Chemical Scissors Tailored Nano-Tellurium with High-Entropy Morphology for Efficient Foam-Hydrogel-Based Solar Photothermal Evaporators
Corresponding Author: Zhengchun Peng
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 47
Abstract
The development of tellurium (Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns. However, the nanosized Te (nano-Te) materials reported to date suffer from a series of drawbacks, including limited light absorption and a lack of surface structures. Herein, we report the preparation of nano-Te by electrochemical exfoliation using an electrolyzable room-temperature ionic liquid. Anions, cations, and their corresponding electrolytic products acting as chemical scissors can precisely intercalate and functionalize bulk Te. The resulting nano-Te has high morphological entropy, rich surface functional groups, and broad light absorption. We also constructed foam hydrogels based on poly (vinyl alcohol)/nano-Te, which achieved an evaporation rate and energy efficiency of 4.11 kg m−2 h−1 and 128%, respectively, under 1 sun irradiation. Furthermore, the evaporation rate was maintained in the range 2.5–3.0 kg m−2 h−1 outdoors under 0.5–1.0 sun, providing highly efficient evaporation under low light conditions.
Highlights:
1 Precise exfoliation and modification of nano-Tellurium was realized by adopting a room-temperature ionic liquid as the electrolyte.
2 Nano-Tellurium with high-entropy morphology can offer greater solar absorption and more kinds of surface chemical groups, giving rise to superior photothermal properties.
3 Nano-Tellurium-poly(vinyl alcohol)-based photothermal foam hydrogels, with high compressibility, excellent water transport rate and low evaporation enthalpy of water, combined with a new heat-supply model, achieve an evaporation rate of 4.11 kg m−2 h−1 with energy efficiencies up to 128% under 1 sun irradiation, which are the highest values for semiconductor-based nanocomposites reported so far.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. He, Y. Yang, J.W. Liu, S.H. Yu, Emerging tellurium nanostructures: controllable synthesis and their applications. Chem. Soc. Rev. 46(10), 2732–2753 (2017). https://doi.org/10.1039/C7CS00013H
- Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang et al., Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1(4), 228–236 (2018). https://doi.org/10.1038/s41928-018-0058-4
- W. Wu, G. Qiu, Y. Wang, R. Wang, P. Ye, Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 47(19), 7203–7212 (2018). https://doi.org/10.1039/C8CS00598B
- C. Xing, P. Yin, Z. Peng, H. Zhang, Engineering mono-chalcogen nanomaterials for omnipotent anticancer applications: progress and challenges. Adv. Healthc. Mater. 9(14), e2000273 (2020). https://doi.org/10.1002/adhm.202000273
- G. Qiu, S. Huang, M. Segovia, P.K. Venuthurumilli, Y. Wang et al., Thermoelectric performance of 2d tellurium with accumulation contacts. Nano Lett. 19(3), 1955–1962 (2019). https://doi.org/10.1021/acs.nanolett.8b05144
- S. Lin, W. Li, Z. Chen, J. Shen, B. Ge et al., Tellurium as a high-performance elemental thermoelectric. Nat. Commun. 7(1), 10287 (2016). https://doi.org/10.1038/ncomms10287
- Z. Shi, R. Cao, K. Khan, A.K. Tareen, X. Liu et al., Two-dimensional tellurium: progress, challenges, and prospects. Nano-Micro Lett. 12(1), 99 (2020). https://doi.org/10.1007/s40820-020-00427-z
- L. Li, J. Kim, C. Jin, G.J. Ye, D.Y. Qiu et al., Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 12(1), 21–25 (2017). https://doi.org/10.1038/nnano.2016.171
- Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu et al., Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 29(42), 1703811 (2017). https://doi.org/10.1002/adma.201703811
- Z. Sun, H. Xie, S. Tang, X.-F. Yu, Z. Guo et al., Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. 54(39), 11526–11530 (2015). https://doi.org/10.1002/anie.201506154
- M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang et al., Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. 115(3), 501–506 (2018). https://doi.org/10.1073/pnas.1714421115
- Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang et al., From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25(45), 6996–7002 (2015). https://doi.org/10.1002/adfm.201502902
- C. Ma, J. Yan, Y. Huang, C. Wang, G. Yang, The optical duality of tellurium nanops for broadband solar energy harvesting and efficient photothermal conversion. Sci. Adv. 4(8), eaas9894 (2018). https://doi.org/10.1126/sciadv.aas9894
- Z. Gao, F. Tao, J. Ren, Unusually low thermal conductivity of atomically thin 2d tellurium. Nanoscale 10(27), 12997–13003 (2018). https://doi.org/10.1039/c8nr01649f
- X. Wu, Q. Tao, D. Li, Q. Wang, X. Zhang et al., Unprecedently low thermal conductivity of unique tellurium nanoribbons. Nano Res. 14(12), 4725–4731 (2021). https://doi.org/10.1007/s12274-021-3414-7
- S. Huang, M. Segovia, X. Yang, Y.R. Koh, Y. Wang et al., Anisotropic thermal conductivity in 2D tellurium. 2D Mater. 7(1), 015008 (2020). https://doi.org/10.1088/2053-1583/ab4eee
- C. Xing, D. Huang, S. Chen, Q. Huang, C. Zhou et al., Engineering lateral heterojunction of selenium-coated tellurium nanomaterials toward highly efficient solar desalination. Adv. Sci. 6(19), 1900531 (2019). https://doi.org/10.1002/advs.201900531
- H. Hu, Y. Zeng, S. Gao, R. Wang, J. Zhao et al., Fast solution method to prepare hexagonal tellurium nanosheets for optoelectronic and ultrafast photonic applications. J. Mater. Chem. C 9(2), 508–516 (2021). https://doi.org/10.1039/D0TC04106H
- W. Huang, L. He, J. Ouyang, Q. Chen, C. Liu et al., Triangle-shaped tellurium nanostars potentiate radiotherapy by boosting checkpoint blockade immunotherapy. Matter 3(5), 1725–1753 (2020). https://doi.org/10.1016/j.matt.2020.08.027
- S. Chen, C. Xing, D. Huang, C. Zhou, B. Ding et al., Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. Sci. Adv. 6(15), eaay6825 (2020). https://doi.org/10.1126/sciadv.aay6825
- K. Wang, Y. Yang, H.W. Liang, J.W. Liu, S.H. Yu, First sub-kilogram-scale synthesis of high quality ultrathin tellurium nanowires. Mater. Horiz. 1(3), 338–343 (2014). https://doi.org/10.1039/C4MH00004H
- K. Wang, X. Zhang, I.M. Kislyakov, N. Dong, S. Zhang et al., Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat. Commun. 10(1), 3985 (2019). https://doi.org/10.1038/s41467-019-11898-z
- Y. Choi, T.J. Park, D.C. Lee, S.Y. Lee, Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials. Proc. Natl. Acad. Sci. 115(23), 5944–5949 (2018). https://doi.org/10.1073/pnas.1804543115
- Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li et al., Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 28(16), 1705833 (2018). https://doi.org/10.1002/adfm.201705833
- Y. Lin, Y. Wu, R. Wang, G. Tao, P.F. Luo et al., Two-dimensional tellurium nanosheets for photoacoustic imaging-guided photodynamic therapy. Chem. Commun. 54(62), 8579–8582 (2018). https://doi.org/10.1039/C8CC04653K
- J. Guo, J. Zhao, D. Huang, Y. Wang, F. Zhang et al., Two-dimensional tellurium–polymer membrane for ultrafast photonics. Nanoscale 11(13), 6235–6242 (2019). https://doi.org/10.1039/C9NR00736A
- Q. Wang, M. Safdar, K. Xu, M. Mirza, Z. Wang et al., Van der waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8(7), 7497–7505 (2014). https://doi.org/10.1021/nn5028104
- T. Yang, H. Ke, Q. Wang, Y.A. Tang, Y. Deng et al., Bifunctional tellurium nanodots for photo-induced synergistic cancer therapy. ACS Nano 11(10), 10012–10024 (2017). https://doi.org/10.1021/acsnano.7b04230
- J.W. Liu, F. Chen, M. Zhang, H. Qi, C.L. Zhang et al., Rapid microwave-assisted synthesis of uniform ultralong Te nanowires, optical property, and chemical stability. Langmuir 26(13), 11372–11377 (2010). https://doi.org/10.1021/la100772n
- N. Yu, J. Li, Z. Wang, S. Yang, Z. Liu et al., Blue Te nanoneedles with strong NIR photothermal and laser-enhanced anticancer effects as “all-in-one” nanoagents for synergistic thermo-chemotherapy of tumors. Adv. Healthc. Mater. 7(21), 1800643 (2018). https://doi.org/10.1002/adhm.201800643
- M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12(3), 841–864 (2019). https://doi.org/10.1039/C8EE01146J
- Y. Guo, K. Xu, C. Wu, J. Zhao, Y. Xie, Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 44(3), 637–646 (2015). https://doi.org/10.1039/C4CS00302K
- X. Ming, A. Guo, G. Wang, X. Wang, Two-dimensional defective tungsten oxide nanosheets as high performance photo-absorbers for efficient solar steam generation. Sol. Energy Mater. Sol. Cells 185, 333–341 (2018). https://doi.org/10.1016/j.solmat.2018.05.049
- A. Ambrosi, M. Pumera, Exfoliation of layered materials using electrochemistry. Chem. Soc. Rev. 47(19), 7213–7224 (2018). https://doi.org/10.1039/C7CS00811B
- S. Yang, P. Zhang, A.S. Nia, X. Feng, Emerging 2D materials produced via electrochemistry. Adv. Mater. 32(10), 1907857 (2020). https://doi.org/10.1002/adma.201907857
- K. Parvez, Z.S. Wu, R. Li, X. Liu, R. Graf et al., Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136(16), 6083–6091 (2014). https://doi.org/10.1021/ja5017156
- J. Lu, J.-X. Yang, J. Wang, A. Lim, S. Wang et al., One-pot synthesis of fluorescent carbon nanoribbons, nanops, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8), 2367–2375 (2009). https://doi.org/10.1021/nn900546b
- A.T. Najafabadi, E.L. Gyenge, High-yield graphene production by electrochemical exfoliation of graphite: novel ionic liquid (IL)–acetonitrile electrolyte with low IL content. Carbon 71, 58–69 (2014). https://doi.org/10.1016/j.carbon.2014.01.012
- N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang et al., One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18(10), 1518–1525 (2008). https://doi.org/10.1002/adfm.200700797
- A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim et al., Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv. Funct. Mater. 24(20), 3021–3026 (2014). https://doi.org/10.1002/adfm.201303441
- X. Tang, H. Chen, J.S. Ponraj, S.C. Dhanabalan, Q. Xiao et al., Fluorination-enhanced ambient stability and electronic tolerance of black phosphorus quantum dots. Adv. Sci. 5(9), 1800420 (2018). https://doi.org/10.1002/advs.201800420
- X. Tang, W. Liang, J. Zhao, Z. Li, M. Qiu et al., Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 13(47), 1702739 (2017). https://doi.org/10.1002/smll.201702739
- P. Howlett, E. Izgorodina, M. Forsyth, D. MacFarlane, Electrochemistry at negative potentials in bis(trifluoromethanesulfonyl)amide ionic liquids. Z. Phys. Chem. 220, 1483–1498 (2006). https://doi.org/10.1524/zpch.2006.220.10.1483
- M.C. Kroon, W. Buijs, C.J. Peters, G.J. Witkamp, Decomposition of ionic liquids in electrochemical processing. Green Chem. 8(3), 241–245 (2006). https://doi.org/10.1039/B512724F
- E. Markevich, R. Sharabi, V. Borgel, H. Gottlieb, G. Salitra et al., In situ FTIR study of the decomposition of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ionic liquid during cathodic polarization of lithium and graphite electrodes. Electrochim. Acta 55(8), 2687–2696 (2010). https://doi.org/10.1016/j.electacta.2009.12.030
- G.H. Lane, Electrochemical reduction mechanisms and stabilities of some cation types used in ionic liquids and other organic salts. Electrochim. Acta 83, 513–528 (2012). https://doi.org/10.1016/j.electacta.2012.08.046
- C.L. Klug, N.J. Bridges, A.E. Visser, S.L. Crump, E. Villa-Aleman, Electrochemical degradation of butyltrimethylammonium bis(trifluoromethylsulfonyl)imide for lithium battery applications. New J. Chem. 38(8), 3879–3884 (2014). https://doi.org/10.1039/C4NJ00355A
- R. Michez, T. Doneux, C. Buess-Herman, M. Luhmer, NMR study of the reductive decomposition of [BMIm][NTf2] at gold electrodes and indirect electrochemical conversion of CO2. ChemPhysChem 18(16), 2208–2216 (2017). https://doi.org/10.1002/cphc.201700421
- D. Alwast, J. Schnaidt, K. Hancock, G. Yetis, R.J. Behm, Effect of Li+ and Mg2+ on the electrochemical decomposition of the ionic liquid 1-Butyl-1- methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and related electrolytes. ChemElectroChem 6(12), 3009–3019 (2019). https://doi.org/10.1002/celc.201900371
- L. Xiao, K.E. Johnson, Electrochemistry of 1-butyl-3-methyl-1h-imidazolium tetrafluoroborate ionic liquid. J. Electrochem. Soc. 150(6), E307 (2003). https://doi.org/10.1149/1.1568740
- M. Forsyth, W.C. Neil, P.C. Howlett, D.R. Macfarlane, B.R. Hinton et al., New insights into the fundamental chemical nature of ionic liquid film formation on magnesium alloy surfaces. ACS Appl. Mater. Interfaces 1(5), 1045–1052 (2009). https://doi.org/10.1021/am900023j
- A.S. Ismail, S.Z. El Abedin, O. Höfft, F. Endres, Unexpected decomposition of the bis (trifluoromethylsulfonyl) amide anion during electrochemical copper oxidation in an ionic liquid. Electrochem. Commun. 12(7), 909–911 (2010). https://doi.org/10.1016/j.elecom.2010.04.018
- P.C. Howlett, N. Brack, A.F. Hollenkamp, M. Forsyth, D.R. MacFarlane, Characterization of the lithium surface in N-methyl-N-alkylpyrrolidinium bis(trifluoromethanesulfonyl)amide room-temperature ionic liquid electrolytes. J. Electrochem. Soc. 153(3), A595 (2006). https://doi.org/10.1149/1.2164726
- Q. Xiao, X.-Y. Li, Z.-Q. Zhang, C.-X. Hu, G.-H. Dun et al., Facile fabrication of highly uniform tellurium nanorods for self-powered flexible optoelectronics. Adv. Electron. Mater. 6(7), 2000240 (2020). https://doi.org/10.1002/aelm.202000240
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. PhRvB 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- P.E. Blöchl, Projector augmented-wave method. PhRvB 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64(4), 1045–1097 (1992). https://doi.org/10.1103/RevModPhys.64.1045
- J. Moellmann, S. Grimme, Dft-d3 study of some molecular crystals. J. Phys. Chem. C 118(14), 7615–7621 (2014). https://doi.org/10.1021/jp501237c
- W.W. Gärtner, Photothermal effect in semiconductors. Phys. Rev. 122(2), 419–424 (1961). https://doi.org/10.1103/PhysRev.122.419
- S.I. Ibrahim, A.H. Ali, S.A. Hafidh, M.T. Chaichan, H.A. Kazem et al., Stability and thermal conductivity of different nano-composite material prepared for thermal energy storage applications. South Afr. J. Chem. Eng. 39, 72–89 (2022). https://doi.org/10.1016/j.sajce.2021.11.010
- Convective Heat Transfer. Engineering ToolBox, (2003). [online]. https://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html
- X. Wang, R. Guo, Q. Jian, G. Peng, Y. Yue et al., Thermal characterization of convective heat transfer in microwires based on modified steady state "hot wire" method. arXiv:1907.10751 (2019). https://doi.org/10.48550/arXiv.1907.10751
- N. Dewan, K. Sreenivas, V. Gupta, Properties of crystalline γ-TeO2 thin film. J. Cryst. Growth 305(1), 237–241 (2007). https://doi.org/10.1016/j.jcrysgro.2007.03.054
- H.H. Wei, J. Lin, W.H. Huang, Z.B. Feng, D.-W. Li, Preparation of TeO2 based thin films by nonhydrolytic sol–gel process. Mater. Sci. Eng. B 164(1), 51–59 (2009). https://doi.org/10.1016/j.mseb.2009.07.001
- B. Qin, Y. Bai, Y. Zhou, J. Liu, X. Xie et al., Structure and characterization of TeO2 nanops prepared in acid medium. Mater. Lett. 63(22), 1949–1951 (2009). https://doi.org/10.1016/j.matlet.2009.06.018
- C.W. Liew, S. Ramesh, R. Durairaj, Impact of low viscosity ionic liquid on PMMA-PVC-LiTFSI polymer electrolytes based on AC -impedance, dielectric behavior, and HATR-FTIR characteristics. J. Mater. Res. 27(23), 2996–3004 (2012). https://doi.org/10.1557/jmr.2012.343
- T. Moumene, E.H. Belarbi, B. Haddad, D. Villemin, O. Abbas et al., Vibrational spectroscopic study of ionic liquids: comparison between monocationic and dicationic imidazolium ionic liquids. J. Molecular Struct. 1065–1066, 86–92 (2014). https://doi.org/10.1016/j.molstruc.2014.02.034
- W.Q. Feng, Y.H. Lu, Y. Chen, Y.W. Lu, T. Yang, Thermal stability of imidazolium-based ionic liquids investigated by TG and FTIR techniques. J. Therm. Anal. Calorim. 125(1), 143–154 (2016). https://doi.org/10.1007/s10973-016-5267-3
- S.A. Katsyuba, E.E. Zvereva, A. Vidiš, P.J. Dyson, Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids. J. Phys. Chem. A 111(2), 352–370 (2007). https://doi.org/10.1021/jp064610i
- J. Kiefer, J. Fries, A. Leipertz, Experimental vibrational study of imidazolium-based ionic liquids: Raman and infrared spectra of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-ethyl-3-methylimidazolium ethylsulfate. Appl. Spectrosc. 61(12), 1306–1311 (2007). https://doi.org/10.1366/000370207783292000
- S. Men, K.R.J. Lovelock, P. Licence, X-ray photoelectron spectroscopy of pyrrolidinium-based ionic liquids: cation–anion interactions and a comparison to imidazolium-based analogues. Phys. Chem. Chem. Phys. 13(33), 15244–15255 (2011). https://doi.org/10.1039/C1CP21053J
- A. Rezaei, L. Hadian-Dehkordi, H. Samadian, M. Jaymand, H. Targhan et al., Pseudohomogeneous metallic catalyst based on tungstate-decorated amphiphilic carbon quantum dots for selective oxidative scission of alkenes to aldehyde. Sci. Rep. 11(1), 4411 (2021). https://doi.org/10.1038/s41598-021-83863-0
- Z. Dong, L. Zhao, Covalently bonded ionic liquid onto cellulose for fast adsorption and efficient separation of Cr(VI): batch, column and mechanism investigation. Carbohydr. Polym. 189, 190–197 (2018). https://doi.org/10.1016/j.carbpol.2018.02.038
- Y. Tang, Z. Wang, X. Chi, M.D. Sevilla, X. Zeng, In situ generated platinum catalyst for methanol oxidation via electrochemical oxidation of bis(trifluoromethylsulfonyl)imide anion in ionic liquids at anaerobic condition. J. Phys. Chem. C 120(2), 1004–1012 (2016). https://doi.org/10.1021/acs.jpcc.5b09777
- Y. Tang, L. Lin, A. Kumar, M. Guo, M. Sevilla et al., Hydrogen electrooxidation in ionic liquids catalyzed by the NTf(2) radical. J. Phys. Chem. C Nanomater. Interfaces 121(9), 5161–5167 (2017). https://doi.org/10.1021/acs.jpcc.7b00335
- N. DeVos, C. Maton, C.V. Stevens, Electrochemical stability of ionic liquids: general influences and degradation mechanisms. ChemElectroChem 1(8), 1258–1270 (2014). https://doi.org/10.1002/celc.201402086
- Q.X. Liu, S. Zein El Abedin, F. Endres, Electrodeposition of nanocrystalline aluminum: breakdown of imidazolium cations modifies the crystal size. J. Electrochem. Soc. 155(5), D357 (2008). https://doi.org/10.1149/1.2884369
- P.A. Hunt, C.R. Ashworth, R.P. Matthews, Hydrogen bonding in ionic liquids. Chem. Soc. Rev. 44(5), 1257–1288 (2015). https://doi.org/10.1039/C4CS00278D
- K. Dong, S. Zhang, J. Wang, Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions. Chem. Commun. 52(41), 6744–6764 (2016). https://doi.org/10.1039/C5CC10120D
- J. Kruusma, T. Käämbre, A. Tõnisoo, V. Kisand, K. Lust et al., The electrochemical behaviour of butyltrimethylammonium bis(trifluoromethylsulfonyl)imide at negatively polarised aluminium electrode studied by in situ soft X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry techniques. J. Solid State Electrochem. 26(12), 2805–2815 (2022). https://doi.org/10.1007/s10008-022-05281-0
- Y. Zhou, Y.Z. Zheng, T. Zhang, G. Deng, Z.W. Yu, Evidence that acetonitrile is sensitive to different interaction sites of ionic liquids as revealed by excess spectroscopy. ChemPhysChem 18(10), 1370–1375 (2017). https://doi.org/10.1002/cphc.201601376
- Y. Zhou, S. Gong, X. Xu, Z. Yu, J. Kiefer et al., The interactions between polar solvents (methanol, acetonitrile, dimethylsulfoxide) and the ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide. J. Mol. Liquids 299, 112159 (2020). https://doi.org/10.1016/j.molliq.2019.112159
- Y.Z. Zheng, N.N. Wang, J.J. Luo, Y. Zhou, Z.W. Yu, Hydrogen-bonding interactions between [BMIM][BF4] and acetonitrile. Phys. Chem. Chem. Phys. 15(41), 18055–18064 (2013). https://doi.org/10.1039/C3CP53356E
- Y. Lauw, M.D. Horne, T. Rodopoulos, V. Lockett, B. Akgun et al., Structure of [C4mpyr][NTf2] room-temperature ionic liquid at charged gold interfaces. Langmuir 28(19), 7374–7381 (2012). https://doi.org/10.1021/la3005757
- Y. Guo, L.S. de Vasconcelos, N. Manohar, J. Geng, K.P. Johnston, G. Yu, Highly elastic interconnected porous hydrogels through self-assembled templating for solar water purification. Angew. Chem. Int. Ed. 61(3), e202114074 (2022). https://doi.org/10.1002/anie.202114074
- C. Xing, Z. Li, S. Zhang, J. Bang, Z. Xie et al., Phase inversion-based foam hydrogels for highly efficient solar-powered interfacial desalination. Chem. Eng. J. 464, 142409 (2023). https://doi.org/10.1016/j.cej.2023.142409
- S. Sun, H. Li, M. Zhang, B. Sun, Y. Xie et al., A multifunctional asymmetric fabric for sustained electricity generation from multiple sources and simultaneous solar steam generation. Small (2023). https://doi.org/10.1002/smll.202303716
- S. Sun, Q. Tian, H.-Y. Mi, J. Li, X. Jing et al., Fabric-based all-weather-available photo-electro-thermal steam generator with high evaporation rate and salt resistance. Sci. China Mater. 65(9), 2479–2490 (2022). https://doi.org/10.1007/s40843-021-2010-1
- S. Sun, Y. Wang, B. Sun, F. Zhang, Q. Xu et al., Versatile janus composite nonwoven solar absorbers with salt resistance for efficient wastewater purification and desalination. ACS Appl. Mater. Interfaces 13(21), 24945–24956 (2021). https://doi.org/10.1021/acsami.1c05618
- S. Sun, B. Sun, Y. Wang, M. Fordjour Antwi-Afari, H.-Y. Mi et al., Carbon black and polydopamine modified non-woven fabric enabling efficient solar steam generation towards seawater desalination and wastewater purification. Sep. Purif. Technol. 278, 119621 (2021). https://doi.org/10.1016/j.seppur.2021.119621
- J. Ren, L. Chen, J. Gong, J. Qu, R. Niu, Hofmeister effect mediated hydrogel evaporator for simultaneous solar evaporation and thermoelectric power generation. Chem. Eng. J. 458, 141511 (2023). https://doi.org/10.1016/j.cej.2023.141511
- L. Chen, J. Ren, J. Gong, J. Qu, R. Niu, Cost-effective, scalable fabrication of self-floating xerogel foam for simultaneous photothermal water evaporation and thermoelectric power generation. Chem. Eng. J. 454, 140383 (2023). https://doi.org/10.1016/j.cej.2022.140383
- P. He, H. Lan, H. Bai, Y. Zhu, Z. Fan et al., Rational construction of “all-in-one” metal-organic framework for integrated solar steam generation and advanced oxidation process. Appl. Catal. B-Environ. 337, 123001 (2023). https://doi.org/10.1016/j.apcatb.2023.123001
References
Z. He, Y. Yang, J.W. Liu, S.H. Yu, Emerging tellurium nanostructures: controllable synthesis and their applications. Chem. Soc. Rev. 46(10), 2732–2753 (2017). https://doi.org/10.1039/C7CS00013H
Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang et al., Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1(4), 228–236 (2018). https://doi.org/10.1038/s41928-018-0058-4
W. Wu, G. Qiu, Y. Wang, R. Wang, P. Ye, Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 47(19), 7203–7212 (2018). https://doi.org/10.1039/C8CS00598B
C. Xing, P. Yin, Z. Peng, H. Zhang, Engineering mono-chalcogen nanomaterials for omnipotent anticancer applications: progress and challenges. Adv. Healthc. Mater. 9(14), e2000273 (2020). https://doi.org/10.1002/adhm.202000273
G. Qiu, S. Huang, M. Segovia, P.K. Venuthurumilli, Y. Wang et al., Thermoelectric performance of 2d tellurium with accumulation contacts. Nano Lett. 19(3), 1955–1962 (2019). https://doi.org/10.1021/acs.nanolett.8b05144
S. Lin, W. Li, Z. Chen, J. Shen, B. Ge et al., Tellurium as a high-performance elemental thermoelectric. Nat. Commun. 7(1), 10287 (2016). https://doi.org/10.1038/ncomms10287
Z. Shi, R. Cao, K. Khan, A.K. Tareen, X. Liu et al., Two-dimensional tellurium: progress, challenges, and prospects. Nano-Micro Lett. 12(1), 99 (2020). https://doi.org/10.1007/s40820-020-00427-z
L. Li, J. Kim, C. Jin, G.J. Ye, D.Y. Qiu et al., Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 12(1), 21–25 (2017). https://doi.org/10.1038/nnano.2016.171
Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu et al., Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 29(42), 1703811 (2017). https://doi.org/10.1002/adma.201703811
Z. Sun, H. Xie, S. Tang, X.-F. Yu, Z. Guo et al., Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. 54(39), 11526–11530 (2015). https://doi.org/10.1002/anie.201506154
M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang et al., Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. 115(3), 501–506 (2018). https://doi.org/10.1073/pnas.1714421115
Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang et al., From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25(45), 6996–7002 (2015). https://doi.org/10.1002/adfm.201502902
C. Ma, J. Yan, Y. Huang, C. Wang, G. Yang, The optical duality of tellurium nanops for broadband solar energy harvesting and efficient photothermal conversion. Sci. Adv. 4(8), eaas9894 (2018). https://doi.org/10.1126/sciadv.aas9894
Z. Gao, F. Tao, J. Ren, Unusually low thermal conductivity of atomically thin 2d tellurium. Nanoscale 10(27), 12997–13003 (2018). https://doi.org/10.1039/c8nr01649f
X. Wu, Q. Tao, D. Li, Q. Wang, X. Zhang et al., Unprecedently low thermal conductivity of unique tellurium nanoribbons. Nano Res. 14(12), 4725–4731 (2021). https://doi.org/10.1007/s12274-021-3414-7
S. Huang, M. Segovia, X. Yang, Y.R. Koh, Y. Wang et al., Anisotropic thermal conductivity in 2D tellurium. 2D Mater. 7(1), 015008 (2020). https://doi.org/10.1088/2053-1583/ab4eee
C. Xing, D. Huang, S. Chen, Q. Huang, C. Zhou et al., Engineering lateral heterojunction of selenium-coated tellurium nanomaterials toward highly efficient solar desalination. Adv. Sci. 6(19), 1900531 (2019). https://doi.org/10.1002/advs.201900531
H. Hu, Y. Zeng, S. Gao, R. Wang, J. Zhao et al., Fast solution method to prepare hexagonal tellurium nanosheets for optoelectronic and ultrafast photonic applications. J. Mater. Chem. C 9(2), 508–516 (2021). https://doi.org/10.1039/D0TC04106H
W. Huang, L. He, J. Ouyang, Q. Chen, C. Liu et al., Triangle-shaped tellurium nanostars potentiate radiotherapy by boosting checkpoint blockade immunotherapy. Matter 3(5), 1725–1753 (2020). https://doi.org/10.1016/j.matt.2020.08.027
S. Chen, C. Xing, D. Huang, C. Zhou, B. Ding et al., Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. Sci. Adv. 6(15), eaay6825 (2020). https://doi.org/10.1126/sciadv.aay6825
K. Wang, Y. Yang, H.W. Liang, J.W. Liu, S.H. Yu, First sub-kilogram-scale synthesis of high quality ultrathin tellurium nanowires. Mater. Horiz. 1(3), 338–343 (2014). https://doi.org/10.1039/C4MH00004H
K. Wang, X. Zhang, I.M. Kislyakov, N. Dong, S. Zhang et al., Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat. Commun. 10(1), 3985 (2019). https://doi.org/10.1038/s41467-019-11898-z
Y. Choi, T.J. Park, D.C. Lee, S.Y. Lee, Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials. Proc. Natl. Acad. Sci. 115(23), 5944–5949 (2018). https://doi.org/10.1073/pnas.1804543115
Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li et al., Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 28(16), 1705833 (2018). https://doi.org/10.1002/adfm.201705833
Y. Lin, Y. Wu, R. Wang, G. Tao, P.F. Luo et al., Two-dimensional tellurium nanosheets for photoacoustic imaging-guided photodynamic therapy. Chem. Commun. 54(62), 8579–8582 (2018). https://doi.org/10.1039/C8CC04653K
J. Guo, J. Zhao, D. Huang, Y. Wang, F. Zhang et al., Two-dimensional tellurium–polymer membrane for ultrafast photonics. Nanoscale 11(13), 6235–6242 (2019). https://doi.org/10.1039/C9NR00736A
Q. Wang, M. Safdar, K. Xu, M. Mirza, Z. Wang et al., Van der waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8(7), 7497–7505 (2014). https://doi.org/10.1021/nn5028104
T. Yang, H. Ke, Q. Wang, Y.A. Tang, Y. Deng et al., Bifunctional tellurium nanodots for photo-induced synergistic cancer therapy. ACS Nano 11(10), 10012–10024 (2017). https://doi.org/10.1021/acsnano.7b04230
J.W. Liu, F. Chen, M. Zhang, H. Qi, C.L. Zhang et al., Rapid microwave-assisted synthesis of uniform ultralong Te nanowires, optical property, and chemical stability. Langmuir 26(13), 11372–11377 (2010). https://doi.org/10.1021/la100772n
N. Yu, J. Li, Z. Wang, S. Yang, Z. Liu et al., Blue Te nanoneedles with strong NIR photothermal and laser-enhanced anticancer effects as “all-in-one” nanoagents for synergistic thermo-chemotherapy of tumors. Adv. Healthc. Mater. 7(21), 1800643 (2018). https://doi.org/10.1002/adhm.201800643
M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12(3), 841–864 (2019). https://doi.org/10.1039/C8EE01146J
Y. Guo, K. Xu, C. Wu, J. Zhao, Y. Xie, Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 44(3), 637–646 (2015). https://doi.org/10.1039/C4CS00302K
X. Ming, A. Guo, G. Wang, X. Wang, Two-dimensional defective tungsten oxide nanosheets as high performance photo-absorbers for efficient solar steam generation. Sol. Energy Mater. Sol. Cells 185, 333–341 (2018). https://doi.org/10.1016/j.solmat.2018.05.049
A. Ambrosi, M. Pumera, Exfoliation of layered materials using electrochemistry. Chem. Soc. Rev. 47(19), 7213–7224 (2018). https://doi.org/10.1039/C7CS00811B
S. Yang, P. Zhang, A.S. Nia, X. Feng, Emerging 2D materials produced via electrochemistry. Adv. Mater. 32(10), 1907857 (2020). https://doi.org/10.1002/adma.201907857
K. Parvez, Z.S. Wu, R. Li, X. Liu, R. Graf et al., Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136(16), 6083–6091 (2014). https://doi.org/10.1021/ja5017156
J. Lu, J.-X. Yang, J. Wang, A. Lim, S. Wang et al., One-pot synthesis of fluorescent carbon nanoribbons, nanops, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8), 2367–2375 (2009). https://doi.org/10.1021/nn900546b
A.T. Najafabadi, E.L. Gyenge, High-yield graphene production by electrochemical exfoliation of graphite: novel ionic liquid (IL)–acetonitrile electrolyte with low IL content. Carbon 71, 58–69 (2014). https://doi.org/10.1016/j.carbon.2014.01.012
N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang et al., One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18(10), 1518–1525 (2008). https://doi.org/10.1002/adfm.200700797
A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim et al., Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv. Funct. Mater. 24(20), 3021–3026 (2014). https://doi.org/10.1002/adfm.201303441
X. Tang, H. Chen, J.S. Ponraj, S.C. Dhanabalan, Q. Xiao et al., Fluorination-enhanced ambient stability and electronic tolerance of black phosphorus quantum dots. Adv. Sci. 5(9), 1800420 (2018). https://doi.org/10.1002/advs.201800420
X. Tang, W. Liang, J. Zhao, Z. Li, M. Qiu et al., Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 13(47), 1702739 (2017). https://doi.org/10.1002/smll.201702739
P. Howlett, E. Izgorodina, M. Forsyth, D. MacFarlane, Electrochemistry at negative potentials in bis(trifluoromethanesulfonyl)amide ionic liquids. Z. Phys. Chem. 220, 1483–1498 (2006). https://doi.org/10.1524/zpch.2006.220.10.1483
M.C. Kroon, W. Buijs, C.J. Peters, G.J. Witkamp, Decomposition of ionic liquids in electrochemical processing. Green Chem. 8(3), 241–245 (2006). https://doi.org/10.1039/B512724F
E. Markevich, R. Sharabi, V. Borgel, H. Gottlieb, G. Salitra et al., In situ FTIR study of the decomposition of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ionic liquid during cathodic polarization of lithium and graphite electrodes. Electrochim. Acta 55(8), 2687–2696 (2010). https://doi.org/10.1016/j.electacta.2009.12.030
G.H. Lane, Electrochemical reduction mechanisms and stabilities of some cation types used in ionic liquids and other organic salts. Electrochim. Acta 83, 513–528 (2012). https://doi.org/10.1016/j.electacta.2012.08.046
C.L. Klug, N.J. Bridges, A.E. Visser, S.L. Crump, E. Villa-Aleman, Electrochemical degradation of butyltrimethylammonium bis(trifluoromethylsulfonyl)imide for lithium battery applications. New J. Chem. 38(8), 3879–3884 (2014). https://doi.org/10.1039/C4NJ00355A
R. Michez, T. Doneux, C. Buess-Herman, M. Luhmer, NMR study of the reductive decomposition of [BMIm][NTf2] at gold electrodes and indirect electrochemical conversion of CO2. ChemPhysChem 18(16), 2208–2216 (2017). https://doi.org/10.1002/cphc.201700421
D. Alwast, J. Schnaidt, K. Hancock, G. Yetis, R.J. Behm, Effect of Li+ and Mg2+ on the electrochemical decomposition of the ionic liquid 1-Butyl-1- methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and related electrolytes. ChemElectroChem 6(12), 3009–3019 (2019). https://doi.org/10.1002/celc.201900371
L. Xiao, K.E. Johnson, Electrochemistry of 1-butyl-3-methyl-1h-imidazolium tetrafluoroborate ionic liquid. J. Electrochem. Soc. 150(6), E307 (2003). https://doi.org/10.1149/1.1568740
M. Forsyth, W.C. Neil, P.C. Howlett, D.R. Macfarlane, B.R. Hinton et al., New insights into the fundamental chemical nature of ionic liquid film formation on magnesium alloy surfaces. ACS Appl. Mater. Interfaces 1(5), 1045–1052 (2009). https://doi.org/10.1021/am900023j
A.S. Ismail, S.Z. El Abedin, O. Höfft, F. Endres, Unexpected decomposition of the bis (trifluoromethylsulfonyl) amide anion during electrochemical copper oxidation in an ionic liquid. Electrochem. Commun. 12(7), 909–911 (2010). https://doi.org/10.1016/j.elecom.2010.04.018
P.C. Howlett, N. Brack, A.F. Hollenkamp, M. Forsyth, D.R. MacFarlane, Characterization of the lithium surface in N-methyl-N-alkylpyrrolidinium bis(trifluoromethanesulfonyl)amide room-temperature ionic liquid electrolytes. J. Electrochem. Soc. 153(3), A595 (2006). https://doi.org/10.1149/1.2164726
Q. Xiao, X.-Y. Li, Z.-Q. Zhang, C.-X. Hu, G.-H. Dun et al., Facile fabrication of highly uniform tellurium nanorods for self-powered flexible optoelectronics. Adv. Electron. Mater. 6(7), 2000240 (2020). https://doi.org/10.1002/aelm.202000240
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. PhRvB 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
P.E. Blöchl, Projector augmented-wave method. PhRvB 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64(4), 1045–1097 (1992). https://doi.org/10.1103/RevModPhys.64.1045
J. Moellmann, S. Grimme, Dft-d3 study of some molecular crystals. J. Phys. Chem. C 118(14), 7615–7621 (2014). https://doi.org/10.1021/jp501237c
W.W. Gärtner, Photothermal effect in semiconductors. Phys. Rev. 122(2), 419–424 (1961). https://doi.org/10.1103/PhysRev.122.419
S.I. Ibrahim, A.H. Ali, S.A. Hafidh, M.T. Chaichan, H.A. Kazem et al., Stability and thermal conductivity of different nano-composite material prepared for thermal energy storage applications. South Afr. J. Chem. Eng. 39, 72–89 (2022). https://doi.org/10.1016/j.sajce.2021.11.010
Convective Heat Transfer. Engineering ToolBox, (2003). [online]. https://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html
X. Wang, R. Guo, Q. Jian, G. Peng, Y. Yue et al., Thermal characterization of convective heat transfer in microwires based on modified steady state "hot wire" method. arXiv:1907.10751 (2019). https://doi.org/10.48550/arXiv.1907.10751
N. Dewan, K. Sreenivas, V. Gupta, Properties of crystalline γ-TeO2 thin film. J. Cryst. Growth 305(1), 237–241 (2007). https://doi.org/10.1016/j.jcrysgro.2007.03.054
H.H. Wei, J. Lin, W.H. Huang, Z.B. Feng, D.-W. Li, Preparation of TeO2 based thin films by nonhydrolytic sol–gel process. Mater. Sci. Eng. B 164(1), 51–59 (2009). https://doi.org/10.1016/j.mseb.2009.07.001
B. Qin, Y. Bai, Y. Zhou, J. Liu, X. Xie et al., Structure and characterization of TeO2 nanops prepared in acid medium. Mater. Lett. 63(22), 1949–1951 (2009). https://doi.org/10.1016/j.matlet.2009.06.018
C.W. Liew, S. Ramesh, R. Durairaj, Impact of low viscosity ionic liquid on PMMA-PVC-LiTFSI polymer electrolytes based on AC -impedance, dielectric behavior, and HATR-FTIR characteristics. J. Mater. Res. 27(23), 2996–3004 (2012). https://doi.org/10.1557/jmr.2012.343
T. Moumene, E.H. Belarbi, B. Haddad, D. Villemin, O. Abbas et al., Vibrational spectroscopic study of ionic liquids: comparison between monocationic and dicationic imidazolium ionic liquids. J. Molecular Struct. 1065–1066, 86–92 (2014). https://doi.org/10.1016/j.molstruc.2014.02.034
W.Q. Feng, Y.H. Lu, Y. Chen, Y.W. Lu, T. Yang, Thermal stability of imidazolium-based ionic liquids investigated by TG and FTIR techniques. J. Therm. Anal. Calorim. 125(1), 143–154 (2016). https://doi.org/10.1007/s10973-016-5267-3
S.A. Katsyuba, E.E. Zvereva, A. Vidiš, P.J. Dyson, Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids. J. Phys. Chem. A 111(2), 352–370 (2007). https://doi.org/10.1021/jp064610i
J. Kiefer, J. Fries, A. Leipertz, Experimental vibrational study of imidazolium-based ionic liquids: Raman and infrared spectra of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-ethyl-3-methylimidazolium ethylsulfate. Appl. Spectrosc. 61(12), 1306–1311 (2007). https://doi.org/10.1366/000370207783292000
S. Men, K.R.J. Lovelock, P. Licence, X-ray photoelectron spectroscopy of pyrrolidinium-based ionic liquids: cation–anion interactions and a comparison to imidazolium-based analogues. Phys. Chem. Chem. Phys. 13(33), 15244–15255 (2011). https://doi.org/10.1039/C1CP21053J
A. Rezaei, L. Hadian-Dehkordi, H. Samadian, M. Jaymand, H. Targhan et al., Pseudohomogeneous metallic catalyst based on tungstate-decorated amphiphilic carbon quantum dots for selective oxidative scission of alkenes to aldehyde. Sci. Rep. 11(1), 4411 (2021). https://doi.org/10.1038/s41598-021-83863-0
Z. Dong, L. Zhao, Covalently bonded ionic liquid onto cellulose for fast adsorption and efficient separation of Cr(VI): batch, column and mechanism investigation. Carbohydr. Polym. 189, 190–197 (2018). https://doi.org/10.1016/j.carbpol.2018.02.038
Y. Tang, Z. Wang, X. Chi, M.D. Sevilla, X. Zeng, In situ generated platinum catalyst for methanol oxidation via electrochemical oxidation of bis(trifluoromethylsulfonyl)imide anion in ionic liquids at anaerobic condition. J. Phys. Chem. C 120(2), 1004–1012 (2016). https://doi.org/10.1021/acs.jpcc.5b09777
Y. Tang, L. Lin, A. Kumar, M. Guo, M. Sevilla et al., Hydrogen electrooxidation in ionic liquids catalyzed by the NTf(2) radical. J. Phys. Chem. C Nanomater. Interfaces 121(9), 5161–5167 (2017). https://doi.org/10.1021/acs.jpcc.7b00335
N. DeVos, C. Maton, C.V. Stevens, Electrochemical stability of ionic liquids: general influences and degradation mechanisms. ChemElectroChem 1(8), 1258–1270 (2014). https://doi.org/10.1002/celc.201402086
Q.X. Liu, S. Zein El Abedin, F. Endres, Electrodeposition of nanocrystalline aluminum: breakdown of imidazolium cations modifies the crystal size. J. Electrochem. Soc. 155(5), D357 (2008). https://doi.org/10.1149/1.2884369
P.A. Hunt, C.R. Ashworth, R.P. Matthews, Hydrogen bonding in ionic liquids. Chem. Soc. Rev. 44(5), 1257–1288 (2015). https://doi.org/10.1039/C4CS00278D
K. Dong, S. Zhang, J. Wang, Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions. Chem. Commun. 52(41), 6744–6764 (2016). https://doi.org/10.1039/C5CC10120D
J. Kruusma, T. Käämbre, A. Tõnisoo, V. Kisand, K. Lust et al., The electrochemical behaviour of butyltrimethylammonium bis(trifluoromethylsulfonyl)imide at negatively polarised aluminium electrode studied by in situ soft X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry techniques. J. Solid State Electrochem. 26(12), 2805–2815 (2022). https://doi.org/10.1007/s10008-022-05281-0
Y. Zhou, Y.Z. Zheng, T. Zhang, G. Deng, Z.W. Yu, Evidence that acetonitrile is sensitive to different interaction sites of ionic liquids as revealed by excess spectroscopy. ChemPhysChem 18(10), 1370–1375 (2017). https://doi.org/10.1002/cphc.201601376
Y. Zhou, S. Gong, X. Xu, Z. Yu, J. Kiefer et al., The interactions between polar solvents (methanol, acetonitrile, dimethylsulfoxide) and the ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide. J. Mol. Liquids 299, 112159 (2020). https://doi.org/10.1016/j.molliq.2019.112159
Y.Z. Zheng, N.N. Wang, J.J. Luo, Y. Zhou, Z.W. Yu, Hydrogen-bonding interactions between [BMIM][BF4] and acetonitrile. Phys. Chem. Chem. Phys. 15(41), 18055–18064 (2013). https://doi.org/10.1039/C3CP53356E
Y. Lauw, M.D. Horne, T. Rodopoulos, V. Lockett, B. Akgun et al., Structure of [C4mpyr][NTf2] room-temperature ionic liquid at charged gold interfaces. Langmuir 28(19), 7374–7381 (2012). https://doi.org/10.1021/la3005757
Y. Guo, L.S. de Vasconcelos, N. Manohar, J. Geng, K.P. Johnston, G. Yu, Highly elastic interconnected porous hydrogels through self-assembled templating for solar water purification. Angew. Chem. Int. Ed. 61(3), e202114074 (2022). https://doi.org/10.1002/anie.202114074
C. Xing, Z. Li, S. Zhang, J. Bang, Z. Xie et al., Phase inversion-based foam hydrogels for highly efficient solar-powered interfacial desalination. Chem. Eng. J. 464, 142409 (2023). https://doi.org/10.1016/j.cej.2023.142409
S. Sun, H. Li, M. Zhang, B. Sun, Y. Xie et al., A multifunctional asymmetric fabric for sustained electricity generation from multiple sources and simultaneous solar steam generation. Small (2023). https://doi.org/10.1002/smll.202303716
S. Sun, Q. Tian, H.-Y. Mi, J. Li, X. Jing et al., Fabric-based all-weather-available photo-electro-thermal steam generator with high evaporation rate and salt resistance. Sci. China Mater. 65(9), 2479–2490 (2022). https://doi.org/10.1007/s40843-021-2010-1
S. Sun, Y. Wang, B. Sun, F. Zhang, Q. Xu et al., Versatile janus composite nonwoven solar absorbers with salt resistance for efficient wastewater purification and desalination. ACS Appl. Mater. Interfaces 13(21), 24945–24956 (2021). https://doi.org/10.1021/acsami.1c05618
S. Sun, B. Sun, Y. Wang, M. Fordjour Antwi-Afari, H.-Y. Mi et al., Carbon black and polydopamine modified non-woven fabric enabling efficient solar steam generation towards seawater desalination and wastewater purification. Sep. Purif. Technol. 278, 119621 (2021). https://doi.org/10.1016/j.seppur.2021.119621
J. Ren, L. Chen, J. Gong, J. Qu, R. Niu, Hofmeister effect mediated hydrogel evaporator for simultaneous solar evaporation and thermoelectric power generation. Chem. Eng. J. 458, 141511 (2023). https://doi.org/10.1016/j.cej.2023.141511
L. Chen, J. Ren, J. Gong, J. Qu, R. Niu, Cost-effective, scalable fabrication of self-floating xerogel foam for simultaneous photothermal water evaporation and thermoelectric power generation. Chem. Eng. J. 454, 140383 (2023). https://doi.org/10.1016/j.cej.2022.140383
P. He, H. Lan, H. Bai, Y. Zhu, Z. Fan et al., Rational construction of “all-in-one” metal-organic framework for integrated solar steam generation and advanced oxidation process. Appl. Catal. B-Environ. 337, 123001 (2023). https://doi.org/10.1016/j.apcatb.2023.123001