Atomically Dispersed Ruthenium Catalysts with Open Hollow Structure for Lithium–Oxygen Batteries
Corresponding Author: Chen Chen
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 27
Abstract
Lithium–oxygen battery with ultra-high theoretical energy density is considered a highly competitive next-generation energy storage device, but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present. Here, we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure (h-RuNC) for Lithium–oxygen battery. On one hand, the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products, thereby greatly enhancing the redox kinetics. On the other hand, the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules. Therefore, the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability, ultimately achieving a high-performance lithium–oxygen battery.
Highlights:
1 The open hollow structure enhances the accessibility of atomically dispersed Ru sites and improves the diffusion efficiency of catalytic molecules
2 The abundant atomically dispersed Ru sites on the surface of catalyst provide a large number of oxygen adsorption and Li2O2 nucleation sites
3 The lithium–oxygen battery assembled with h-RuNC could catalyze the production of Li2O2 with better dispersion and improve the cycling stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Xu, J. Ma, Q. Fan, S. Guo, S. Dou, Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) Batteries. Adv. Mater. 29(28), 1606454 (2017). https://doi.org/10.1002/adma.201606454
- A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005). https://doi.org/10.1038/nmat1368
- K. Noah, L. Felix, M.K. Daniel, Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2, 17125 (2017). https://doi.org/10.1038/nenergy.2017.125
- Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4(9), 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y
- W.J. Kwak, Rosy, D. Sharon, C. Xia, H. Kim et al., Lithium–oxygen batteries and related systems: potential, status, and future. Chem. Rev. 120, 6626–6683 (2020). https://doi.org/10.1021/acs.chemrev.9b00609
- D. Geng, N. Ding, T.S.A. Hor, S.W. Chien, Z. Liu et al., From lithium–oxygen to lithium-air batteries: challenges and opportunities. Adv. Energy Mater. 6(9), 1502164 (2016). https://doi.org/10.1002/aenm.201502164
- L. Ma, T. Yu, E. Tzoganakis, K. Amine, T. Wu et al., Fundamental understanding and material challenges in rechargeable nonaqueous Li–O2 batteries: recent progress and perspective. Adv. Energy Mater. 8(22), 1800348 (2018). https://doi.org/10.1002/aenm.201800348
- Q. Dong, X. Yao, Y. Zhao, M. Qi, X. Zhang et al., Cathodically stable Li–O2 battery operations using water-in-salt electrolyte. Chem 4(6), 1345–1358 (2018). https://doi.org/10.1016/j.chempr.2018.02.015
- G. Li, N. Li, S. Peng, B. He, J. Wang et al., Highly efficient Nb2C MXene cathode catalyst with uniform O-terminated surface for lithium–oxygen batteries. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202002721
- M. Yuan, R. Wang, W. Fu, L. Lin, Z. Sun et al., Ultrathin two-dimensional metal organic framework nanosheets with the inherent open active sites as electrocatalysts in aprotic Li–O2 batteries. ACS Appl. Mater. Interfaces 11(12), 11403–11413 (2019). https://doi.org/10.1021/acsami.8b21808
- H. Wang, X. Wang, M. Li, L. Zheng, D. Guan et al., Porous materials applied in nonaqueous Li–O2 batteries: status and perspectives. Adv. Mater. 32(44), e2002559 (2020). https://doi.org/10.1002/adma.202002559
- C. Li, Z. Guo, Y. Pang, Y. Sun, X. Su et al., Three-dimensional ordered macroporous FePO4 as high-efficiency catalyst for rechargeable Li–O2 batteries. ACS Appl. Mater. Interfaces 8(46), 31638–31645 (2016). https://doi.org/10.1021/acsami.6b10115
- Z. Guo, D. Zhou, X. Dong, Z. Qiu, Y. Wang et al., Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li–O2 batteries. Adv. Mater. 25(39), 5668–5672 (2013). https://doi.org/10.1002/adma.201302459
- S. Huiyu, X. Shaomao, L. Yiju, D. Jiaqi, G. Amy et al., Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium–oxygen batteries. Adv. Energy Mater. 8, 1701203 (2017). https://doi.org/10.1002/aenm.201701203
- J. Kang, J. Kim, S. Lee, S. Wi, C. Kim et al., Breathable carbon-free electrode: Black TiO2 with hierarchically ordered porous structure for stable Li–O2 battery. Adv. Energy Mater. 7(19), 1700814 (2017). https://doi.org/10.1002/aenm.201700814
- X.X. Wang, D.H. Guan, C.L. Miao, D.C. Kong, L.J. Zheng et al., Metal-organic framework-based mixed conductors achieve highly stable photo-assisted solid-state lithium-oxygen batteries. J. Am. Chem. Soc. 145(10), 5718–5729 (2023). https://doi.org/10.1021/jacs.2c11839
- L.-J. Zheng, P. Bai, W.-F. Yan, F. Li, X.-X. Wang et al., In situ construction of glass-fiber-directed zeolite microtube woven separator for ultra-high-capacity lithium–oxygen batteries. Matter 6, 1–16 (2022). https://doi.org/10.1016/j.matt.2022.10.013
- R. Rojaee, R. Shahbazian-Yassar, Two dimensional materials to address the Li-based battery challenges. ACS Nano 14(3), 2628–2658 (2020). https://doi.org/10.1021/acsnano.9b08396
- Y. Zhang, S. Zhang, J. Ma, X. Chen, C. Nan et al., Single-atom-mediated spinel octahedral structures for elevated performances of Li–oxygen batteries. Angew. Chem. Int. Ed. 62, e202218926 (2023). https://doi.org/10.1002/ange.202218926
- P. Zhang, Y. Zhao, X. Zhang, Functional and stability orientation synthesis of materials and structures in aprotic Li–O2 batteries. Chem. Soc. Rev. 47(8), 2921–3004 (2018). https://doi.org/10.1039/C8CS00009C
- K.X. Wang, Q.C. Zhu, J.S. Chen, Strategies toward high-performance cathode materials for lithium-oxygen batteries. Small 14(27), e1800078 (2018). https://doi.org/10.1002/smll.201800078
- X. Wang, Q. Dong, H. Qiao, Z. Huang, M.T. Saray et al., Continuous synthesis of hollow high-entropy nanops for energy and catalysis applications. Adv. Mater. 32, e2002853 (2020). https://doi.org/10.1002/adma.202002853
- G. Tian, L. Ren, H. Xu, T. Zeng, X. Wang et al., Metal sulfide heterojunction with tunable interfacial electronic structure as an efficient catalyst for lithium-oxygen batteries. Sci. China Mater. 66(4), 1341–1351 (2023). https://doi.org/10.1007/s40843-022-2253-y
- Y. Zhou, K. Yin, Q. Gu, L. Tao, Y. Li et al., Lewis-acidic ptir multipods enable high-performance Li–O2 batteries. Angew. Chem. Int. Ed. 60(51), 26592–26598 (2021). https://doi.org/10.1002/anie.202114067
- T. Jin, J. Nie, M. Dong, B. Chen, J. Nie et al., 3D Interconnected honeycomb-like multifunctional catalyst for Zn-air batteries. Nano-Micro Lett. 15, 26 (2022). https://doi.org/10.1007/s40820-022-00959-6
- H. Chen, Y. Ye, X. Chen, L. Zhang, G. Liu et al., N-doped porous carbon nanofibers inlaid with hollow Co3O4 nanops as an efficient bifunctional catalyst for rechargeable Li–O2 batteries. Chin. J. Catal. 43(6), 1511–1519 (2022). https://doi.org/10.1016/S1872-2067(21)64017-2
- J. Li, M. Chen, D.A. Cullen, S. Hwang, M. Wang et al., Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1(12), 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8
- X. Wang, N. Fu, J.C. Liu, K. Yu, Z. Li et al., Atomic replacement of PtNi nanoalloys within Zn-ZIF-8 for the Fabrication of a Multisite CO2 reduction electrocatalyst. J. Am. Chem. Soc. 144(50), 23223–23229 (2022). https://doi.org/10.1021/jacs.2c11497
- K. Sun, X. Wu, Z. Zhuang, L. Liu, J. Fang et al., Interfacial water engineering boosts neutral water reduction. Nat. Commun. 13, 6260 (2022). https://doi.org/10.1038/s41467-022-33984-5
- C. Liu, Y. Wu, K. Sun, J. Fang, A. Huang et al., Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem 7(5), 1297–1307 (2021). https://doi.org/10.1016/j.chempr.2021.02.001
- W.H. Li, J. Yang, H. Jing, J. Zhang, Y. Wang et al., Creating high regioselectivity by electronic metal-support interaction of a single-atomic-site catalyst. J. Am. Chem. Soc. 143(37), 15453–15461 (2021). https://doi.org/10.1021/jacs.1c08088
- Z. Chen, A. Huang, K. Yu, T. Cui, Z. Zhuang et al., Fe1N4–O1 site with axial Fe–O coordination for highly selective CO2 reduction over a wide potential range. Energy Environ. Sci. 14(6), 3430–3437 (2021). https://doi.org/10.1039/d1ee00569c
- Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang et al., Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2(7), 1242–1264 (2018). https://doi.org/10.1016/j.joule.2018.06.019
- S. Ji, Y. Chen, Q. Fu, Y. Chen, J. Dong et al., Confined pyrolysis within metal-organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 139(29), 9795–9798 (2017). https://doi.org/10.1021/jacs.7b05018
- Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang et al., Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives. Nano-Micro Lett. 12, 21 (2020). https://doi.org/10.1007/s40820-019-0349-y
- Q. Lv, Z. Zhu, Y. Ni, B. Wen, Z. Jiang et al., Atomic ruthenium-riveted metal-organic framework with tunable d-band modulates oxygen redox for lithium-oxygen batteries. J. Am. Chem. Soc. 144(50), 23239–23246 (2022). https://doi.org/10.1021/jacs.2c11676
- D. Zhao, P. Wang, H. Di, P. Zhang, X. Hui et al., Single semi-metallic selenium atoms on Ti3C2 MXene nanosheets as excellent cathode for lithium–oxygen batteries. Adv. Funct. Mater. 31(29), 2010544 (2021). https://doi.org/10.1002/adfm.202010544
- P. Wang, Y. Ren, R. Wang, P. Zhang, M. Ding et al., Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat. Commun. 11(1), 1576 (2020). https://doi.org/10.1038/s41467-020-15416-4
- L.N. Song, W. Zhang, Y. Wang, X. Ge, L.C. Zou et al., Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium-oxygen batteries. Nat. Commun. 11(1), 2191 (2020). https://doi.org/10.1038/s41467-020-15712-z
- X. Hu, G. Luo, Q. Zhao, D. Wu, T. Yang et al., Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li–O2 batteries. J. Am. Chem. Soc. 142(39), 16776–16786 (2020). https://doi.org/10.1021/jacs.0c07317
- N. Li, Z. Chang, M. Zhong, Z.-X. Fu, J. Luo et al., Functionalizing MOF with redox-active tetrazine moiety for improving the performance as cathode of Li–O2 batteries. CCS Chem. 3(3), 1297–1305 (2021). https://doi.org/10.31635/ccschem.020.202000284
- Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu et al., Core-shell ZIF-8@ZIF-67-derived CoP nanop-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140(7), 2610–2618 (2018). https://doi.org/10.1021/jacs.7b12420
- C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang et al., Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014). https://doi.org/10.1126/science.1249061
- Y. Xia, X. Yang, Toward cost-effective and sustainable use of precious metals in heterogeneous catalysts. Acc. Chem. Res. 50(3), 450–454 (2017). https://doi.org/10.1021/acs.accounts.6b00469
- M. Zhao, X. Wang, X. Yang, K.D. Gilroy, D. Qin et al., Hollow metal nanocrystals with ultrathin, porous walls and well-controlled surface structures. Adv. Mater. 30(48), e1801956 (2018). https://doi.org/10.1002/adma.201801956
- Z. Zhuang, Y. Wang, C.-Q. Xu, S. Liu, C. Chen et al., Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat. Commun. 10, 4875 (2019). https://doi.org/10.1038/s41467-019-12885-0
- X. Han, T. Zhang, X. Wang, Z. Zhang, Y. Li et al., Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules. Nat. Commun. 13, 2900 (2022). https://doi.org/10.1038/s41467-022-30520-3
- Y. Zhang, S. Zhang, M. Yuan, Y. Li, R. Liu et al., Optimal geometrical configuration and oxidation state of cobalt cations in spinel oxides to promote the performance of Li–O2 battery. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5526-0
- Y. Han, J. Dai, R. Xu, W. Ai, L. Zheng et al., Notched-polyoxometalate strategy to fabricate atomically dispersed Ru catalysts for biomass conversion. ACS Catal. 11, 2669–2675 (2021). https://doi.org/10.1021/acscatal.0c04006
- J. Li, H. Zhang, W. Samarakoon, W. Shan, D.A. Cullen et al., Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem. Int. Ed. 58(52), 18971–18980 (2019). https://doi.org/10.1002/anie.201909312
- Y. Zhou, Q. Gu, K. Yin, Y. Li, L. Tao et al., Engineering eg orbital occupancy of Pt with Au alloying enables reversible Li-O2 batteries. Angew. Chem. Int. Ed. 61(26), e202201416 (2022). https://doi.org/10.1002/anie.202201416
- Y. Zhou, Q. Gu, K. Yin, L. Tao, Y. Li et al., Cascaded orbital-oriented hybridization of intermetallic Pd3Pb boosts electrocatalysis of Li-O2 battery. PNAS 120(25), e2301439120 (2023). https://doi.org/10.1073/pnas.2301439120
References
J. Xu, J. Ma, Q. Fan, S. Guo, S. Dou, Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) Batteries. Adv. Mater. 29(28), 1606454 (2017). https://doi.org/10.1002/adma.201606454
A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005). https://doi.org/10.1038/nmat1368
K. Noah, L. Felix, M.K. Daniel, Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2, 17125 (2017). https://doi.org/10.1038/nenergy.2017.125
Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4(9), 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y
W.J. Kwak, Rosy, D. Sharon, C. Xia, H. Kim et al., Lithium–oxygen batteries and related systems: potential, status, and future. Chem. Rev. 120, 6626–6683 (2020). https://doi.org/10.1021/acs.chemrev.9b00609
D. Geng, N. Ding, T.S.A. Hor, S.W. Chien, Z. Liu et al., From lithium–oxygen to lithium-air batteries: challenges and opportunities. Adv. Energy Mater. 6(9), 1502164 (2016). https://doi.org/10.1002/aenm.201502164
L. Ma, T. Yu, E. Tzoganakis, K. Amine, T. Wu et al., Fundamental understanding and material challenges in rechargeable nonaqueous Li–O2 batteries: recent progress and perspective. Adv. Energy Mater. 8(22), 1800348 (2018). https://doi.org/10.1002/aenm.201800348
Q. Dong, X. Yao, Y. Zhao, M. Qi, X. Zhang et al., Cathodically stable Li–O2 battery operations using water-in-salt electrolyte. Chem 4(6), 1345–1358 (2018). https://doi.org/10.1016/j.chempr.2018.02.015
G. Li, N. Li, S. Peng, B. He, J. Wang et al., Highly efficient Nb2C MXene cathode catalyst with uniform O-terminated surface for lithium–oxygen batteries. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202002721
M. Yuan, R. Wang, W. Fu, L. Lin, Z. Sun et al., Ultrathin two-dimensional metal organic framework nanosheets with the inherent open active sites as electrocatalysts in aprotic Li–O2 batteries. ACS Appl. Mater. Interfaces 11(12), 11403–11413 (2019). https://doi.org/10.1021/acsami.8b21808
H. Wang, X. Wang, M. Li, L. Zheng, D. Guan et al., Porous materials applied in nonaqueous Li–O2 batteries: status and perspectives. Adv. Mater. 32(44), e2002559 (2020). https://doi.org/10.1002/adma.202002559
C. Li, Z. Guo, Y. Pang, Y. Sun, X. Su et al., Three-dimensional ordered macroporous FePO4 as high-efficiency catalyst for rechargeable Li–O2 batteries. ACS Appl. Mater. Interfaces 8(46), 31638–31645 (2016). https://doi.org/10.1021/acsami.6b10115
Z. Guo, D. Zhou, X. Dong, Z. Qiu, Y. Wang et al., Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li–O2 batteries. Adv. Mater. 25(39), 5668–5672 (2013). https://doi.org/10.1002/adma.201302459
S. Huiyu, X. Shaomao, L. Yiju, D. Jiaqi, G. Amy et al., Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium–oxygen batteries. Adv. Energy Mater. 8, 1701203 (2017). https://doi.org/10.1002/aenm.201701203
J. Kang, J. Kim, S. Lee, S. Wi, C. Kim et al., Breathable carbon-free electrode: Black TiO2 with hierarchically ordered porous structure for stable Li–O2 battery. Adv. Energy Mater. 7(19), 1700814 (2017). https://doi.org/10.1002/aenm.201700814
X.X. Wang, D.H. Guan, C.L. Miao, D.C. Kong, L.J. Zheng et al., Metal-organic framework-based mixed conductors achieve highly stable photo-assisted solid-state lithium-oxygen batteries. J. Am. Chem. Soc. 145(10), 5718–5729 (2023). https://doi.org/10.1021/jacs.2c11839
L.-J. Zheng, P. Bai, W.-F. Yan, F. Li, X.-X. Wang et al., In situ construction of glass-fiber-directed zeolite microtube woven separator for ultra-high-capacity lithium–oxygen batteries. Matter 6, 1–16 (2022). https://doi.org/10.1016/j.matt.2022.10.013
R. Rojaee, R. Shahbazian-Yassar, Two dimensional materials to address the Li-based battery challenges. ACS Nano 14(3), 2628–2658 (2020). https://doi.org/10.1021/acsnano.9b08396
Y. Zhang, S. Zhang, J. Ma, X. Chen, C. Nan et al., Single-atom-mediated spinel octahedral structures for elevated performances of Li–oxygen batteries. Angew. Chem. Int. Ed. 62, e202218926 (2023). https://doi.org/10.1002/ange.202218926
P. Zhang, Y. Zhao, X. Zhang, Functional and stability orientation synthesis of materials and structures in aprotic Li–O2 batteries. Chem. Soc. Rev. 47(8), 2921–3004 (2018). https://doi.org/10.1039/C8CS00009C
K.X. Wang, Q.C. Zhu, J.S. Chen, Strategies toward high-performance cathode materials for lithium-oxygen batteries. Small 14(27), e1800078 (2018). https://doi.org/10.1002/smll.201800078
X. Wang, Q. Dong, H. Qiao, Z. Huang, M.T. Saray et al., Continuous synthesis of hollow high-entropy nanops for energy and catalysis applications. Adv. Mater. 32, e2002853 (2020). https://doi.org/10.1002/adma.202002853
G. Tian, L. Ren, H. Xu, T. Zeng, X. Wang et al., Metal sulfide heterojunction with tunable interfacial electronic structure as an efficient catalyst for lithium-oxygen batteries. Sci. China Mater. 66(4), 1341–1351 (2023). https://doi.org/10.1007/s40843-022-2253-y
Y. Zhou, K. Yin, Q. Gu, L. Tao, Y. Li et al., Lewis-acidic ptir multipods enable high-performance Li–O2 batteries. Angew. Chem. Int. Ed. 60(51), 26592–26598 (2021). https://doi.org/10.1002/anie.202114067
T. Jin, J. Nie, M. Dong, B. Chen, J. Nie et al., 3D Interconnected honeycomb-like multifunctional catalyst for Zn-air batteries. Nano-Micro Lett. 15, 26 (2022). https://doi.org/10.1007/s40820-022-00959-6
H. Chen, Y. Ye, X. Chen, L. Zhang, G. Liu et al., N-doped porous carbon nanofibers inlaid with hollow Co3O4 nanops as an efficient bifunctional catalyst for rechargeable Li–O2 batteries. Chin. J. Catal. 43(6), 1511–1519 (2022). https://doi.org/10.1016/S1872-2067(21)64017-2
J. Li, M. Chen, D.A. Cullen, S. Hwang, M. Wang et al., Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1(12), 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8
X. Wang, N. Fu, J.C. Liu, K. Yu, Z. Li et al., Atomic replacement of PtNi nanoalloys within Zn-ZIF-8 for the Fabrication of a Multisite CO2 reduction electrocatalyst. J. Am. Chem. Soc. 144(50), 23223–23229 (2022). https://doi.org/10.1021/jacs.2c11497
K. Sun, X. Wu, Z. Zhuang, L. Liu, J. Fang et al., Interfacial water engineering boosts neutral water reduction. Nat. Commun. 13, 6260 (2022). https://doi.org/10.1038/s41467-022-33984-5
C. Liu, Y. Wu, K. Sun, J. Fang, A. Huang et al., Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem 7(5), 1297–1307 (2021). https://doi.org/10.1016/j.chempr.2021.02.001
W.H. Li, J. Yang, H. Jing, J. Zhang, Y. Wang et al., Creating high regioselectivity by electronic metal-support interaction of a single-atomic-site catalyst. J. Am. Chem. Soc. 143(37), 15453–15461 (2021). https://doi.org/10.1021/jacs.1c08088
Z. Chen, A. Huang, K. Yu, T. Cui, Z. Zhuang et al., Fe1N4–O1 site with axial Fe–O coordination for highly selective CO2 reduction over a wide potential range. Energy Environ. Sci. 14(6), 3430–3437 (2021). https://doi.org/10.1039/d1ee00569c
Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang et al., Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2(7), 1242–1264 (2018). https://doi.org/10.1016/j.joule.2018.06.019
S. Ji, Y. Chen, Q. Fu, Y. Chen, J. Dong et al., Confined pyrolysis within metal-organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 139(29), 9795–9798 (2017). https://doi.org/10.1021/jacs.7b05018
Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang et al., Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives. Nano-Micro Lett. 12, 21 (2020). https://doi.org/10.1007/s40820-019-0349-y
Q. Lv, Z. Zhu, Y. Ni, B. Wen, Z. Jiang et al., Atomic ruthenium-riveted metal-organic framework with tunable d-band modulates oxygen redox for lithium-oxygen batteries. J. Am. Chem. Soc. 144(50), 23239–23246 (2022). https://doi.org/10.1021/jacs.2c11676
D. Zhao, P. Wang, H. Di, P. Zhang, X. Hui et al., Single semi-metallic selenium atoms on Ti3C2 MXene nanosheets as excellent cathode for lithium–oxygen batteries. Adv. Funct. Mater. 31(29), 2010544 (2021). https://doi.org/10.1002/adfm.202010544
P. Wang, Y. Ren, R. Wang, P. Zhang, M. Ding et al., Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat. Commun. 11(1), 1576 (2020). https://doi.org/10.1038/s41467-020-15416-4
L.N. Song, W. Zhang, Y. Wang, X. Ge, L.C. Zou et al., Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium-oxygen batteries. Nat. Commun. 11(1), 2191 (2020). https://doi.org/10.1038/s41467-020-15712-z
X. Hu, G. Luo, Q. Zhao, D. Wu, T. Yang et al., Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li–O2 batteries. J. Am. Chem. Soc. 142(39), 16776–16786 (2020). https://doi.org/10.1021/jacs.0c07317
N. Li, Z. Chang, M. Zhong, Z.-X. Fu, J. Luo et al., Functionalizing MOF with redox-active tetrazine moiety for improving the performance as cathode of Li–O2 batteries. CCS Chem. 3(3), 1297–1305 (2021). https://doi.org/10.31635/ccschem.020.202000284
Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu et al., Core-shell ZIF-8@ZIF-67-derived CoP nanop-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140(7), 2610–2618 (2018). https://doi.org/10.1021/jacs.7b12420
C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang et al., Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014). https://doi.org/10.1126/science.1249061
Y. Xia, X. Yang, Toward cost-effective and sustainable use of precious metals in heterogeneous catalysts. Acc. Chem. Res. 50(3), 450–454 (2017). https://doi.org/10.1021/acs.accounts.6b00469
M. Zhao, X. Wang, X. Yang, K.D. Gilroy, D. Qin et al., Hollow metal nanocrystals with ultrathin, porous walls and well-controlled surface structures. Adv. Mater. 30(48), e1801956 (2018). https://doi.org/10.1002/adma.201801956
Z. Zhuang, Y. Wang, C.-Q. Xu, S. Liu, C. Chen et al., Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat. Commun. 10, 4875 (2019). https://doi.org/10.1038/s41467-019-12885-0
X. Han, T. Zhang, X. Wang, Z. Zhang, Y. Li et al., Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules. Nat. Commun. 13, 2900 (2022). https://doi.org/10.1038/s41467-022-30520-3
Y. Zhang, S. Zhang, M. Yuan, Y. Li, R. Liu et al., Optimal geometrical configuration and oxidation state of cobalt cations in spinel oxides to promote the performance of Li–O2 battery. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5526-0
Y. Han, J. Dai, R. Xu, W. Ai, L. Zheng et al., Notched-polyoxometalate strategy to fabricate atomically dispersed Ru catalysts for biomass conversion. ACS Catal. 11, 2669–2675 (2021). https://doi.org/10.1021/acscatal.0c04006
J. Li, H. Zhang, W. Samarakoon, W. Shan, D.A. Cullen et al., Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem. Int. Ed. 58(52), 18971–18980 (2019). https://doi.org/10.1002/anie.201909312
Y. Zhou, Q. Gu, K. Yin, Y. Li, L. Tao et al., Engineering eg orbital occupancy of Pt with Au alloying enables reversible Li-O2 batteries. Angew. Chem. Int. Ed. 61(26), e202201416 (2022). https://doi.org/10.1002/anie.202201416
Y. Zhou, Q. Gu, K. Yin, L. Tao, Y. Li et al., Cascaded orbital-oriented hybridization of intermetallic Pd3Pb boosts electrocatalysis of Li-O2 battery. PNAS 120(25), e2301439120 (2023). https://doi.org/10.1073/pnas.2301439120