhang, J. Zhang et al., Nano-architecture and material designs for water splitting photoelectrodes. Chem. Soc. Rev. 41(17), 5654–5671 (2012). https://doi.org/10.1039/c2cs35019j
J. Ke, F. He, H. Wu, S. Lyu, J. Liu et al., Nanocarbon-enhanced 2D photoelectrodes: a new paradigm in photoelectrochemical water splitting. Nano-Micro Lett. 13, 24 (2021). https://doi.org/10.1007/s40820-020-00545-8
Z.P. Ifkovits, J.M. Evans, M.C. Meier, K.M. Papadantonakis, N.S. Lewis, Decoupled electrochemical water-splitting systems: a review and prospective. Energy Environ. Sci. 14(9), 4740–4759 (2021). https://doi.org/10.1039/D1EE01226F
C. Kuo, M. Neumann, K. Balamurugan, H.J. Park, S. Kang et al., Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Sci. Rep. 6(1), 20904 (2016). https://doi.org/10.1038/srep20904
B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich et al., Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352(6283), 333–337 (2016). https://doi.org/10.1126/science.aaf1525
D.D. Babu, Y. Huang, G. Anandhababu, M.A. Ghausi, Y. Wang, Mixed-metal-organic framework self-template synthesis of porous hybrid oxyphosphides for efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 9(44), 38621–38628 (2017). https://doi.org/10.1021/acsami.7b13359
W. Qian, S. Xu, X. Zhang, C. Li, W. Yang et al., Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Lett. 13, 156 (2021). https://doi.org/10.1007/s40820-021-00681-9
L. Ouyang, J. Jiang, K. Chen, M. Zhu, Z. Liu, Hydrogen production via hydrolysis and alcoholysis of light metal-based materials: a review. Nano-Micro Lett. 13, 134 (2021). https://doi.org/10.1007/s40820-021-00657-9
L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 49(10), 3072–3106 (2020). https://doi.org/10.1039/D0CS00013B
Y. Chen, K. Rui, J. Zhu, S.X. Dou, W. Sun, Recent progress on nickel-based oxide/(oxy)hydroxide electrocatalysts for the oxygen evolution reaction. Chem 25(3), 703–713 (2018). https://doi.org/10.1002/chem.201802068
R. Boppella, J. Tan, J. Yun, S.V. Manorama, J. Moon, Anion-mediated transition metal electrocatalysts for efficient water electrolysis: recent advances and future perspectives. Coord. Chem. Rev. 427, 213552 (2021). https://doi.org/10.1016/j.ccr.2020.213552
Y. Yan, B.Y. Xia, B. Zhao, X. Wang, A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 4(45), 17587–17603 (2016). https://doi.org/10.1039/c6ta08075h
N.K. Chaudhari, H. Jin, B. Kim, K. Lee, Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 9(34), 12231–12247 (2017). https://doi.org/10.1039/c7nr04187j
N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017). https://doi.org/10.1039/c6cs00328a
V. Vij, S. Sultan, A.M. Harzandi, A. Meena, J.N. Tiwari et al., Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 7(10), 7196–7225 (2017). https://doi.org/10.1021/acscatal.7b01800
R. Gusmao, Z. Sofer, M. Pumera, Metal phosphorous trichalcogenides (MPCh3): from synthesis to contemporary energy challenges. Angew. Chem. Int. Ed. 58(28), 9326–9337 (2019). https://doi.org/10.1002/anie.201810309
H. Wang, C. Tang, B. Li, Q. Zhang, A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis. Inorg. Chem. Front. 5(3), 521–534 (2018). https://doi.org/10.1039/c7qi00780a
Y. Yan, T. He, B. Zhao, K. Qi, H. Liu et al., Metal/covalent–organic frameworks-based electrocatalysts for water splitting. J. Mater. Chem. A 6(33), 15905–15926 (2018). https://doi.org/10.1039/c8ta05985c
G. Zhao, K. Rui, S.X. Dou, W. Sun, Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv. Funct. Mater. 28(43), 1803291 (2018). https://doi.org/10.1002/adfm.201803291
P. Li, W. Chen, Recent advances in one-dimensional nanostructures for energy electrocatalysis. Chin. J. Catal. 40(1), 4–22 (2019). https://doi.org/10.1016/S1872-2067(18)63177-8
H. Zhang, A.W. Maijenburg, X. Li, S.L. Schweizer, R.B. Wehrspohn, Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Adv. Funct. Mater. 30(34), 2003261 (2020). https://doi.org/10.1002/adfm.202003261
H. Wang, H.W. Lee, Y. Deng, Z. Lu, P.C. Hsu et al., Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015). https://doi.org/10.1038/ncomms8261
B. Jin, X. Zhou, L. Huang, M. Licklederer, M. Yang et al., Aligned MoOx/MoS2 core–shell nanotubular structures with a high density of reactive sites based on self-ordered anodic molybdenum oxide nanotubes. Angew. Chem. Int. Ed. Engl. 55(40), 12252–12256 (2016). https://doi.org/10.1002/anie.201605551
B. Konkena, J. Masa, W. Xia, M. Muhler, W. Schuhmann, MoSSe@reduced graphene oxide nanocomposite heterostructures as efficient and stable electrocatalysts for the hydrogen evolution reaction. Nano Energy 29, 46–53 (2016). https://doi.org/10.1016/j.nanoen.2016.04.018
C. Tang, H.F. Wang, X. Chen, B.Q. Li, T.Z. Hou et al., Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 28(32), 6845–6851 (2016). https://doi.org/10.1002/adma.201601406
W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang et al., Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 52(7), 1486–1489 (2016). https://doi.org/10.1039/c5cc08064a
K. Liang, L. Guo, K. Marcus, S. Zhang, Z. Yang et al., Overall water splitting with room-temperature synthesized NiFe oxyfluoride nanoporous films. ACS Catal. 7(12), 8406–8412 (2017). https://doi.org/10.1021/acscatal.7b02991
F. Yan, C. Zhu, C. Li, S. Zhang, X. Zhang et al., Highly stable three-dimensional nickel-iron oxyhydroxide catalysts for oxygen evolution reaction at high current densities. Electrochim. Acta 245, 770–779 (2017). https://doi.org/10.1016/j.electacta.2017.05.200
X. Fan, Y. Liu, S. Chen, J. Shi, J. Wang et al., Defect-enriched iron fluoride-oxide nanoporous thin films bifunctional catalyst for water splitting. Nat. Commun. 9, 1809 (2018). https://doi.org/10.1038/s41467-018-04248-y
J. Huang, Y. Sun, Y. Zhang, G. Zou, C. Yan et al., A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation. Adv. Mater. 30(5), 1705045 (2018). https://doi.org/10.1002/adma.201705045
X. Ma, W. Zhang, Y. Deng, C. Zhong, W. Hu et al., Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. Nanoscale 10(10), 4816–4824 (2018). https://doi.org/10.1039/c7nr09424h
M. Sial, H. Lin, X. Wang, Microporous 2D NiCoFe phosphate nanosheets supported on Ni foam for efficient overall water splitting in alkaline media. Nanoscale 10(27), 12975–12980 (2018). https://doi.org/10.1039/c8nr03350a
P. Xu, J. Li, J. Luo, L. Wei, D. Zhang et al., (Fe0.2Ni0.8)0.96S tubular spheres supported on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Sci. Rep. 8(1), 9425 (2018). https://doi.org/10.1038/s41598-018-27477-z
S. Gupta, M.K. Patel, A. Miotello, N. Patel, Metal boride-based catalysts for electrochemical water-splitting: a review. Adv. Funct. Mater. 30(1), 1906481 (2020). https://doi.org/10.1002/adfm.201906481
G. Su, S. Chen, H. Dong, Y. Cheng, Q. Liu et al., Tuning the electronic structure of layered vanadium pentoxide by pre-intercalation of potassium ions for superior room/low-temperature aqueous zinc-ion batteries. Nanoscale 13(4), 2399–2407 (2021). https://doi.org/10.1039/D0NR07358J
N. Wang, A. Xu, P. Ou, S.-F. Hung, A. Ozden et al., Boride-derived oxygen-evolution catalysts. Nat. Commun. 12, 6089 (2021). https://doi.org/10.1038/s41467-021-26307-7
X.Y. Yu, X.W. Lou, Mixed metal sulfides for electrochemical energy storage and conversion. Adv. Energy Mater. 8(3), 1701592 (2018). https://doi.org/10.1002/aenm.201701592
X. Liu, J. Du, C. Li, X. Han, X. Hu et al., The anion effect on the oxygen reduction of MnX (X = O, S, and Se) catalysts. J. Mater. Chem. A 3(7), 3425–3431 (2015). https://doi.org/10.1039/c4ta05995f
S.W. Kim, N. Pereira, N.A. Chernova, F. Omenya, P. Gao et al., Structure stabilization by mixed anions in oxyfluoride cathodes for high-energy lithium Batteries. ACS Nano 9(10), 10076–10084 (2015). https://doi.org/10.1021/acsnano.5b03643
Y. Liu, T. Liang, Y. Li, Y. Zhao, Z. Guo et al., Silicene oxide: a potential Battery500 cathode for sealed non-aqueous lithium-oxygen batteries. Mater. Today Energy 18, 100503 (2020). https://doi.org/10.1016/j.mtener.2020.100503
X. Yin, L. Yang, Q. Gao, Core–shell nanostructured electrocatalysts for water splitting. Nanoscale 12(30), 15944–15969 (2020). https://doi.org/10.1039/D0NR03719B
J. Cui, C. Li, F. Zhang, Development of mixed-anion photocatalysts with wide visible-light absorption bands for solar water splitting. Chemsuschem 12(9), 1872–1888 (2019). https://doi.org/10.1002/cssc.201801829
N. Yao, P. Li, Z. Zhou, R. Meng, G. Cheng et al., Nitrogen engineering on 3D dandelion-flower-like CoS2 for high-performance overall water splitting. Small 15(31), 1901993 (2019). https://doi.org/10.1002/smll.201901993
H. Zhang, W. Zhou, J. Dong, X. Lu, X. Lou, Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. Energy Environ. Sci. 12(11), 3348–3355 (2019). https://doi.org/10.1039/c9ee02787d
C. Pei, H. Chen, B. Dong, X. Yu, L. Feng, Electrochemical oxygen evolution reaction efficiently catalyzed by a novel porous iron–cobalt–fluoride nanocube easily derived from 3-dimensional Prussian blue analogue. J. Power Sources 424, 131–137 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.089
P. Cai, J. Huang, J. Chen, Z. Wen, Oxygen-containing amorphous cobalt sulfide porous nanocubes as high-activity electrocatalysts for the oxygen evolution reaction in an alkaline/neutral medium. Angew. Chem. Int. Ed. 56(17), 4858–4861 (2017). https://doi.org/10.1002/anie.201701280
Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou et al., Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4(4), 329–338 (2019). https://doi.org/10.1038/s41560-019-0355-9
A. Nelson, K.E. Fritz, S. Honrao, R.G. Hennig, R.D. Robinson et al., Increased activity in hydrogen evolution electrocatalysis for partial anionic substitution in cobalt oxysulfide nanoparticles. J. Mater. Chem. A 4(8), 2842–2848 (2016). https://doi.org/10.1039/c5ta08706f
P.T. Babar, B.S. Pawar, A.C. Lokhande, M.G. Gang, J.S. Jang et al., Annealing temperature dependent catalytic water oxidation activity of iron oxyhydroxide thin films. J. Energy Chem. 26(4), 757–761 (2017). https://doi.org/10.1016/j.jechem.2017.04.012
S. Ganguli, S. Das, S. Kumari, H.R. Inta, A.K. Tiwari et al., Effect of intrinsic properties of anions on the electrocatalytic activity of NiCo2O4 and NiCo2OxS4–x grown by chemical bath deposition. ACS Omega 3(8), 9066–9074 (2018). https://doi.org/10.1021/acsomega.8b00952
J. Bai, T. Meng, D. Guo, S. Wang, B. Mao et al., Co9S8@MoS2 core–shell heterostructures as trifunctional electrocatalysts for overall water splitting and Zn–air batteries. ACS Appl. Mater. Interfaces 10(2), 1678–1689 (2018). https://doi.org/10.1021/acsami.7b14997
J. An, X. Wang, M. Ming, J. Li, N. Ye, Determination of sulfonamides in milk by capillary electrophoresis with PEG@MoS2 as a dispersive solid-phase extraction sorbent. R. Soc. Open Sci. 5(5), 172104 (2018). https://doi.org/10.1098/rsos.172104
B. Chang, L. Deng, S. Wang, D. Shi, Z. Ai et al., A vanadium–nickel oxynitride layer for enhanced electrocatalytic nitrogen fixation in neutral media. J. Mater. Chem. A 8(1), 91–96 (2020). https://doi.org/10.1039/C9TA11378A
H. Kageyama, K. Hayashi, K. Maeda, J.P. Attfield, Z. Hiroi et al., Expanding frontiers in materials chemistry and physics with multiple anions. Nat. Commun. 9, 772 (2018). https://doi.org/10.1038/s41467-018-02838-4
S.R. Lingampalli, K. Manjunath, S. Shenoy, U.V. Waghmare, C.N. Rao, Zn2NF and related analogues of ZnO. J. Am. Chem. Soc. 138(26), 8228–8234 (2016). https://doi.org/10.1021/jacs.6b04198
L. Chen, J. Chang, Y. Zhang, Z. Gao, D. Wu et al., Fluorine anion-enriched nickel hydroxyl oxide as an efficient oxygen evolution reaction electrocatalyst. Chem. Commun. 55(23), 3406–3409 (2019). https://doi.org/10.1039/c9cc00555b
B. Li, S. Zhang, C. Tang, X. Cui, Q. Zhang, Anionic regulated NiFe (oxy) sulfide electrocatalysts for water oxidation. Small 13(25), 1700610 (2017). https://doi.org/10.1002/smll.201700610
S. Wan, J. Qi, W. Zhang, W. Wang, S. Zhang et al., Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv. Mater. 29(28), 1700286 (2017). https://doi.org/10.1002/adma.201700286
L. Peng, J. Wang, Y. Nie, K. Xiong, Y. Wang et al., Dual-ligand synergistic modulation: a satisfactory strategy for simultaneously improving the activity and stability of oxygen evolution electrocatalysts. ACS Catal. 7(12), 8184–8191 (2017). https://doi.org/10.1021/acscatal.7b01971
J.K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J.G. Chen et al., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152(3), J23 (2005). https://doi.org/10.1149/1.1856988
J.S. Yoo, X. Rong, Y. Liu, A.M. Kolpak, Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 8(5), 4628–4636 (2018). https://doi.org/10.1021/acscatal.8b00612
Z. Dai, H. Geng, J. Wang, Y. Luo, B. Li et al., Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting. ACS Nano 11(11), 11031–11040 (2017). https://doi.org/10.1021/acsnano.7b05050
J. Luo, H. Wang, G. Su, Y. Tang, H. Liu et al., Self-supported nickel phosphosulphide nanosheets for highly efficient and stable overall water splitting. J. Mater. Chem. A 5(28), 14865–14872 (2017). https://doi.org/10.1039/C7TA02651J
B. Song, K. Li, Y. Yin, T. Wu, L. Dang et al., Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution. ACS Catal. 7(12), 8549–8557 (2017). https://doi.org/10.1021/acscatal.7b02575
J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang et al., Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135(47), 17881–17888 (2013). https://doi.org/10.1021/ja408329q
M. Caban-Acevedo, M.L. Stone, J.R. Schmidt, J.G. Thomas, Q. Ding et al., Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 14(12), 1245–1251 (2015). https://doi.org/10.1038/nmat4410
B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 45, 71–129 (2000). https://doi.org/10.1016/S0360-0564(02)45013-4
M. Li, H. Liu, L. Feng, Fluoridation-induced high-performance catalysts for the oxygen evolution reaction: a mini review. Electrochem. Commun. 122, 106901 (2020). https://doi.org/10.1016/j.elecom.2020.106901
R. Zhang, M. Zhang, H. Yang, G. Li, S. Xing et al., Creating fluorine-doped MoS2 edge electrodes with enhanced hydrogen evolution activity. Small Methods 5(11), 2100612 (2021). https://doi.org/10.1002/smtd.202100612
J. Zhang, M. Wu, Z. Shi, M. Jiang, W. Jian et al., Composition and interface engineering of alloyed MoS2xSe2(1–x) nanotubes for enhanced hydrogen evolution reaction activity. Small 12(32), 4379–4385 (2016). https://doi.org/10.1002/smll.201601496
J. Yu, W.-J. Li, G. Kao, C.-Y. Xu, R. Chen et al., In-situ growth of CNTs encapsulating P-doped NiSe2 nanoparticles on carbon framework as efficient bifunctional electrocatalyst for overall water splitting. J. Energy Chem. 60, 111–120 (2021). https://doi.org/10.1016/j.jechem.2020.12.030
H. Sun, X. Xu, Z. Yan, X. Chen, L. Jiao et al., Superhydrophilic amorphous Co-B-P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. J. Mater. Chem. A 6(44), 22062–22069 (2018). https://doi.org/10.1039/C8TA02999G
N. Zhang, Y. Chai, Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy Environ. Sci. 14(9), 4647–4671 (2021). https://doi.org/10.1039/D1EE01277K
M.E. Kreider, M.B. Stevens, Y. Liu, A.M. Patel, M.J. Statt et al., Nitride or oxynitride? Elucidating the composition–activity relationships in molybdenum nitride electrocatalysts for the oxygen reduction reaction. Chem. Mater. 32(7), 2946–2960 (2020). https://doi.org/10.1021/acs.chemmater.9b05212
L. Yuan, S. Liu, S. Xu, X. Yang, J. Bian et al., Modulation of Volmer step for efficient alkaline water splitting implemented by titanium oxide promoting surface reconstruction of cobalt carbonate hydroxide. Nano Energy 82, 105732 (2021). https://doi.org/10.1016/j.nanoen.2020.105732
G. Zeng, T.A. Pham, S. Vanka, G. Liu, C. Song et al., Development of a photoelectrochemically self-improving Si/GaN photocathode for efficient and durable H2 production. Nat. Mater. 20(8), 1130–1135 (2021). https://doi.org/10.1038/s41563-021-00965-w
M. Ahmed, G. Xinxin, A review of metal oxynitrides for photocatalysis. Inorg. Chem. Front. 3(5), 578–590 (2016). https://doi.org/10.1039/c5qi00202h
A.K. Tareen, G.S. Priyanga, S. Behara, T. Thomas, M. Yang, Mixed ternary transition metal nitrides: a comprehensive review of synthesis, electronic structure, and properties of engineering relevance. Prog. Solid State Chem. 53, 1–26 (2019). https://doi.org/10.1016/j.progsolidstchem.2018.11.001
M. Chisaka, A. Ishihara, K.-I. Ota, H. Muramoto, Synthesis of carbon-supported titanium oxynitride nanoparticles as cathode catalyst for polymer electrolyte fuel cells. Electrochim. Acta 113, 735–740 (2013). https://doi.org/10.1016/j.electacta.2013.06.048
A. Miura, Low-temperature synthesis and rational design of nitrides and oxynitrides for novel functional material development. J. Ceram. Soc. Jpn. 125(7), 552–558 (2017). https://doi.org/10.2109/jcersj2.17055
B. Cao, G.M. Veith, R.E. Diaz, J. Liu, E.A. Stach et al., Cobalt molybdenum oxynitrides: synthesis, structural characterization, and catalytic activity for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52(41), 10753–10757 (2013). https://doi.org/10.1002/anie.201303197
W. Liu, Y. Hou, Z. Lin, S. Yang, C. Yu et al., Porous cobalt oxynitride nanosheets for efficient electrocatalytic water oxidation. Chemsuschem 11(9), 1479–1485 (2018). https://doi.org/10.1002/cssc.201800380
N.R. Mucha, J. Som, J. Choi, S. Shaji, R.K. Gupta et al., High-performance titanium oxynitride thin films for electrocatalytic water oxidation. ACS Appl. Energy Mater. 3(9), 8366–8374 (2020). https://doi.org/10.1021/acsaem.0c00988
J. Di, H. Zhu, J. Xia, J. Bao, P. Zhang et al., High-performance electrolytic oxygen evolution with a seamless armor core-shell FeCoNi oxynitride. Nanoscale 11(15), 7239–7246 (2019). https://doi.org/10.1039/c8nr10191d
A. Miura, C. Rosero-Navarro, Y. Masubuchi, M. Higuchi, S. Kikkawa et al., Nitrogen-rich manganese oxynitrides with enhanced catalytic activity in the oxygen reduction reaction. Angew. Chem. Int. Ed. 55(28), 7963–7967 (2016). https://doi.org/10.1002/anie.201601568
H. Tan, Z. Liu, D. Chao, P. Hao, D. Jia et al., Partial nitridation-induced electrochemistry enhancement of ternary oxide nanosheets for fiber energy storage device. Adv. Energy Mater. 8(21), 1800685 (2018). https://doi.org/10.1002/aenm.201800685
S. Wang, L. Li, Y. Shao, L. Zhang, Y. Li et al., Transition-metal oxynitride: a facile strategy for improving electrochemical capacitor storage. Adv. Mater. 31(10), 1806088 (2019). https://doi.org/10.1002/adma.201806088
S. Dutta, A. Indra, Y. Feng, H. Han, T. Song, Promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride–oxynitride. Appl. Catal. B 241, 521–527 (2019). https://doi.org/10.1016/j.apcatb.2018.09.061
J. Xiong, J. Di, C. Yan, M. Xu, J. Yu et al., Size-dependent activity of iron–nickel oxynitride towards electrocatalytic oxygen evolution. ChemNanoMat 5(7), 883–887 (2019). https://doi.org/10.1002/cnma.201900127
Z. Kou, T. Wang, H. Wu, L. Zheng, S. Mu et al., Twinned tungsten carbonitride nanocrystals boost hydrogen evolution activity and stability. Small 15(19), 1900248 (2019). https://doi.org/10.1002/smll.201900248
H. Fu, Q. Zhang, J. Luo, L. Shen, X. Chen et al., Boosting HER activities of 3D flower-Like tungsten carbonitride via anions regulation. ACS Sustain. Chem. Eng. 37(8), 14109–14116 (2020). https://doi.org/10.1021/acssuschemeng.0c04773
Z. Zeng, X. Chen, K. Weng, Y. Wu, P. Zhang et al., Computational screening study of double transition metal carbonitrides M′2M″CNO2-MXene as catalysts for hydrogen evolution reaction. npj Comput. Mater. 7(1), 80 (2021). https://doi.org/10.1038/s41524-021-00550-4
Y. Zhao, K. Kamiya, K. Hashimoto, S. Nakanishi, In situ CO2-emission assisted synthesis of molybdenum carbonitride nanomaterial as hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 137(1), 110–113 (2015). https://doi.org/10.1021/ja5114529
H. Wei, J. Wang, Q. Lin, Y. Zou, X.a. Chen et al., Incorporating ultra-small N-doped Mo2C nanoparticles onto 3D N-doped flower-like carbon nanospheres for robust electrocatalytic hydrogen evolution. Nano Energy 86, 106047 (2021). https://doi.org/10.1016/j.nanoen.2021.106047
B. Chang, L. Li, D. Shi, H. Jiang, Z. Ai et al., Metal-free boron carbonitride with tunable boron Lewis acid sites for enhanced nitrogen electroreduction to ammonia. Appl. Catal. B 283, 119622 (2021). https://doi.org/10.1016/j.apcatb.2020.119622
D. Shi, B. Chang, Z. Ai, H. Jiang, F. Chen et al., Boron carbonitride with tunable B/N Lewis acid/base sites for enhanced electrocatalytic overall water splitting. Nanoscale 13(5), 2849–2854 (2021). https://doi.org/10.1039/D0NR06857H
J. Wang, Y. Shin, J.R. Paudel, J.D. Grassi, R.K. Sah et al., Strain-induced anion-site occupancy in perovskite oxyfluoride films. Chem. Mater. 33(5), 1811–1820 (2021). https://doi.org/10.1021/acs.chemmater.0c04793
K. Lemoine, J. Lhoste, A. Hemon-Ribaud, N. Heidary, V. Maisonneuve et al., Investigation of mixed-metal (oxy)fluorides as a new class of water oxidation electrocatalysts. Chem. Sci. 10(40), 9209–9218 (2019). https://doi.org/10.1039/c9sc04027g
H. Han, J. Woo, Y.-R. Hong, Y.-C. Chung, S. Mhin, Polarized electronic configuration in transition metal–fluoride oxide hollow nanoprism for highly efficient and robust water splitting. ACS Appl. Mater. Interfaces 2(6), 3999–4007 (2019). https://doi.org/10.1021/acsaem.9b00449
X.L. Cao, C.L. Hu, F. Kong, J.G. Mao, Cs(TaO2)3(SeO3)2 and Cs(TiOF)3(SeO3)2: structural and second harmonic generation changes induced by the different d(0)-TM coordination octahedra. Inorg. Chem. 54(8), 3875–3882 (2015). https://doi.org/10.1021/acs.inorgchem.5b00052
Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan et al., Growth of large-area 2D MoS2(1–x)Se2x semiconductor alloys. Adv. Mater. 26(17), 2648–2653 (2014). https://doi.org/10.1002/adma.201306095
B. Hua, M. Li, W. Pang, W. Tang, S. Zhao et al., Activating p-blocking centers in perovskite for efficient water splitting. Chem 4(12), 2902–2916 (2018). https://doi.org/10.1016/j.chempr.2018.09.012
K.v. Lemoine, Z. Gohari-Bajestani, R. Moury, A. Terry, A. Guiet et al., Amorphous iron-manganese oxyfluorides, promising catalysts for oxygen evolution reaction under acidic media. ACS Appl. Energy Mater. 4(2), 1173–1181 (2021). https://doi.org/10.1021/acsaem.0c02417
K. Huang, Z. Zhao, H. Du, P. Du, H. Wang et al., Rapid thermal annealing toward high-quality 2D cobalt fluoride oxide as an advanced oxygen evolution electrocatalyst. ACS Sustainable Chem. Eng. 8(18), 6905–6913 (2020). https://doi.org/10.1021/acssuschemeng.0c00830
H. Svengren, N. Torapava, I. Athanassiadis, S.I. Ali, M. Johnsson, A transition metal oxofluoride offering advantages in electrocatalysis and potential use in applications. Faraday Discuss. 188, 481–498 (2016). https://doi.org/10.1039/c5fd00169b
L. Lei, D. Huang, Y. Chen, S. Chen, R. Deng, Design of an amorphous and defect-rich CoMoOF layer as a pH-universal catalyst for the hydrogen evolution reaction. J. Mater. Chem. A. 9(13), 8730–8739 (2021). https://doi.org/10.1039/D1TA00505G
B. Zhang, S. Hu, Turning Ni-based hydroxide into an efficient hydrogen evolution electrocatalyst by fluoride incorporation. Electrochem. Commun. 86, 108–112 (2018). https://doi.org/10.1016/j.elecom.2017.12.001
B. Zhang, K. Jiang, H. Wang, S. Hu, Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst. Nano Lett. 19(1), 530–537 (2019). https://doi.org/10.1021/acs.nanolett.8b04466
Q. Xu, H. Jiang, X. Duan, Z. Jiang, Y. Hu et al., Fluorination-enabled reconstruction of NiFe electrocatalysts for efficient water oxidation. Nano Lett. 21(1), 492–499 (2020). https://doi.org/10.1021/acs.nanolett.0c03950
F. Ma, Q. Wu, M. Liu, L. Zheng, F. Tong et al., Surface fluorination engineering of NiFe Prussian blue analogue derivatives for highly efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 13(4), 5142–5152 (2021). https://doi.org/10.1021/acsami.0c20886
Y.A. Zhu, W.J. Dai, X. Zhong, T. Lu, Y. Pan, In-situ reconstruction of non-noble multi-metal core–shell oxyfluorides for water oxidation. J. Colloid Interface Sci. 602, 55–63 (2021). https://doi.org/10.1016/j.jcis.2021.05.170
Y.P. Zhu, J. Yin, E. Abou-Hamad, X. Liu, W. Chen et al., Highly stable phosphonate-based MOFs with engineered bandgaps for efficient photocatalytic hydrogen production. Adv. Mater. 32(16), 1906368 (2020). https://doi.org/10.1002/adma.201906368
J. Balamurugan, T.T. Nguyen, V. Aravindan, N.H. Kim, J.H. Lee, Highly reversible water splitting cell building from hierarchical 3D nickel manganese oxyphosphide nanosheets. Nano Energy 69, 104432 (2020). https://doi.org/10.1016/j.nanoen.2019.104432
J. Duan, S. Chen, A. Vasileff, S.Z. Qiao, Anion and cation modulation in metal compounds for bifunctional overall water splitting. ACS Nano 10(9), 8738–8745 (2016). https://doi.org/10.1021/acsnano.6b04252
R.A. Marquez-Montes, K. Kawashima, Y.J. Son, J.A. Weeks, H.H. Sun et al., Mass transport-enhanced electrodeposition of Ni–S–P–O films on nickel foam for electrochemical water splitting. J. Mater. Chem. A 9(12), 7736–7749 (2021). https://doi.org/10.1039/D0TA12097A
B.Y. Guan, L. Yu, X.W. Lou, General synthesis of multishell mixed-metal oxyphosphide particles with enhanced electrocatalytic activity in the oxygen evolution reaction. Angew. Chem. Int. Ed. 56(9), 2386–2389 (2017). https://doi.org/10.1002/anie.201611804
P. Zhang, X.F. Lu, J. Nai, S.Q. Zang, X.W.D. Lou, Construction of hierarchical Co–Fe oxyphosphide microtubes for electrocatalytic overall water splitting. Adv. Sci. 6(17), 1900576 (2019). https://doi.org/10.1002/advs.201900576
Q. Zhang, W. Chen, G.L. Chen, J. Huang, B. Ouyang et al., Trimetallic octahedral Ni–Co–W phosphoxide sprouted from plasma-defect-engineered Ni–Co support for ultrahigh-performance electrocatalytic hydrogen evolution. ACS Sustain. Chem. Eng. 9(22), 7454–7465 (2021). https://doi.org/10.1021/acssuschemeng.1c00730
Y. Jia, W. Cai, X. Li, X.Y. Yu, Z. Hong, Fe ions modulated formation of hollow NiFe oxyphosphide spheres with enhanced oxygen evolution performance. Chem. Commun. 55(95), 14371–14374 (2019). https://doi.org/10.1039/c9cc07747b
H. Xu, P. Song, C. Liu, Y. Zhang, Y. Du, Facile construction of ultrafine nickel-zinc oxyphosphide nanosheets as high-performance electrocatalysts for oxygen evolution reaction. J. Colloid Interface Sci. 530, 58–66 (2018). https://doi.org/10.1016/j.jcis.2018.06.061
H. Xu, K. Zhang, C. Liu, L. Tian, Y. Du, 3D–1D heterostructure of CoZn oxyphosphide nanosheets anchored on carbon nanotubes as electrocatalysts for the oxygen evolution reaction. ChemElectroChem 5(18), 2558–2563 (2018). https://doi.org/10.1002/celc.201800656
S.A. Khalate, S.A. Kadam, Y.-R. Ma, S.S. Pujari, S.J. Marje et al., Hydrothermally synthesized iron phosphate hydroxide thin film electrocatalyst for electrochemical water splitting. Electrochim. Acta 319, 118–128 (2019). https://doi.org/10.1016/j.electacta.2019.06.162
Y. Zhang, T. Qu, F. Bi, P. Hao, M. Li et al., Trimetallic (Co/Ni/Cu) hydroxyphosphate nanosheet array as efficient and durable electrocatalyst for oxygen evolution reaction. ACS Sustain. Chem. Eng. 12(6), 16859–16866 (2018). https://doi.org/10.1021/acssuschemeng.8b04180
V. Mani, S. Anantharaj, S. Mishra, N. Kalaiselvi, S. Kundu, Iron hydroxyphosphate and Sn-incorporated iron hydroxyphosphate: efficient and stable electrocatalysts for oxygen evolution reaction. Catal.: Sci. Technol. 7(21), 5092–5104 (2017). https://doi.org/10.1039/c7cy00515f
P. Babar, A. Lokhande, E. Jo, B. Pawar, M. Gang et al., Facile electrosynthesis of Fe (Ni/Co) hydroxyphosphate as a bifunctional electrocatalyst for efficient water splitting. J. Ind. Eng. Chem. 70, 116–123 (2019). https://doi.org/10.1016/j.jiec.2018.09.041
X. Yu, Z. Yu, X. Zhang, P. Li, B. Sun et al., Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting. Nano Energy 71, 104652 (2020). https://doi.org/10.1016/j.nanoen.2020.104652
C.X. Zhao, J.N. Liu, J. Wang, D. Ren, B.Q. Li et al., Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 50(13), 7745–7778 (2021). https://doi.org/10.1039/d1cs00135c
X. Bao, D.Y. Petrovykh, P. Alpuim, D.G. Stroppa, N. Guldris et al., Amorphous oxygen-rich molybdenum oxysulfide decorated p-type silicon microwire Arrays for efficient photoelectrochemical water reduction. Nano Energy 16, 130–142 (2015). https://doi.org/10.1016/j.nanoen.2015.06.014
D. Thanh Tran, T. Kshetri, N. Dinh Chuong, J. Gautam, H. Van Hien et al., Emerging core-shell nanostructured catalysts of transition metal encapsulated by two-dimensional carbon materials for electrochemical applications. Nano Today 22, 100–131 (2018). https://doi.org/10.1016/j.nantod.2018.08.006
L. Liu, Nano-aggregates of cobalt nickel oxysulfide as a high-performance electrode material for supercapacitors. Nanoscale 5(23), 11615–11619 (2013). https://doi.org/10.1039/c3nr03533f
J. Fu, F.M. Hassan, C. Zhong, J. Lu, H. Liu et al., Defect engineering of chalcogen-tailored oxygen electrocatalysts for rechargeable quasi-solid-state zinc-air batteries. Adv. Mater. 29(35), 1702526 (2017). https://doi.org/10.1002/adma.201702526
H. Kim, J. Kim, S.-K. Kim, S.H. Ahn, A transition metal oxysulfide cathode for the proton exchange membrane water electrolyzer. Appl. Catal. B 232, 93–100 (2018). https://doi.org/10.1016/j.apcatb.2018.03.023
Y. Zhang, X. Wang, D. Hu, C. Xue, W. Wang et al., Monodisperse ultrasmall manganese-doped multimetallic oxysulfide nanoparticles as highly efficient oxygen reduction electrocatalyst. ACS Appl. Mater. Interfaces 10(16), 13413–13424 (2018). https://doi.org/10.1021/acsami.7b19498
C. Li, X. Zhao, Y. Liu, W. Wei, Y. Lin, 3D Ni–Co sulfoxide nanosheet arrays electrodeposited on Ni foam: a bifunctional electrocatalyst towards efficient and stable water splitting. Electrochim. Acta 292, 347–356 (2018). https://doi.org/10.1016/j.electacta.2018.06.159
D.T. Tran, H.T. Le, N.H. Kim, J.H. Lee, Highly efficient overall water splitting over a porous interconnected network by nickel cobalt oxysulfide interfacial assembled Cu@Cu2S nanowires. J. Mater. Chem. A 8(29), 14746–14756 (2020). https://doi.org/10.1039/D0TA04638H
J. Liu, Y. Yang, B. Ni, H. Li, X. Wang, Fullerene-like nickel oxysulfide hollow nanospheres as bifunctional electrocatalysts for water splitting. Small 13(6), 1602637 (2017). https://doi.org/10.1002/smll.201602637
D.J. Goossens, D. James, J. Dong, R.E. Whitfield, L. Noren et al., Local order in layered NiPS3 and Ni0.7Mg0.3PS3. J. Phys.: Condens. Matter. 23(6), 065401 (2011). https://doi.org/10.1088/0953-8984/23/6/065401
N. Ismail, M. Madian, A.A. El-Meligi, Synthesis of NiPS3 and CoPS and its hydrogen storage capacity. J. Alloys Compd. 588, 573–577 (2014). https://doi.org/10.1016/j.jallcom.2013.11.073
J. Li, Z. Xia, X. Zhou, Y. Qin, Y. Ma et al., Quaternary pyrite-structured nickel/cobalt phosphosulfide nanowires on carbon cloth as efficient and robust electrodes for water electrolysis. Nano Res. 10(3), 814–825 (2017). https://doi.org/10.1007/s12274-016-1335-z
P. He, X. Yu, X. Lou, Carbon-incorporated nickel–cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem. Int. Ed. 56(14), 3897–3900 (2017). https://doi.org/10.1002/anie.201612635
J. Chang, Y. Ouyang, J. Ge, J. Wang, C. Liu et al., Cobalt phosphosulfide in the tetragonal phase: a highly active and durable catalyst for the hydrogen evolution reaction. J. Mater. Chem. A 6(26), 12353–12360 (2018). https://doi.org/10.1039/c8ta03951h
Y. Li, S. Niu, D. Rakov, Y. Wang, M. Caban-Acevedo et al., Metal organic framework-derived CoPS/N-doped carbon for efficient electrocatalytic hydrogen evolution. Nanoscale 10(15), 7291–7297 (2018). https://doi.org/10.1039/c8nr01811a
J. Li, C. Zhang, H. Ma, T. Wang, Z. Guo et al., Modulating interfacial charge distribution of single atoms confined in molybdenum phosphosulfide heterostructures for high efficiency hydrogen evolution. Chem. Eng. J. 414, 128834 (2021). https://doi.org/10.1016/j.cej.2021.128834
K. Maiti, K. Kim, K.-J. Noh, J.W. Han, Synergistic coupling ensuing cobalt phosphosulfide encapsulated by heteroatom-doped two-dimensional graphene shell as an excellent catalyst for oxygen electroreduction. Chem. Eng. J. 423, 130233 (2021). https://doi.org/10.1016/j.cej.2021.130233
Y. Tong, P.Z. Chen, L. Chen, X.J. Cui, Dual vacancies confined in nickel phosphosulfide nanosheets enabling robust overall water splitting. Chemsuschem 14(12), 2576–2584 (2021). https://doi.org/10.1002/cssc.202100720
J. Kibsgaard, T.F. Jaramillo, Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 53(52), 14433–14437 (2014). https://doi.org/10.1002/anie.201408222
S. Sarkar, S. Sampath, Equiatomic ternary chalcogenide: PdPS and its reduced graphene oxide composite for efficient electrocatalytic hydrogen evolution. Chem. Commun. 50(55), 7359–7362 (2014). https://doi.org/10.1039/c4cc02364a
D. Mukherjee, P.M. Austeria, S. Sampath, Two-dimensional, few-layer phosphochalcogenide, FePS3: a new catalyst for electrochemical hydrogen evolution over wide pH range. ACS Energy Lett. 1(2), 367–372 (2016). https://doi.org/10.1021/acsenergylett.6b00184
D. Lim, C. Lim, M. Hwang, M. Kim, S.E. Shim et al., Facile synthesis of flower-like P-doped nickel–iron disulfide microspheres as advanced electrocatalysts for the oxygen evolution reaction. J. Power Sources 490, 229552 (2021). https://doi.org/10.1016/j.jpowsour.2021.229552
T.A. Shifa, F. Wang, K. Liu, Z. Cheng, K. Xu et al., Efficient catalysis of hydrogen evolution reaction from WS2(1–x)P2x nanoribbons. Small 13(16), 1603706 (2017). https://doi.org/10.1002/smll.201603706
S. Xue, L. Chen, Z. Liu, H.-M. Cheng, W. Ren, NiPS3 nanosheet–graphene composites as highly efficient electrocatalysts for oxygen evolution reaction. ACS Nano 12(6), 5297–5305 (2018). https://doi.org/10.1021/acsnano.7b09146
L. Yin, X. Ding, W. Wei, Y. Wang, Z. Zhu et al., Improving catalysis for electrochemical water splitting using phosphosulphide surface. Inorg. Chem. Front. 7(12), 2388–2395 (2020). https://doi.org/10.1039/D0QI00295J
J. Mann, Q. Ma, P.M. Odenthal, M. Isarraraz, D. Le et al., 2-Dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1–x)Se2x monolayers. Adv. Mater. 26(9), 1399–1404 (2014). https://doi.org/10.1002/adma.201304389
O.E. Meiron, L. Houben, M. Bar-Sadan, Understanding the formation mechanism and the 3D structure of Mo(SxSe1−x)2 nanoflowers. RSC Adv. 5(107), 88108–88114 (2015). https://doi.org/10.1039/c5ra16853h
Q. Gong, L. Cheng, C. Liu, M. Zhang, Q. Feng et al., Ultrathin MoS2(1–x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 5(4), 2213–2219 (2015). https://doi.org/10.1021/cs501970w
R. Bose, V.R. Jothi, B. Koh, C. Jung, S.C. Yi, Molybdenum sulphoselenophosphide spheroids as an effective catalyst for hydrogen evolution reaction. Small 14(8), 1703862 (2018). https://doi.org/10.1002/smll.201703862
J. Huang, Y. Jiang, T. An, M. Cao, Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting. J. Mater. Chem. A. 8(48), 25465–25498 (2020). https://doi.org/10.1039/D0TA08802A
K. Xu, F. Wang, Z. Wang, X. Zhan, Q. Wang et al., Component-controllable WS2(1–x)Se2x nanotubes for efficient hydrogen evolution reaction. ACS Nano 8(8), 8468–8476 (2014). https://doi.org/10.1021/nn503027k
Q. Fu, L. Yang, W. Wang, A. Han, J. Huang et al., Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(1–x)Se2x with a tunable band gap. Adv. Mater. 27(32), 4732–4738 (2015). https://doi.org/10.1002/adma.201500368
R. Bar-Ziv, O.E. Meiron, M. Bar-Sadan, Enhancing the catalytic activity of the alkaline hydrogen evolution reaction by tuning the S/Se ratio in the Mo(SxSe1−x)2 catalyst. Nanoscale 10(34), 16211–16216 (2018). https://doi.org/10.1039/c8nr05738a
J. Sun, X. Hu, Z. Huang, T. Huang, X. Wang et al., Atomically thin defect-rich Ni–Se–S hybrid nanosheets as hydrogen evolution reaction electrocatalysts. Nano Res. 13(8), 2056–2062 (2020). https://doi.org/10.1007/s12274-020-2807-8
K. Liu, F. Wang, K. Xu, T.A. Shifa, Z. Cheng et al., CoS2xSe2(1–x) nanowire array: an efficient ternary electrocatalyst for the hydrogen evolution reaction. Nanoscale 8(8), 4699–4704 (2016). https://doi.org/10.1039/c5nr07735d
H. Zhou, F. Yu, J. Sun, H. Zhu, I.K. Mishra et al., Highly efficient hydrogen evolution from edge-oriented WS2(1–x)Se2x particles on three-dimensional porous NiSe2 foam. Nano Lett. 16(12), 7604–7609 (2016). https://doi.org/10.1021/acs.nanolett.6b03467
S. Hussain, K. Akbar, D. Vikraman, K. Karuppasamy, H.-S. Kim et al., Synthesis of MoS2(1–x)Se2x and WS2(1–x)Se2x alloys for enhanced hydrogen evolution reaction performance. Inorg. Chem. Front. 4(12), 2068–2074 (2017). https://doi.org/10.1039/c7qi00457e
Q. Gong, S. Sheng, H. Ye, N. Han, L. Cheng et al., MoxW1−x(SySe1−y)2 alloy nanoflakes for high-performance electrocatalytic hydrogen evolution. Part. Part. Syst. Charact. 33(8), 576–582 (2016). https://doi.org/10.1002/ppsc.201500255
M. Smialkowski, D. Siegmund, K. Pellumbi, L. Hensgen, H. Antoni et al., Seleno-analogues of pentlandites (Fe4.5Ni4.5S8−YSeY, Y = 1–6): tuning bulk Fe/Ni sulphoselenides for hydrogen evolution. Chem. Commun. 55(60), 8792–8795 (2019). https://doi.org/10.1039/c9cc01842e
H.-P. Komsa, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenide alloys: stability and electronic properties. J. Phys. Chem. Lett. 3(23), 3652–3656 (2012). https://doi.org/10.1021/jz301673x
T. Kosmala, H. Coy Diaz, H.-P. Komsa, Y. Ma, A.V. Krasheninnikov et al., Metallic twin boundaries boost the hydrogen evolution reaction on the basal plane of molybdenum selenotellurides. Adv. Energy Mater. 8(20), 1800031 (2018). https://doi.org/10.1002/aenm.201800031
S. Dutta, C. Ray, Y. Negishi, T. Pal, Facile synthesis of unique hexagonal nanoplates of Zn/Co hydroxy sulfate for efficient electrocatalytic oxygen evolution reaction. ACS Appl. Mater. Interfaces 9(9), 8134–8141 (2017). https://doi.org/10.1021/acsami.7b00030
C.-X. Zhao, B.-Q. Li, M. Zhao, J.-N. Liu, L.-D. Zhao et al., Precise anionic regulation of NiFe hydroxysulfide assisted by electrochemical reactions for efficient electrocatalysis. Energy Environ. Sci. 13(6), 1711–1716 (2020). https://doi.org/10.1039/C9EE03573G
L. Huang, H. Wu, Y. Zhang, One-step synthesis of CoPSe–CoSe2/CNTs as efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 331, 135362 (2020). https://doi.org/10.1016/j.electacta.2019.135362
Y. Liu, Q. Feng, W. Liu, Q. Li, Y. Wang et al., Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy 81, 105641 (2021). https://doi.org/10.1016/j.nanoen.2020.105641
K. Liu, F. Wang, T.A. Shifa, Z. Wang, K. Xu et al., An efficient ternary CoP2xSe2(1–x) nanowire array for overall water splitting. Nanoscale 9(11), 3995–4001 (2017). https://doi.org/10.1039/c7nr00460e
Y. Hou, M. Qiu, T. Zhang, X. Zhuang, C.S. Kim et al., Ternary porous cobalt phosphoselenide nanosheets: an efficient electrocatalyst for electrocatalytic and photoelectrochemical water splitting. Adv. Mater. 29(35), 1701589 (2017). https://doi.org/10.1002/adma.201701589
R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas et al., Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11(6), 550–557 (2012). https://doi.org/10.1038/nmat3313
M. Fang, D. Han, W.B. Xu, Y. Shen, Y. Lu et al., Surface-guided formation of amorphous mixed-metal oxyhydroxides on ultrathin MnO2 nanosheet arrays for efficient electrocatalytic oxygen evolution. Adv. Energy Mater. 10(27), 2001059 (2020). https://doi.org/10.1002/aenm.202001059
W. Hua, H. Sun, L. Ren, Y. Li, J. Wang, 2-Methylimidazole-induced reconstruction of cobalt (oxy) hydroxide electrocatalysts toward efficient water oxidation. Chem. Eng. J. 420, 129717 (2021). https://doi.org/10.1016/j.cej.2021.129717
C. Kim, S.H. Kim, S. Lee, I. Kwon, S. Kim et al., Boosting overall water splitting by incorporating sulfur into NiFe (oxy) hydroxide. J. Energy Chem. 64, 364–371 (2022). https://doi.org/10.1016/j.jechem.2021.04.067
Z. Kuang, S. Liu, X. Li, M. Wang, X. Ren et al., Topotactically constructed nickel-iron (oxy) hydroxide with abundant in-situ produced high-valent iron species for efficient water oxidation. J. Energy Chem. 57, 212–218 (2021). https://doi.org/10.1016/j.jechem.2020.09.014
L. Lei, D. Huang, C. Zhou, S. Chen, X. Yan et al., Demystifying the active roles of NiFe-based oxides/(oxy) hydroxides for electrochemical water splitting under alkaline conditions. Coord. Chem. Rev. 408, 213177 (2020). https://doi.org/10.1016/j.ccr.2019.213177
C. Li, J. Zhao, L. Xie, J. Wu, Q. Ren et al., Surface-adsorbed carboxylate ligands on layered double hydroxides/metal-organic frameworks promote the electrocatalytic oxygen evolution reaction. Angew. Chem. Int. Ed. 60(33), 18129–18137 (2021). https://doi.org/10.1002/ange.202104148
J. Dong, Y. Wang, Q. Jiang, Z.-A. Nan, F.R. Fan et al., Charged droplet-driven fast formation of nickel–iron (oxy) hydroxides with rich oxygen defects for boosting overall water splitting. J. Mater. Chem. A. 9(35), 20058–20067 (2021). https://doi.org/10.1039/D1TA05332A
L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136(18), 6744–6753 (2014). https://doi.org/10.1021/ja502379c
M.S. Burke, L.J. Enman, A.S. Batchellor, S. Zou, S.W. Boettcher, Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem. Mater. 27(22), 7549–7558 (2015). https://doi.org/10.1021/acs.chemmater.5b03148
D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai et al., Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137(3), 1305–1313 (2015). https://doi.org/10.1021/ja511559d
S.R. Mellsop, A. Gardiner, B. Johannessen, A.T. Marshall, Structure and transformation of oxy-hydroxide films on Ni anodes below and above the oxygen evolution potential in alkaline electrolytes. Electrochim. Acta 168, 356–364 (2015). https://doi.org/10.1016/j.electacta.2015.04.020
F. Dionigi, P. Strasser, NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 6(23), 1600621 (2016). https://doi.org/10.1002/aenm.201600621
L.J. Enman, M.S. Burke, A.S. Batchellor, S.W. Boettcher, Effects of intentionally incorporated metal cations on the oxygen evolution electrocatalytic activity of nickel (oxy) hydroxide in alkaline media. ACS Catal. 6(4), 2416–2423 (2016). https://doi.org/10.1021/acscatal.5b02924
M. Gorlin, J. Ferreira de Araujo, H. Schmies, D. Bernsmeier, S. Dresp et al., Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: The role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 139(5), 2070–2082 (2017). https://doi.org/10.1021/jacs.6b12250
M.B. Stevens, C.D.M. Trang, L.J. Enman, J. Deng, S.W. Boettcher, Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 139(33), 11361–11364 (2017). https://doi.org/10.1021/jacs.7b07117
K. Zhu, W. Luo, G. Zhu, J. Wang, Y. Zhu et al., Interface-engineered Ni(OH)2/beta-like FeOOH electrocatalysts for highly efficient and stable oxygen evolution reaction. Chem. Asian. J. 12(20), 2720–2726 (2017). https://doi.org/10.1002/asia.201700964
J. Shen, M. Wang, L. Zhao, J. Jiang, H. Liu et al., Self-supported stainless steel nanocone array coated with a layer of Ni–Fe oxides/(oxy) hydroxides as a highly active and robust electrode for water oxidation. ACS Appl. Mater. Interfaces 10(10), 8786–8796 (2018). https://doi.org/10.1021/acsami.8b00498
X. Wu, Y. Zhao, T. Xing, P. Zhang, F. Li et al., Hierarchically structured FeNiOxHy electrocatalyst formed by in situ transformation of metal phosphate for efficient oxygen evolution reaction. Chemsuschem 11(11), 1761–1767 (2018). https://doi.org/10.1002/cssc.201800407
J. Liu, J. Xiao, Z. Wang, H. Yuan, Z. Lu et al., Structural and electronic engineering of Ir-doped Ni-(oxy) hydroxide nanosheets for enhanced oxygen evolution activity. ACS Catal. 11(9), 5386–5395 (2021). https://doi.org/10.1021/acscatal.1c00110
S.H. Ye, Z.X. Shi, J.X. Feng, Y.X. Tong, G.R. Li, Activating CoOOH porous nanosheet arrays by partial Iron substitution for efficient oxygen evolution reaction. Angew. Chem. Int. Ed. Engl. 57(10), 2672–2676 (2018). https://doi.org/10.1002/anie.201712549
C. Huang, Y. Zhong, J. Chen, J. Li, W. Zhang et al., Fe induced nanostructure reorganization and electronic structure modulation over CoNi (oxy) hydroxide nanorod arrays for boosting oxygen evolution reaction. Chem. Eng. J. 403, 126304 (2021). https://doi.org/10.1016/j.cej.2020.126304
X. Bo, Y. Li, X. Chen, C. Zhao, Operando Raman spectroscopy reveals Cr-induced-phase reconstruction of NiFe and CoFe oxyhydroxides for enhanced electrocatalytic water oxidation. Chem. Mater. 32(10), 4303–4311 (2020). https://doi.org/10.1021/acs.chemmater.0c01067
J.T. Mefford, A.R. Akbashev, M. Kang, C.L. Bentley, W.E. Gent et al., Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593(7857), 67–73 (2021). https://doi.org/10.1038/s41586-021-03454-x
L. Zhang, W. Cai, N. Bao, Top-level design strategy to construct an advanced high-entropy Co-Cu-Fe-Mo (oxy) hydroxide electrocatalyst for the oxygen evolution reaction. Adv. Mater. 33(22), 2100745 (2021). https://doi.org/10.1002/adma.202100745
J. Liu, Y. Ji, J. Nai, X. Niu, Y. Luo et al., Ultrathin amorphous cobalt-vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction. Energy Environ. Sci. 11(7), 1736–1741 (2018). https://doi.org/10.1039/c8ee00611c
Z.-F. Huang, S. Xi, J. Song, S. Dou, X. Li et al., Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nat. Commun. 12, 3992 (2021). https://doi.org/10.1038/s41467-021-24182-w
S. Gupta, N. Patel, R. Fernandes, R. Kadrekar, A. Dashora et al., Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl. Catal. B 192, 126–133 (2016). https://doi.org/10.1016/j.apcatb.2016.03.032
X. Ai, X. Zou, H. Chen, Y. Su, X. Feng et al., Transition–metal–boron intermetallics with strong interatomic d–sp orbital hybridization for high-performance electrocatalysis. Angew. Chem. Int. Ed. 59(10), 3961–3965 (2020). https://doi.org/10.1002/anie.201915663
F. Ma, S. Wang, X. Liang, C. Wang, F. Tong et al., Ni3B as a highly efficient and selective catalyst for the electrosynthesis of hydrogen peroxide. Appl. Catal. B 279, 119371 (2020). https://doi.org/10.1016/j.apcatb.2020.119371
J. Kim, H. Kim, S.-K. Kim, S.H. Ahn, Electrodeposited amorphous Co–P–B ternary catalyst for hydrogen evolution reaction. J. Mater. Chem. A 6(15), 6282–6288 (2018). https://doi.org/10.1039/C7TA11033B
M. Ma, D. Liu, S. Hao, R. Kong, G. Du et al., A nickel–borate–phosphate nanoarray for efficient and durable water oxidation under benign conditions. Inorg. Chem. Front. 4(5), 840–844 (2017). https://doi.org/10.1039/C6QI00594B
W. Wang, D. Liu, S. Hao, F. Qu, Y. Ma et al., High-efficiency and durable water oxidation under mild pH conditions: an iron phosphate-borate nanosheet array as a non-noble-metal catalyst electrode. Inorg. Chem. 56(6), 3131–3135 (2017). https://doi.org/10.1021/acs.inorgchem.6b03171
X. Ma, S. Zhang, Y. He, T. He, H. Li et al., Boron and phosphorus co-doped NiVFe LDHs@NF as a highly efficient self-supporting electrocatalyst for the hydrogen evolution reaction. J. Electroanal. Chem. 886, 115107 (2021). https://doi.org/10.1016/j.jelechem.2021.115107
Q. Li, W. Cui, J. Tian, Z. Xing, Q. Liu et al., N-doped carbon-coated tungsten oxynitride nanowire arrays for highly efficient electrochemical hydrogen evolution. Chemsuschem 8(15), 2487–2491 (2015). https://doi.org/10.1002/cssc.201500398
Y. Li, K.A. Kuttiyiel, L. Wu, Y. Zhu, E. Fujita et al., Enhancing electrocatalytic performance of bifunctional cobalt–manganese–oxynitride nanocatalysts on graphene. Chemsuschem 10(1), 68–73 (2017). https://doi.org/10.1002/cssc.201601188
K.K. Yong Zhao, K. Hashimoto, S. Nakanishi, Hydrogen evolution by tungsten carbonitride nanoelectrocatalysts synthesized by the formation of a tungsten acid/polymer hybridIn situ. Angew. Commun. 125(51), 13883–13886 (2013). https://doi.org/10.1002/anie.201307527
J. Wang, D. Liu, L. Zhang, Y. Qian, C. Chen et al., Rational design of 2D super holey metal carboniride leaf-like nanostructure for efficient oxygen electrocatalysis. Carbon 164, 287–295 (2020). https://doi.org/10.1016/j.carbon.2020.04.014
H. Zhang, P. An, W. Zhou, B.Y. Guan, P. Zhang et al., Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 4(1), eaao6657 (2018). https://doi.org/10.1126/sciadv.aao6657
W. Liu, E. Hu, H. Jiang, Y. Xiang, Z. Weng et al., A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nat. Commun. 7, 10771 (2016). https://doi.org/10.1038/ncomms10771
K. Li, D. Rakov, W. Zhang, P. Xu, Improving the intrinsic electrocatalytic hydrogen evolution activity of few-layer NiPS3 by cobalt doping. Chem. Commun. 53(58), 8199–8202 (2017). https://doi.org/10.1039/C7CC03173D
Z. Wu, X. Li, W. Liu, Y. Zhong, Q. Gan et al., Materials chemistry of iron phosphosulfide nanoparticles: synthesis, solid state chemistry, surface structure, and electrocatalysis for the hydrogen evolution reaction. ACS Catal. 7(6), 4026–4032 (2017). https://doi.org/10.1021/acscatal.7b00466
Y. Xin, X. Kan, L.Y. Gan, Z. Zhang, Heterogeneous bimetallic phosphide/sulfide nanocomposite for efficient solar-energy-driven overall water splitting. ACS Nano 11(10), 10303–10312 (2017). https://doi.org/10.1021/acsnano.7b05020
Y. Liu, Y. Du, W.-K. Gao, B. Dong, Y. Han et al., Surface phosphorsulfurization of NiCo2O4 nanoneedles supported on carbon cloth with enhanced electrocatalytic activity for hydrogen evolution. Electrochim. Acta 290, 339–346 (2018). https://doi.org/10.1016/j.electacta.2018.09.053
Z. Liu, Y. Wang, R. Chen, C. Chen, H. Yang et al., Quaternary bimetallic phosphosulphide nanosheets derived from prussian blue analogues: origin of the ultra-high activity for oxygen evolution. J. Power Sources 403, 90–96 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.078
D.J. Li, J. Kang, H.J. Lee, D.S. Choi, S.H. Koo et al., High activity hydrogen evolution catalysis by uniquely designed amorphous/metal interface of core–shell phosphosulfide/N-doped CNTs. Adv. Energy Mater. 8(13), 1702806 (2018). https://doi.org/10.1002/aenm.201702806
F. Wang, J. Li, F. Wang, T.A. Shifa, Z. Cheng et al., Enhanced electrochemical H2 evolution by few-layered metallic WS2(1–x)Se2x nanoribbons. Adv. Funct. Mater. 25(38), 6077–6083 (2015). https://doi.org/10.1002/adfm.201502680
K. Wang, C. Zhou, D. Xi, Z. Shi, C. He et al., Component-controllable synthesis of Co(SxSe1−x)2 nanowires supported by carbon fiber paper as high-performance electrode for hydrogen evolution reaction. Nano Energy 18, 1–11 (2015). https://doi.org/10.1016/j.nanoen.2015.10.001
L. Yang, Q. Fu, W. Wang, J. Huang, J. Huang et al., Large-area synthesis of monolayered MoS2(1–x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity. Nanoscale 7(23), 10490–10497 (2015). https://doi.org/10.1039/c5nr02652k
M. Zou, J. Chen, L. Xiao, H. Zhu, T. Yang et al., WSe2 and W(SexS1−x)2 nanoflakes grown on carbon nanofibers for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 3(35), 18090–18097 (2015). https://doi.org/10.1039/c5ta04426j
X. Chen, Z. Wang, Y. Qiu, J. Zhang, G. Liu et al., Controlled growth of vertical 3D MoS2(1–x)Se2x nanosheets for an efficient and stable hydrogen evolution reaction. J. Mater. Chem. A 4(46), 18060–18066 (2016). https://doi.org/10.1039/c6ta07904k
H. Zhou, F. Yu, Y. Huang, J. Sun, Z. Zhu et al., Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nat. Commun. 7, 12765 (2016). https://doi.org/10.1038/ncomms12765
L. Fang, W. Li, Y. Guan, Y. Feng, H. Zhang et al., Tuning unique peapod-like Co(SxSe1−x)2 nanoparticles for efficient overall water splitting. Adv. Funct. Mater. 27(24), 1701008 (2017). https://doi.org/10.1002/adfm.201701008
K. Liang, Y. Yan, L. Guo, K. Marcus, Z. Li et al., Strained W(SexS1–x)2 nanoporous films for highly efficient hydrogen evolution. ACS Energy Lett. 2(6), 1315–1320 (2017). https://doi.org/10.1021/acsenergylett.7b00326
Y.-F. Jiang, C.-Z. Yuan, X. Zhou, Y.-N. Liu, Z.-W. Zhao et al., Selenium phosphorus co-doped cobalt oxide nanosheets anchored on Co foil: a self-supported and stable bifunctional electrode for efficient electrochemical water splitting. Electrochim. Acta 292, 247–255 (2018). https://doi.org/10.1016/j.electacta.2018.09.162
J. Huang, J. Chen, T. Yao, J. He, S. Jiang et al., CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem. Int. Ed. 54(30), 8722–8727 (2015). https://doi.org/10.1002/anie.201502836
X. Han, C. Yu, S. Zhou, C. Zhao, H. Huang et al., Ultrasensitive iron-triggered nanosized Fe–CoOOH integrated with graphene for highly efficient oxygen evolution. Adv. Energy Mater. 7(14), 1602148 (2017). https://doi.org/10.1002/aenm.201602148
Y. Pi, Q. Shao, P. Wang, F. Lv, S. Guo et al., Trimetallic oxyhydroxide coralloids for efficient oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 56(16), 4502–4506 (2017). https://doi.org/10.1002/anie.201701533
Y.-J. Ye, N. Zhang, X.-X. Liu, Amorphous NiFe(oxy)hydroxide nanosheet integrated partially exfoliated graphite foil for high efficiency oxygen evolution reaction. J. Mater. Chem. A 5(46), 24208–24216 (2017). https://doi.org/10.1039/c7ta06906e
E. Lee, A.H. Park, H.U. Park, Y.U. Kwon, Facile sonochemical synthesis of amorphous NiFe-(oxy)hydroxide nanoparticles as superior electrocatalysts for oxygen evolution reaction. Ultrason. Sonochem. 40(Pt A), 552–557 (2018). https://doi.org/10.1016/j.ultsonch.2017.07.048
M. Lee, H.-S. Oh, M.K. Cho, J.-P. Ahn, Y.J. Hwang et al., Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide to nickel hydroxide in an oxygen evolution reaction. Appl. Catal. B 233, 130–135 (2018). https://doi.org/10.1016/j.apcatb.2018.03.083
N. Zhang, B. Yang, Y. He, Y. He, X. Liu et al., Serpentine Ni3Ge2O5(OH)4 nanosheets with tailored layers and size for efficient oxygen evolution reactions. Small 14(48), 1803015 (2018). https://doi.org/10.1002/smll.201803015
X. Zhang, Y. Liang, Nickel hydr(oxy)oxide nanoparticles on metallic MoS2 nanosheets: a synergistic electrocatalyst for hydrogen evolution reaction. Adv. Sci. 5(2), 1700644 (2018). https://doi.org/10.1002/advs.201700644
MathSciNet
B. Wang, C. Tang, H.F. Wang, X. Chen, R. Cao et al., A nanosized CoNi hydroxide@hydroxysulfide core–shell heterostructure for enhanced oxygen evolution. Adv. Mater. 31(4), 1805658 (2018). https://doi.org/10.1002/adma.201805658
C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu et al., Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 13(1), 86–95 (2020). https://doi.org/10.1039/c9ee02388g
H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 12(1), 322–333 (2019). https://doi.org/10.1039/C8EE03276A
X. Wang, Y. Liang, W. An, J. Hu, Y. Zhu et al., Removal of chromium (VI) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light. Appl. Catal. B 219, 53–62 (2017). https://doi.org/10.1016/j.apcatb.2017.07.008
Y. Guo, J. Tang, Z. Wang, Y.-M. Kang, Y. Bando et al., Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 47, 494–502 (2018). https://doi.org/10.1016/j.nanoen.2018.03.012
J. Zhang, H. Yang, B. Liu, Coordination engineering of single-atom catalysts for the oxygen reduction reaction: a review. Adv. Energy Mater. 11(3), 2002473 (2021). https://doi.org/10.1002/aenm.202002473
X. Wang, Y. Feng, P. Dong, J. Huang, A mini review on carbon quantum dots: preparation, properties, and electrocatalytic application. Front. Chem. 7, 671 (2019). https://doi.org/10.3389/fchem.2019.00671