Strongly Coupled Ag/Sn–SnO2 Nanosheets Toward CO2 Electroreduction to Pure HCOOH Solutions at Ampere-Level Current
Corresponding Author: Xiaoyuan Zhou
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 50
Abstract
Electrocatalytic reduction of CO2 converts intermittent renewable electricity into value-added liquid products with an enticing prospect, but its practical application is hampered due to the lack of high-performance electrocatalysts. Herein, we elaborately design and develop strongly coupled nanosheets composed of Ag nanoparticles and Sn–SnO2 grains, designated as Ag/Sn–SnO2 nanosheets (NSs), which possess optimized electronic structure, high electrical conductivity, and more accessible sites. As a result, such a catalyst exhibits unprecedented catalytic performance toward CO2-to-formate conversion with near-unity faradaic efficiency (≥ 90%), ultrahigh partial current density (2,000 mA cm−2), and superior long-term stability (200 mA cm−2, 200 h), surpassing the reported catalysts of CO2 electroreduction to formate. Additionally, in situ attenuated total reflection-infrared spectra combined with theoretical calculations revealed that electron-enriched Sn sites on Ag/Sn–SnO2 NSs not only promote the formation of *OCHO and alleviate the energy barriers of *OCHO to *HCOOH, but also impede the desorption of H*. Notably, the Ag/Sn–SnO2 NSs as the cathode in a membrane electrode assembly with porous solid electrolyte layer reactor can continuously produce ~ 0.12 M pure HCOOH solution at 100 mA cm−2 over 200 h. This work may inspire further development of advanced electrocatalysts and innovative device systems for promoting practical application of producing liquid fuels from CO2.
Highlights:
1 The strongly coupled Ag/Sn–SnO2 nanosheets (NSs) were prepared via a versatile electrochemical template strategy, and the generated electron-enriched Sn sites promote the formation of *OCHO and alleviate the energy barriers of *OCHO to *HCOOH.
2 Ag/Sn–SnO2 NSs afford a superior activity toward CO2 electroreduction with current densities up to 2000 mA cm‒2 and near-unity selectivity for formate production.
3 Ag/Sn–SnO2 NSs as the cathode in a membrane electrode assembly with porous solid electrolyte reactor enable the direct production of ~ 0.12 M pure HCOOH solution for 200 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Ma, X. Xiong, D. Wu, Y. Wang, C. Ban et al., Band position-independent piezo-electrocatalysis for ultrahigh CO2 conversion. Adv. Mater. 35, 2300027 (2023). https://doi.org/10.1002/adma.202300027
- B. Yang, K. Liu, H. Li, C. Lui, J. Fu et al., Accelerating CO2 electroreduction to multicarbon products via synergistic electric–thermal field on copper nanoneedles. J. Am. Chem. Soc. 144, 3039–3049 (2022). https://doi.org/10.1021/jacs.1c11253
- Q. Wang, M. Dai, H. Li, Y. Lu, T. Chan et al., Asymmetric coordination induces electron localization at ca sites for robust CO2 electroreduction to CO. Adv. Mater. 35, 2300695 (2022). https://doi.org/10.1002/adma.202300695
- H. Shin, K.U. Hansen, F. Jiao, Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021). https://doi.org/10.1038/s41893-021-00739-x
- J. Fan, X. Zhao, X. Mao, J. Xu, N. Han et al., Large-area vertically aligned bismuthene nanosheet arrays from galvanic replacement reaction for efficient electrochemical CO2 conversion. Adv. Mater. 33, e2100910 (2021). https://doi.org/10.1002/adma.202100910
- M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang et al., Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020). https://doi.org/10.1038/s41586-020-2242-8
- F.P. García de Arquer, C.T. Dinh, A. Ozden, J. Wicks, C. McCallum et al., CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020). https://doi.org/10.1126/science.aay4217
- C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. Liang et al., Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019). https://doi.org/10.1038/s41560-019-0451-x
- M. Zhang, S. Zhou, W. Wei, D.-D. Ma, S.-G. Han et al., Few-atom-layer metallene quantum dots toward CO2 electroreduction at ampere-level current density and Zn-CO2 battery. Chem Catal. 2, 3528–3545 (2022). https://doi.org/10.1016/j.checat.2022.10.001
- M. Zhang, W. Wei, S. Zhou, D.-D. Ma, A. Cao et al., Engineering a conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability. Energy Environ. Sci. 14, 4998–5008 (2021). https://doi.org/10.1039/D1EE01495A
- Y. Shi, Y. Ji, J. Long, Y. Liang, Y. Liu et al., Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nat. Commun. 11, 3415 (2020). https://doi.org/10.1038/s41467-020-17120-9
- H. Shang, T. Wang, J. Pei, Z. Jiang, D. Zhou et al., Design of a single-atom indiumδ+–N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem. Int. Ed. 59, 22465–22469 (2020). https://doi.org/10.1002/anie.202010903
- L. Li, A. Ozden, S. Guo, A.D.A.F.P. Garci, C. Wang et al., Stable active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat. Commun. 12, 5223 (2021). https://doi.org/10.1038/s41467-021-25573-9
- W. Wang, Z. Wang, R. Yang, J. Duan, Y. Liu et al., In Situ phase separation into coupled interfaces for promoting CO2 electroreduction to formate over a wide potential window. Angew. Chem. Int. Ed. 60, 22940–22947 (2021). https://doi.org/10.1002/anie.202110000
- Y. Chen, M.W. Kanan, Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 134, 1986–1989 (2012). https://doi.org/10.1021/ja2108799
- W. Luc, C. Collins, S. Wang, H. Xin, K. He et al., Ag–Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J. Am. Chem. Soc. 139, 1885–1893 (2017). https://doi.org/10.1021/jacs.6b10435
- K. Ye, Z. Zhou, J. Shao, L. Lin, D. Gao et al., In situ reconstruction of a hierarchical Sn–Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem. Int. Ed. 59, 4814–4821 (2020). https://doi.org/10.1002/anie.201916538
- H. Liu, B. Li, Z. Liu, Z. Liang, H. Chuai et al., Ceria-mediated dynamic Sn0/Snδ+ redox cycle for CO2 electroreduction. ACS Catal. 13, 5033–5042 (2023). https://doi.org/10.1021/acscatal.2c06135
- Y. Jiang, J. Shan, P. Wang, L. Huang, Y. Zheng et al., Stabilizing oxidation state of SnO2 for highly selective CO2 electroreduction to formate at large current densities. ACS Catal. 13, 3101–3108 (2023). https://doi.org/10.1021/acscatal.3c00123
- M. Chen, S. Wan, L. Zhong, D. Liu, H. Yang et al., Dynamic restructuring of Cu-Doped SnS2 nanoflowers for highly selective electrochemical CO2 reduction to formate. Angew. Chem. Int. Ed. 60, 26233–26237 (2021). https://doi.org/10.1002/ange.202111905
- C. Chai, B. Liu, K. Liu, P. Li, J. Fu et al., Heteroatoms induce localization of the electric field and promote a wide potential-window selectivity towards CO in the CO2 electroreduction. Angew. Chem. Int. Ed. 61, e202212640 (2022). https://doi.org/10.1002/anie.202212640
- T. Wang, J. Chen, X. Ren, J. Zhang, J. Ding et al., Halogen-incorporated Sn catalysts for selective electrochemical CO2 reduction to formate. Angew. Chem. Int. Ed. 62, e202211174 (2023). https://doi.org/10.1002/anie.202211174
- S. Yan, C. Peng, C. Yang, Y. Chen, J. Zhang et al., Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO2. Angew. Chem. Int. Ed. 60, 25741–25745 (2021). https://doi.org/10.1002/ange.202111351
- M. Yu, G.H. Moon, R.G. Castillo, S. DeBeer, C. Weidenthaler et al., Dual role of silver moieties coupled with ordered mesoporous cobalt oxide towards electrocatalytic oxygen evolution reaction. Angew. Chem. Int. Ed. 59, 16544–16552 (2020). https://doi.org/10.1002/ange.202003801
- Q. Chen, K. Liu, Y. Zhou, X. Wang, K. Wu et al., Ordered Ag nanoneedle arrays with enhanced electrocatalytic CO2 reduction via structure-induced inhibition of hydrogen evolution. Nano Lett. 22, 6276–6284 (2022). https://doi.org/10.1021/acs.nanolett.2c01853
- S.A. Chala, M.C. Tsai, W.N. Su, K.B. Ibrahim, B. Thirumalraj et al., Hierarchical 3D architectured Ag nanowires shelled with NiMn-layered double hydroxide as an efficient bifunctional oxygen electrocatalyst. ACS Nano 14, 1770–1782 (2020). https://doi.org/10.1021/acsnano.9b07487
- Z. Zhang, X. Li, C. Zhong, N. Zhao, Y. Deng et al., Spontaneous synthesis of silver-nanop-decorated transition-metal hydroxides for enhanced oxygen evolution reaction. Angew. Chem. Int. Ed. 59, 7245–7250 (2020). https://doi.org/10.1002/anie.202001703
- R. Gao, Z. Yang, L. Zheng, L. Gu, L. Liu et al., Enhancing the catalytic activity of Co3O4 for Li–O2 batteries through the synergy of surface/interface/doping engineering. ACS Catal. 8, 1955–1963 (2018). https://doi.org/10.1021/acscatal.7b03566
- H. Wu, F. Huang, J. Peng, Y. Cao, High-efficiency electron injection cathode of Au for polymer light-emitting devices. Org. Electron. 6, 118–128 (2005). https://doi.org/10.1016/j.orgel.2005.03.009
- A.W. Dweydari, C.H.B. Mee, Work function measurements on (100) and (110) surfaces of silver. Phys. Status Solidi 27, 223–230 (1975). https://doi.org/10.1002/pssa.2210270126
- Z. Yu, Z. Yang, Z. Ni, Y. Shao, B. Chen et al., Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy 5, 657–665 (2020). https://doi.org/10.1038/s41560-020-0657-y
- H. Yang, Q. Lin, C. Zhang, X. Yu, Z. Cheng et al., Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 11, 593 (2020). https://doi.org/10.1038/s41467-020-14402-0
- S. Liu, X.F. Lu, J. Xiao, X. Wang, X.W.D. Lou, Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem. Int. Ed. 58, 13828–13833 (2019). https://doi.org/10.1002/ange.201907674
- P. Zhu, H. Wang, High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat. Catal. 4, 943–951 (2021). https://doi.org/10.1038/s41929-021-00694-y
- A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
- L. Fan, S. Wei, S. Li, Q. Li, Y. Lu, Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8, 1702657 (2018). https://doi.org/10.1002/aenm.201702657
- N. Han, Y. Wang, J. Deng, J. Zhou, Y. Wu et al., Self-templated synthesis of hierarchical mesoporous SnO2 nanosheets for selective CO2 reduction. J. Mater. Chem. A 7, 1267–1272 (2019). https://doi.org/10.1039/C8TA10959A
- G. Kresse, J. Furthmüller, J. Ab initio molecular dynamics for liquid metals. Comp. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1103/PhysRevB.47.558
- G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/PhysRevB.47.558
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- L. Zhang, W. Cai, N. Bao, H. Yang, Implanting an electron donor to enlarge the d-p hybridization of high-entropy (oxy)hydroxide: a novel design to boost oxygen evolution. Adv. Mater. 34, e2110511 (2022). https://doi.org/10.1002/adma.202110511
- P. Wang, M. Qiao, Q. Shao, Y. Pi, X. Zhu et al., Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 9, 4933 (2018). https://doi.org/10.1038/s41467-018-07419-z
- Q. Wang, K. Liu, K. Hu, C. Cai, H. Li et al., Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO. Nat. Commun. 13, 6082 (2022). https://doi.org/10.1038/s41467-022-33692-0
- Y. Wang, C. Wang, Y. Wei, F. Wei, L. Kong et al., Efficient and selective electroreduction of CO2 to HCOOH over Bismuth-based bromide perovskites in acidic electrolytes. Chem. Eur. J. 28, e202201832 (2022). https://doi.org/10.1002/chem.202201832
- J. Hao, Z. Zhuang, J. Hao, K. Cao, Y. Hu et al., Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 16, 3251–3263 (2022). https://doi.org/10.1021/acsnano.1c11145
- L. Fan, C. Xia, P. Zhu, Y. Lu, H. Wang, Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020). https://doi.org/10.1038/s41467-020-17403-1
References
J. Ma, X. Xiong, D. Wu, Y. Wang, C. Ban et al., Band position-independent piezo-electrocatalysis for ultrahigh CO2 conversion. Adv. Mater. 35, 2300027 (2023). https://doi.org/10.1002/adma.202300027
B. Yang, K. Liu, H. Li, C. Lui, J. Fu et al., Accelerating CO2 electroreduction to multicarbon products via synergistic electric–thermal field on copper nanoneedles. J. Am. Chem. Soc. 144, 3039–3049 (2022). https://doi.org/10.1021/jacs.1c11253
Q. Wang, M. Dai, H. Li, Y. Lu, T. Chan et al., Asymmetric coordination induces electron localization at ca sites for robust CO2 electroreduction to CO. Adv. Mater. 35, 2300695 (2022). https://doi.org/10.1002/adma.202300695
H. Shin, K.U. Hansen, F. Jiao, Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021). https://doi.org/10.1038/s41893-021-00739-x
J. Fan, X. Zhao, X. Mao, J. Xu, N. Han et al., Large-area vertically aligned bismuthene nanosheet arrays from galvanic replacement reaction for efficient electrochemical CO2 conversion. Adv. Mater. 33, e2100910 (2021). https://doi.org/10.1002/adma.202100910
M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang et al., Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020). https://doi.org/10.1038/s41586-020-2242-8
F.P. García de Arquer, C.T. Dinh, A. Ozden, J. Wicks, C. McCallum et al., CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020). https://doi.org/10.1126/science.aay4217
C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. Liang et al., Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019). https://doi.org/10.1038/s41560-019-0451-x
M. Zhang, S. Zhou, W. Wei, D.-D. Ma, S.-G. Han et al., Few-atom-layer metallene quantum dots toward CO2 electroreduction at ampere-level current density and Zn-CO2 battery. Chem Catal. 2, 3528–3545 (2022). https://doi.org/10.1016/j.checat.2022.10.001
M. Zhang, W. Wei, S. Zhou, D.-D. Ma, A. Cao et al., Engineering a conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability. Energy Environ. Sci. 14, 4998–5008 (2021). https://doi.org/10.1039/D1EE01495A
Y. Shi, Y. Ji, J. Long, Y. Liang, Y. Liu et al., Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nat. Commun. 11, 3415 (2020). https://doi.org/10.1038/s41467-020-17120-9
H. Shang, T. Wang, J. Pei, Z. Jiang, D. Zhou et al., Design of a single-atom indiumδ+–N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem. Int. Ed. 59, 22465–22469 (2020). https://doi.org/10.1002/anie.202010903
L. Li, A. Ozden, S. Guo, A.D.A.F.P. Garci, C. Wang et al., Stable active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat. Commun. 12, 5223 (2021). https://doi.org/10.1038/s41467-021-25573-9
W. Wang, Z. Wang, R. Yang, J. Duan, Y. Liu et al., In Situ phase separation into coupled interfaces for promoting CO2 electroreduction to formate over a wide potential window. Angew. Chem. Int. Ed. 60, 22940–22947 (2021). https://doi.org/10.1002/anie.202110000
Y. Chen, M.W. Kanan, Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 134, 1986–1989 (2012). https://doi.org/10.1021/ja2108799
W. Luc, C. Collins, S. Wang, H. Xin, K. He et al., Ag–Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J. Am. Chem. Soc. 139, 1885–1893 (2017). https://doi.org/10.1021/jacs.6b10435
K. Ye, Z. Zhou, J. Shao, L. Lin, D. Gao et al., In situ reconstruction of a hierarchical Sn–Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem. Int. Ed. 59, 4814–4821 (2020). https://doi.org/10.1002/anie.201916538
H. Liu, B. Li, Z. Liu, Z. Liang, H. Chuai et al., Ceria-mediated dynamic Sn0/Snδ+ redox cycle for CO2 electroreduction. ACS Catal. 13, 5033–5042 (2023). https://doi.org/10.1021/acscatal.2c06135
Y. Jiang, J. Shan, P. Wang, L. Huang, Y. Zheng et al., Stabilizing oxidation state of SnO2 for highly selective CO2 electroreduction to formate at large current densities. ACS Catal. 13, 3101–3108 (2023). https://doi.org/10.1021/acscatal.3c00123
M. Chen, S. Wan, L. Zhong, D. Liu, H. Yang et al., Dynamic restructuring of Cu-Doped SnS2 nanoflowers for highly selective electrochemical CO2 reduction to formate. Angew. Chem. Int. Ed. 60, 26233–26237 (2021). https://doi.org/10.1002/ange.202111905
C. Chai, B. Liu, K. Liu, P. Li, J. Fu et al., Heteroatoms induce localization of the electric field and promote a wide potential-window selectivity towards CO in the CO2 electroreduction. Angew. Chem. Int. Ed. 61, e202212640 (2022). https://doi.org/10.1002/anie.202212640
T. Wang, J. Chen, X. Ren, J. Zhang, J. Ding et al., Halogen-incorporated Sn catalysts for selective electrochemical CO2 reduction to formate. Angew. Chem. Int. Ed. 62, e202211174 (2023). https://doi.org/10.1002/anie.202211174
S. Yan, C. Peng, C. Yang, Y. Chen, J. Zhang et al., Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO2. Angew. Chem. Int. Ed. 60, 25741–25745 (2021). https://doi.org/10.1002/ange.202111351
M. Yu, G.H. Moon, R.G. Castillo, S. DeBeer, C. Weidenthaler et al., Dual role of silver moieties coupled with ordered mesoporous cobalt oxide towards electrocatalytic oxygen evolution reaction. Angew. Chem. Int. Ed. 59, 16544–16552 (2020). https://doi.org/10.1002/ange.202003801
Q. Chen, K. Liu, Y. Zhou, X. Wang, K. Wu et al., Ordered Ag nanoneedle arrays with enhanced electrocatalytic CO2 reduction via structure-induced inhibition of hydrogen evolution. Nano Lett. 22, 6276–6284 (2022). https://doi.org/10.1021/acs.nanolett.2c01853
S.A. Chala, M.C. Tsai, W.N. Su, K.B. Ibrahim, B. Thirumalraj et al., Hierarchical 3D architectured Ag nanowires shelled with NiMn-layered double hydroxide as an efficient bifunctional oxygen electrocatalyst. ACS Nano 14, 1770–1782 (2020). https://doi.org/10.1021/acsnano.9b07487
Z. Zhang, X. Li, C. Zhong, N. Zhao, Y. Deng et al., Spontaneous synthesis of silver-nanop-decorated transition-metal hydroxides for enhanced oxygen evolution reaction. Angew. Chem. Int. Ed. 59, 7245–7250 (2020). https://doi.org/10.1002/anie.202001703
R. Gao, Z. Yang, L. Zheng, L. Gu, L. Liu et al., Enhancing the catalytic activity of Co3O4 for Li–O2 batteries through the synergy of surface/interface/doping engineering. ACS Catal. 8, 1955–1963 (2018). https://doi.org/10.1021/acscatal.7b03566
H. Wu, F. Huang, J. Peng, Y. Cao, High-efficiency electron injection cathode of Au for polymer light-emitting devices. Org. Electron. 6, 118–128 (2005). https://doi.org/10.1016/j.orgel.2005.03.009
A.W. Dweydari, C.H.B. Mee, Work function measurements on (100) and (110) surfaces of silver. Phys. Status Solidi 27, 223–230 (1975). https://doi.org/10.1002/pssa.2210270126
Z. Yu, Z. Yang, Z. Ni, Y. Shao, B. Chen et al., Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy 5, 657–665 (2020). https://doi.org/10.1038/s41560-020-0657-y
H. Yang, Q. Lin, C. Zhang, X. Yu, Z. Cheng et al., Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 11, 593 (2020). https://doi.org/10.1038/s41467-020-14402-0
S. Liu, X.F. Lu, J. Xiao, X. Wang, X.W.D. Lou, Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem. Int. Ed. 58, 13828–13833 (2019). https://doi.org/10.1002/ange.201907674
P. Zhu, H. Wang, High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat. Catal. 4, 943–951 (2021). https://doi.org/10.1038/s41929-021-00694-y
A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
L. Fan, S. Wei, S. Li, Q. Li, Y. Lu, Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8, 1702657 (2018). https://doi.org/10.1002/aenm.201702657
N. Han, Y. Wang, J. Deng, J. Zhou, Y. Wu et al., Self-templated synthesis of hierarchical mesoporous SnO2 nanosheets for selective CO2 reduction. J. Mater. Chem. A 7, 1267–1272 (2019). https://doi.org/10.1039/C8TA10959A
G. Kresse, J. Furthmüller, J. Ab initio molecular dynamics for liquid metals. Comp. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1103/PhysRevB.47.558
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/PhysRevB.47.558
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
L. Zhang, W. Cai, N. Bao, H. Yang, Implanting an electron donor to enlarge the d-p hybridization of high-entropy (oxy)hydroxide: a novel design to boost oxygen evolution. Adv. Mater. 34, e2110511 (2022). https://doi.org/10.1002/adma.202110511
P. Wang, M. Qiao, Q. Shao, Y. Pi, X. Zhu et al., Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 9, 4933 (2018). https://doi.org/10.1038/s41467-018-07419-z
Q. Wang, K. Liu, K. Hu, C. Cai, H. Li et al., Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO. Nat. Commun. 13, 6082 (2022). https://doi.org/10.1038/s41467-022-33692-0
Y. Wang, C. Wang, Y. Wei, F. Wei, L. Kong et al., Efficient and selective electroreduction of CO2 to HCOOH over Bismuth-based bromide perovskites in acidic electrolytes. Chem. Eur. J. 28, e202201832 (2022). https://doi.org/10.1002/chem.202201832
J. Hao, Z. Zhuang, J. Hao, K. Cao, Y. Hu et al., Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 16, 3251–3263 (2022). https://doi.org/10.1021/acsnano.1c11145
L. Fan, C. Xia, P. Zhu, Y. Lu, H. Wang, Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020). https://doi.org/10.1038/s41467-020-17403-1