Ionization Engineering of Hydrogels Enables Highly Efficient Salt-Impeded Solar Evaporation and Night-Time Electricity Harvesting
Corresponding Author: Lin Li
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 8
Abstract
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization. Hydrogels, as a tunable material platform from the molecular level to the macroscopic scale, have been considered the most promising candidate for solar evaporation. However, the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck, restricting the widespread application. Herein, we report ionization engineering, which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules, fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine. The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers. The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt% brine with 95.6% efficiency under one sun irradiation, surpassing most of the reported literature. More notably, such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation. Meantime, on the basis of the cation selectivity induced by the electronegativity, we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night, anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.
Highlights:
1 An ionization-engineered hydrogel with electronegativity polymer chains to impede salt ions was designed.
2 The hydrogel evaporator exhibited salt impedance in 20 wt% brine for 15 days with a high evaporation efficiency of 95.6%.
3 An all-day high-salinity brine treatment with zero liquid discharge was proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Sci. Adv. 2(2), e1500323 (2016). https://doi.org/10.1126/sciadv.1500323
- H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of cof membranes for water desalination. Nano-Micro Lett. 14(1), 216 (2022). https://doi.org/10.1007/s40820-022-00968-5
- X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3d graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14(1), 174 (2022). https://doi.org/10.1007/s40820-022-00923-4
- Y. Jiang, L. Chai, D. Zhang, F. Ouyang, X. Zhou et al., Facet-controlled LiMn2O4/c as deionization electrode with enhanced stability and high desalination performance. Nano-Micro Lett. 14(1), 176 (2022). https://doi.org/10.1007/s40820-022-00897-3
- X. He, Fundamental perspectives on the electrochemical water applications of metal-organic frameworks. Nano-Micro Lett. 15(1), 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
- S. Shen, J. Fu, J. Yi, L. Ma, F. Sheng et al., High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13(1), 194 (2021). https://doi.org/10.1007/s40820-021-00695-3
- M. Elimelech, W.A. Phillip, The future of seawater desalination: Energy, technology, and the environment. Sci. Adv. 333(6043), 712 (2011). https://doi.org/10.1126/science.1200488
- M. Cañedo-Argüelles, C.P. Hawkins, B.J. Kefford, R.B. Schäfer, B.J. Dyack et al., Saving freshwater from salts. Science 351(6276), 914 (2016). https://doi.org/10.1126/science.aad3488
- M. Canedo-Arguelles, B.J. Kefford, C. Piscart, N. Prat, R.B. Schafe et al., Salinisation of rivers: An urgent ecological issue. Environ. Pollut. 173, 157 (2013). https://doi.org/10.1016/j.envpol.2012.10.011
- Y. Zhang, T. Xiong, D.K. Nandakumar, S.C. Tan, Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation. Adv. Sci. 7(9), 1903478 (2020). https://doi.org/10.1002/advs.201903478
- G. Liu, T. Chen, J. Xu, G. Yao, J. Xie et al., Salt-rejecting solar interfacial evaporation. Cell Rep Phys Sci. 2(1), 100310 (2021). https://doi.org/10.1016/j.xcrp.2020.100310
- Q. Zhang, L. Li, B. Jiang, H. Zhang, N. He et al., Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination. ACS Appl. Mater. Interfaces 12(25), 28179 (2020). https://doi.org/10.1021/acsami.0c05806
- X. Chen, S. He, M. Falinski, Y. Wang, T. Li et al., Sustainable off-grid desalination of hypersaline waters by janus wood evaporator. Energy Environ. Sci. 14(10), 5347 (2021). https://doi.org/10.1039/d1ee01505b
- H. Zhang, L. Li, N. He, H. Wang, B. Wang et al., Bioinspired hierarchical evaporator via cell wall engineering for highly efficient and sustainable solar desalination. EcoMat 4(5), e12216 (2022). https://doi.org/10.1002/eom2.12216
- L. Chen, S. He, W. Huang, D. Liu, T. Bi et al., 3d-printed tripodal porous wood-mimetic cellulosic composite evaporator for salt-free water desalination. Compos. B Eng. 263, 110830 (2023). https://doi.org/10.1016/j.compositesb.2023.110830
- Y. Kuang, C. Chen, S. He, E.M. Hitz, Y. Wang et al., A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 31(23), 1900498 (2019). https://doi.org/10.1002/adma.201900498
- X. Dong, Y. Si, C. Chen, B. Ding, H. Deng, Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 15(7), 12256 (2021). https://doi.org/10.1021/acsnano.1c04035
- J. Chen, J.L. Yin, B. Li, Z. Ye, D. Liu et al., Janus evaporators with self-recovering hydrophobicity for salt-rejecting interfacial solar desalination. ACS Nano 14(12), 17419 (2020). https://doi.org/10.1021/acsnano.0c07677
- W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li et al., Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 8(14), 1702884 (2018). https://doi.org/10.1002/aenm.201702884
- F. Wu, S. Qiang, X.D. Zhu, W. Jiao, L. Liu et al., Fibrous mxene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15(1), 71 (2023). https://doi.org/10.1007/s40820-023-01030-8
- C. Xu, M. Gao, X. Yu, J. Zhang, Y. Cheng et al., Fibrous aerogels with tunable superwettability for high-performance solar-driven interfacial evaporation. Nano-Micro Lett. 15(1), 64 (2023). https://doi.org/10.1007/s40820-023-01034-4
- Z. Liu, Z. Zhou, N. Wu, R. Zhang, B. Zhu et al., Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination. ACS Nano 15(8), 13007 (2021). https://doi.org/10.1021/acsnano.1c01900
- W. Chong, R. Meng, Z. Liu, Q. Liu, J. Hu et al., Superhydrophilic polydopamine-modified carbon-fiber membrane with rapid seawater-transferring ability for constructing efficient hanging-model evaporator. Adv. Fiber Mater. 5(3), 1063 (2023). https://doi.org/10.1007/s42765-023-00276-6
- C. Ge, D. Xu, H. Du, Z. Chen, J. Chen et al., Recent advances in fibrous materials for interfacial solar steam generation. Adv. Fiber Mater. 5(3), 791 (2022). https://doi.org/10.1007/s42765-022-00228-6
- J. Han, W. Xing, J. Yan, J. Wen, Y. Liu et al., Stretchable and superhydrophilic polyaniline/halloysite decorated nanofiber composite evaporator for high efficiency seawater desalination. Adv. Fiber Mater. 4(5), 1233 (2022). https://doi.org/10.1007/s42765-022-00172-5
- Z. Liu, Q. Zhong, N. Wu, H. Zhou, L. Wang et al., Vertically symmetrical evaporator based on photothermal fabrics for efficient continuous desalination through inversion strategy. Desalination 509(1), 115072 (2021). https://doi.org/10.1016/j.desal.2021.115072
- D. Xu, Z. Zhu, J. Li, Recent progress in electrospun nanofibers for the membrane distillation of hypersaline wastewaters. Adv. Fiber Mater. 4(6), 1357 (2022). https://doi.org/10.1007/s42765-022-00193-0
- Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired mxene-decorated 3d honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14(1), 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
- X. Zhou, Y. Guo, F. Zhao, G. Yu, Hydrogels as an emerging material platform for solar water purification. Acc. Chem. Res. 52(11), 3244 (2019). https://doi.org/10.1021/acs.accounts.9b00455
- Y. Guo, J. Bae, Z. Fang, P. Li, F. Zhao et al., Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 120(15), 7642 (2020). https://doi.org/10.1021/acs.chemrev.0c00345
- Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356(6337), eaff3627 (2017). https://doi.org/10.1126/science.aaf3627
- Y. Guo, X. Zhao, F. Zhao, Z. Jiao, X. Zhou et al., Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 13(7), 2087 (2020). https://doi.org/10.1039/d0ee00399a
- X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yua, A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11, 1985 (2018). https://doi.org/10.1039/x0xx00000x
- L. Li, N. He, B. Jiang, K. Yu, Q. Zhang et al., Highly salt-resistant 3D hydrogel evaporator for continuous solar desalination via localized crystallization. Adv. Funct. Mater. 31(43), 2104380 (2021). https://doi.org/10.1002/adfm.202104380
- B. Wang, H. Zhang, N. He, H. Wang, B. Jiang et al., Mangrove root-inspired evaporator enables high-rate salt-resistant solar desalination. Sep. Purif. Technol. 314, 123490 (2023). https://doi.org/10.1016/j.seppur.2023.123490
- N. He, Y. Yang, H. Wang, F. Li, B. Jiang et al., Ion-transfer engineering via janus hydrogels enables ultra-high performance and salt-resistant solar desalination. Adv. Mater. 35(24), 2300189 (2023). https://doi.org/10.1002/adma.202300189
- L. Li, N. He, S. Yang, Q. Zhang, H. Zhang et al., Strong tough hydrogel solar evaporator with wood skeleton construction enabling ultra-durable brine desalination. EcoMat 5(1), e12282 (2022). https://doi.org/10.1002/eom2.12282
- Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi et al., Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5(6), eaaw5484 (2019). https://doi.org/10.1126/sciadv.aaw5484
- H. Zou, X. Meng, X. Zhao, J. Qiu, Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv. Mater. 35(5), 2207262 (2023). https://doi.org/10.1002/adma.202207262
- F. Li, N. Li, S. Wang, L. Qiao, L. Yu et al., Self-repairing and damage-tolerant hydrogels for efficient solar-powered water purification and desalination. Adv. Funct. Mater. 31(40), 2104464 (2021). https://doi.org/10.1002/adfm.202104464
- F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5(5), 388 (2020). https://doi.org/10.1038/s41578-020-0182-4
- J. Zeng, Q. Wang, Y. Shi, P. Liu, R. Chen, Osmotic pumping and salt rejection by polyelectrolyte hydrogel for continuous solar desalination. Adv. Energy Mater. 9(38), 1900552 (2019). https://doi.org/10.1002/aenm.201900552
- X. Li, G. Ni, T. Cooper, N. Xu, J. Li et al., Measuring conversion efficiency of solar vapor generation. Joule 3(8), 1798 (2019). https://doi.org/10.1016/j.joule.2019.06.009
- B.V. Crist, Handbooks of Monochromatic XPS Spectra (XPS International Inc.; California, 1999), pp. 93–98, 241–252, 307–311
- F. Mo, Z. Chen, G. Liang, D. Wang, Y. Zhao et al., Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv. Energy Mater. 10(16), 2000035 (2020). https://doi.org/10.1002/aenm.202000035
- H. Qiu, E. Wanigasekara, Y. Zhang, T. Tran, D.W. Armstrong, Development and evaluation of new zwitterionic hydrophilic interaction liquid chromatography stationary phases based on 3-p, p-diphenylphosphonium-propylsulfonate. J. Chromatogr. A 1218(44), 8075 (2011). https://doi.org/10.1016/j.chroma.2011.09.016
- H. Ju, A.C. Sagle, B.D. Freeman, J.I. Mardel, A.J. Hill, Characterization of sodium chloride and water transport in crosslinked poly(ethylene oxide) hydrogels. J. Membr. Sci. 358(1–2), 131 (2010). https://doi.org/10.1016/j.memsci.2010.04.035
- R. Naohara, S. Namai, J. Kamiyama, T. Ikeda-Fukazawa, Structure and diffusive properties of water in polymer hydrogels. J. Phys. Chem. B 126(40), 7992 (2022). https://doi.org/10.1021/acs.jpcb.2c03069
- F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13(6), 489 (2018). https://doi.org/10.1038/s41565-018-0097-z
- J.-F. Louf, N.B. Lu, M.G. O’Connell, H.J. Cho, S.S. Datta, Under pressure: Hydrogel swelling in a granular medium. Sci. Adv. 7(7), eabd711 (2021). https://doi.org/10.1126/sciadv.abd2711
- S. Sarkar, A.K. SenGupta, P. Prakash, The donnan membrane principle: opportunities for sustainable engineered processes and materials. Environ. Sci. Technol. 44(4), 1161 (2010). https://doi.org/10.1021/es9024029
- K. Zuo, K. Wang, R.M. DuChanois, Q. Fang, E.M. Deemer et al., Selective membranes in water and wastewater treatment: Role of advanced materials. Mater. Today 50, 516 (2021). https://doi.org/10.1016/j.mattod.2021.06.013
- L. Li, J. Zhang, Highly salt-resistant and all-weather solar-driven interfacial evaporators with photothermal and electrothermal effects based on janus graphene@silicone sponges. Nano Energy 81, 105682 (2021). https://doi.org/10.1016/j.nanoen.2020.105682
- X. Dong, L. Cao, Y. Si, B. Ding, H. Deng, Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 32(34), 1908269 (2020). https://doi.org/10.1002/adma.201908269
- L. Zhu, L. Sun, H. Zhang, H. Aslan, Y. Sun et al., A solution to break the salt barrier for high-rate sustainable solar desalination. Energy Environ. Sci. 14(4), 2451 (2021). https://doi.org/10.1039/d1ee00113b
- L. Wu, Z. Dong, Z. Cai, T. Ganapathy, N.X. Fang et al., Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11(1), 521 (2020). https://doi.org/10.1038/s41467-020-14366-1
- J.P. Gong, Why are double network hydrogels so tough? Soft Matter 6(12), 2583 (2010). https://doi.org/10.1039/b924290b
- J.Y. Sun, X. Zhao, W.R. Illeperuma, O. Chaudhuri, K.H. Oh et al., Highly stretchable and tough hydrogels. Nature 489(7414), 133 (2012). https://doi.org/10.1038/nature11409
- G. Chen, T. Li, C. Chen, W. Kong, M. Jiao et al., Scalable wood hydrogel membrane with nanoscale channels. ACS Nano 15(7), 11244 (2021). https://doi.org/10.1021/acsnano.0c10117
- W. Kong, C. Wang, C. Jia, Y. Kuang, G. Pastel et al., Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater. 30(39), 1801934 (2018). https://doi.org/10.1002/adma.201801934
- Y. Guo, Y. Ying, Y. Mao, X. Peng, B. Chen, Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed. 55(48), 15120 (2016). https://doi.org/10.1002/anie.201607329
- X. Li, Z. Wang, H. Lu, C. Zhao, H. Na et al., Electrochemical properties of sulfonated peek used for ion exchange membranes. J. Membr. Sci. 254(1–2), 147 (2005). https://doi.org/10.1016/j.memsci.2004.12.051
- L. Cao, W. Guo, W. Ma, L. Wang, F. Xia et al., Towards understanding the nanofluidic reverse electrodialysis system: Well matched charge selectivity and ionic composition. Energy Environ. Sci. 4(6), 2259 (2011). https://doi.org/10.1039/c1ee01088c
- Z. Zhang, L. Wen, L. Jiang, Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 6(7), 622 (2021). https://doi.org/10.1038/s41578-021-00300-4
- X. Tong, S. Liu, J. Crittenden, Y. Chen, Nanofluidic membranes to address the challenges of salinity gradient power harvesting. ACS Nano 15(4), 5838 (2021). https://doi.org/10.1021/acsnano.0c09513
- J.G. Hong, W. Zhang, J. Luo, Y. Chen, Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: The effect of monovalent and multivalent ions. Appl. Energy 110, 244 (2013). https://doi.org/10.1016/j.apenergy.2013.04.015
- R.H. Stokes, R.A. Robinson, Ionic hydration and activity in electrolyte solutions. J. Am. Chem. Soc. 70(5), 1870 (1948). https://doi.org/10.1021/ja01185a065
- Y. Wu, W. Xin, X.-Y. Kong, J. Chen, Y. Qian et al., Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting. Mater. Horizons. 7(10), 2702 (2020). https://doi.org/10.1039/d0mh00979b
- P. Yang, K. Liu, Q. Chen, J. Li, J. Duan et al., Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 10(9), 1923 (2017). https://doi.org/10.1039/c7ee01804e
- Y. Liu, L. Yeh, M. Zheng, K.C.W. Wu, Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Sci. Adv. 7(10), abe9924 (2021). https://doi.org/10.1126/sciadv.abe9924
References
M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Sci. Adv. 2(2), e1500323 (2016). https://doi.org/10.1126/sciadv.1500323
H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of cof membranes for water desalination. Nano-Micro Lett. 14(1), 216 (2022). https://doi.org/10.1007/s40820-022-00968-5
X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3d graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14(1), 174 (2022). https://doi.org/10.1007/s40820-022-00923-4
Y. Jiang, L. Chai, D. Zhang, F. Ouyang, X. Zhou et al., Facet-controlled LiMn2O4/c as deionization electrode with enhanced stability and high desalination performance. Nano-Micro Lett. 14(1), 176 (2022). https://doi.org/10.1007/s40820-022-00897-3
X. He, Fundamental perspectives on the electrochemical water applications of metal-organic frameworks. Nano-Micro Lett. 15(1), 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
S. Shen, J. Fu, J. Yi, L. Ma, F. Sheng et al., High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13(1), 194 (2021). https://doi.org/10.1007/s40820-021-00695-3
M. Elimelech, W.A. Phillip, The future of seawater desalination: Energy, technology, and the environment. Sci. Adv. 333(6043), 712 (2011). https://doi.org/10.1126/science.1200488
M. Cañedo-Argüelles, C.P. Hawkins, B.J. Kefford, R.B. Schäfer, B.J. Dyack et al., Saving freshwater from salts. Science 351(6276), 914 (2016). https://doi.org/10.1126/science.aad3488
M. Canedo-Arguelles, B.J. Kefford, C. Piscart, N. Prat, R.B. Schafe et al., Salinisation of rivers: An urgent ecological issue. Environ. Pollut. 173, 157 (2013). https://doi.org/10.1016/j.envpol.2012.10.011
Y. Zhang, T. Xiong, D.K. Nandakumar, S.C. Tan, Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation. Adv. Sci. 7(9), 1903478 (2020). https://doi.org/10.1002/advs.201903478
G. Liu, T. Chen, J. Xu, G. Yao, J. Xie et al., Salt-rejecting solar interfacial evaporation. Cell Rep Phys Sci. 2(1), 100310 (2021). https://doi.org/10.1016/j.xcrp.2020.100310
Q. Zhang, L. Li, B. Jiang, H. Zhang, N. He et al., Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination. ACS Appl. Mater. Interfaces 12(25), 28179 (2020). https://doi.org/10.1021/acsami.0c05806
X. Chen, S. He, M. Falinski, Y. Wang, T. Li et al., Sustainable off-grid desalination of hypersaline waters by janus wood evaporator. Energy Environ. Sci. 14(10), 5347 (2021). https://doi.org/10.1039/d1ee01505b
H. Zhang, L. Li, N. He, H. Wang, B. Wang et al., Bioinspired hierarchical evaporator via cell wall engineering for highly efficient and sustainable solar desalination. EcoMat 4(5), e12216 (2022). https://doi.org/10.1002/eom2.12216
L. Chen, S. He, W. Huang, D. Liu, T. Bi et al., 3d-printed tripodal porous wood-mimetic cellulosic composite evaporator for salt-free water desalination. Compos. B Eng. 263, 110830 (2023). https://doi.org/10.1016/j.compositesb.2023.110830
Y. Kuang, C. Chen, S. He, E.M. Hitz, Y. Wang et al., A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 31(23), 1900498 (2019). https://doi.org/10.1002/adma.201900498
X. Dong, Y. Si, C. Chen, B. Ding, H. Deng, Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 15(7), 12256 (2021). https://doi.org/10.1021/acsnano.1c04035
J. Chen, J.L. Yin, B. Li, Z. Ye, D. Liu et al., Janus evaporators with self-recovering hydrophobicity for salt-rejecting interfacial solar desalination. ACS Nano 14(12), 17419 (2020). https://doi.org/10.1021/acsnano.0c07677
W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li et al., Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 8(14), 1702884 (2018). https://doi.org/10.1002/aenm.201702884
F. Wu, S. Qiang, X.D. Zhu, W. Jiao, L. Liu et al., Fibrous mxene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15(1), 71 (2023). https://doi.org/10.1007/s40820-023-01030-8
C. Xu, M. Gao, X. Yu, J. Zhang, Y. Cheng et al., Fibrous aerogels with tunable superwettability for high-performance solar-driven interfacial evaporation. Nano-Micro Lett. 15(1), 64 (2023). https://doi.org/10.1007/s40820-023-01034-4
Z. Liu, Z. Zhou, N. Wu, R. Zhang, B. Zhu et al., Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination. ACS Nano 15(8), 13007 (2021). https://doi.org/10.1021/acsnano.1c01900
W. Chong, R. Meng, Z. Liu, Q. Liu, J. Hu et al., Superhydrophilic polydopamine-modified carbon-fiber membrane with rapid seawater-transferring ability for constructing efficient hanging-model evaporator. Adv. Fiber Mater. 5(3), 1063 (2023). https://doi.org/10.1007/s42765-023-00276-6
C. Ge, D. Xu, H. Du, Z. Chen, J. Chen et al., Recent advances in fibrous materials for interfacial solar steam generation. Adv. Fiber Mater. 5(3), 791 (2022). https://doi.org/10.1007/s42765-022-00228-6
J. Han, W. Xing, J. Yan, J. Wen, Y. Liu et al., Stretchable and superhydrophilic polyaniline/halloysite decorated nanofiber composite evaporator for high efficiency seawater desalination. Adv. Fiber Mater. 4(5), 1233 (2022). https://doi.org/10.1007/s42765-022-00172-5
Z. Liu, Q. Zhong, N. Wu, H. Zhou, L. Wang et al., Vertically symmetrical evaporator based on photothermal fabrics for efficient continuous desalination through inversion strategy. Desalination 509(1), 115072 (2021). https://doi.org/10.1016/j.desal.2021.115072
D. Xu, Z. Zhu, J. Li, Recent progress in electrospun nanofibers for the membrane distillation of hypersaline wastewaters. Adv. Fiber Mater. 4(6), 1357 (2022). https://doi.org/10.1007/s42765-022-00193-0
Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired mxene-decorated 3d honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14(1), 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
X. Zhou, Y. Guo, F. Zhao, G. Yu, Hydrogels as an emerging material platform for solar water purification. Acc. Chem. Res. 52(11), 3244 (2019). https://doi.org/10.1021/acs.accounts.9b00455
Y. Guo, J. Bae, Z. Fang, P. Li, F. Zhao et al., Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 120(15), 7642 (2020). https://doi.org/10.1021/acs.chemrev.0c00345
Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356(6337), eaff3627 (2017). https://doi.org/10.1126/science.aaf3627
Y. Guo, X. Zhao, F. Zhao, Z. Jiao, X. Zhou et al., Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 13(7), 2087 (2020). https://doi.org/10.1039/d0ee00399a
X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yua, A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11, 1985 (2018). https://doi.org/10.1039/x0xx00000x
L. Li, N. He, B. Jiang, K. Yu, Q. Zhang et al., Highly salt-resistant 3D hydrogel evaporator for continuous solar desalination via localized crystallization. Adv. Funct. Mater. 31(43), 2104380 (2021). https://doi.org/10.1002/adfm.202104380
B. Wang, H. Zhang, N. He, H. Wang, B. Jiang et al., Mangrove root-inspired evaporator enables high-rate salt-resistant solar desalination. Sep. Purif. Technol. 314, 123490 (2023). https://doi.org/10.1016/j.seppur.2023.123490
N. He, Y. Yang, H. Wang, F. Li, B. Jiang et al., Ion-transfer engineering via janus hydrogels enables ultra-high performance and salt-resistant solar desalination. Adv. Mater. 35(24), 2300189 (2023). https://doi.org/10.1002/adma.202300189
L. Li, N. He, S. Yang, Q. Zhang, H. Zhang et al., Strong tough hydrogel solar evaporator with wood skeleton construction enabling ultra-durable brine desalination. EcoMat 5(1), e12282 (2022). https://doi.org/10.1002/eom2.12282
Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi et al., Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5(6), eaaw5484 (2019). https://doi.org/10.1126/sciadv.aaw5484
H. Zou, X. Meng, X. Zhao, J. Qiu, Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv. Mater. 35(5), 2207262 (2023). https://doi.org/10.1002/adma.202207262
F. Li, N. Li, S. Wang, L. Qiao, L. Yu et al., Self-repairing and damage-tolerant hydrogels for efficient solar-powered water purification and desalination. Adv. Funct. Mater. 31(40), 2104464 (2021). https://doi.org/10.1002/adfm.202104464
F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5(5), 388 (2020). https://doi.org/10.1038/s41578-020-0182-4
J. Zeng, Q. Wang, Y. Shi, P. Liu, R. Chen, Osmotic pumping and salt rejection by polyelectrolyte hydrogel for continuous solar desalination. Adv. Energy Mater. 9(38), 1900552 (2019). https://doi.org/10.1002/aenm.201900552
X. Li, G. Ni, T. Cooper, N. Xu, J. Li et al., Measuring conversion efficiency of solar vapor generation. Joule 3(8), 1798 (2019). https://doi.org/10.1016/j.joule.2019.06.009
B.V. Crist, Handbooks of Monochromatic XPS Spectra (XPS International Inc.; California, 1999), pp. 93–98, 241–252, 307–311
F. Mo, Z. Chen, G. Liang, D. Wang, Y. Zhao et al., Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv. Energy Mater. 10(16), 2000035 (2020). https://doi.org/10.1002/aenm.202000035
H. Qiu, E. Wanigasekara, Y. Zhang, T. Tran, D.W. Armstrong, Development and evaluation of new zwitterionic hydrophilic interaction liquid chromatography stationary phases based on 3-p, p-diphenylphosphonium-propylsulfonate. J. Chromatogr. A 1218(44), 8075 (2011). https://doi.org/10.1016/j.chroma.2011.09.016
H. Ju, A.C. Sagle, B.D. Freeman, J.I. Mardel, A.J. Hill, Characterization of sodium chloride and water transport in crosslinked poly(ethylene oxide) hydrogels. J. Membr. Sci. 358(1–2), 131 (2010). https://doi.org/10.1016/j.memsci.2010.04.035
R. Naohara, S. Namai, J. Kamiyama, T. Ikeda-Fukazawa, Structure and diffusive properties of water in polymer hydrogels. J. Phys. Chem. B 126(40), 7992 (2022). https://doi.org/10.1021/acs.jpcb.2c03069
F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13(6), 489 (2018). https://doi.org/10.1038/s41565-018-0097-z
J.-F. Louf, N.B. Lu, M.G. O’Connell, H.J. Cho, S.S. Datta, Under pressure: Hydrogel swelling in a granular medium. Sci. Adv. 7(7), eabd711 (2021). https://doi.org/10.1126/sciadv.abd2711
S. Sarkar, A.K. SenGupta, P. Prakash, The donnan membrane principle: opportunities for sustainable engineered processes and materials. Environ. Sci. Technol. 44(4), 1161 (2010). https://doi.org/10.1021/es9024029
K. Zuo, K. Wang, R.M. DuChanois, Q. Fang, E.M. Deemer et al., Selective membranes in water and wastewater treatment: Role of advanced materials. Mater. Today 50, 516 (2021). https://doi.org/10.1016/j.mattod.2021.06.013
L. Li, J. Zhang, Highly salt-resistant and all-weather solar-driven interfacial evaporators with photothermal and electrothermal effects based on janus graphene@silicone sponges. Nano Energy 81, 105682 (2021). https://doi.org/10.1016/j.nanoen.2020.105682
X. Dong, L. Cao, Y. Si, B. Ding, H. Deng, Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 32(34), 1908269 (2020). https://doi.org/10.1002/adma.201908269
L. Zhu, L. Sun, H. Zhang, H. Aslan, Y. Sun et al., A solution to break the salt barrier for high-rate sustainable solar desalination. Energy Environ. Sci. 14(4), 2451 (2021). https://doi.org/10.1039/d1ee00113b
L. Wu, Z. Dong, Z. Cai, T. Ganapathy, N.X. Fang et al., Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11(1), 521 (2020). https://doi.org/10.1038/s41467-020-14366-1
J.P. Gong, Why are double network hydrogels so tough? Soft Matter 6(12), 2583 (2010). https://doi.org/10.1039/b924290b
J.Y. Sun, X. Zhao, W.R. Illeperuma, O. Chaudhuri, K.H. Oh et al., Highly stretchable and tough hydrogels. Nature 489(7414), 133 (2012). https://doi.org/10.1038/nature11409
G. Chen, T. Li, C. Chen, W. Kong, M. Jiao et al., Scalable wood hydrogel membrane with nanoscale channels. ACS Nano 15(7), 11244 (2021). https://doi.org/10.1021/acsnano.0c10117
W. Kong, C. Wang, C. Jia, Y. Kuang, G. Pastel et al., Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater. 30(39), 1801934 (2018). https://doi.org/10.1002/adma.201801934
Y. Guo, Y. Ying, Y. Mao, X. Peng, B. Chen, Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed. 55(48), 15120 (2016). https://doi.org/10.1002/anie.201607329
X. Li, Z. Wang, H. Lu, C. Zhao, H. Na et al., Electrochemical properties of sulfonated peek used for ion exchange membranes. J. Membr. Sci. 254(1–2), 147 (2005). https://doi.org/10.1016/j.memsci.2004.12.051
L. Cao, W. Guo, W. Ma, L. Wang, F. Xia et al., Towards understanding the nanofluidic reverse electrodialysis system: Well matched charge selectivity and ionic composition. Energy Environ. Sci. 4(6), 2259 (2011). https://doi.org/10.1039/c1ee01088c
Z. Zhang, L. Wen, L. Jiang, Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 6(7), 622 (2021). https://doi.org/10.1038/s41578-021-00300-4
X. Tong, S. Liu, J. Crittenden, Y. Chen, Nanofluidic membranes to address the challenges of salinity gradient power harvesting. ACS Nano 15(4), 5838 (2021). https://doi.org/10.1021/acsnano.0c09513
J.G. Hong, W. Zhang, J. Luo, Y. Chen, Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: The effect of monovalent and multivalent ions. Appl. Energy 110, 244 (2013). https://doi.org/10.1016/j.apenergy.2013.04.015
R.H. Stokes, R.A. Robinson, Ionic hydration and activity in electrolyte solutions. J. Am. Chem. Soc. 70(5), 1870 (1948). https://doi.org/10.1021/ja01185a065
Y. Wu, W. Xin, X.-Y. Kong, J. Chen, Y. Qian et al., Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting. Mater. Horizons. 7(10), 2702 (2020). https://doi.org/10.1039/d0mh00979b
P. Yang, K. Liu, Q. Chen, J. Li, J. Duan et al., Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 10(9), 1923 (2017). https://doi.org/10.1039/c7ee01804e
Y. Liu, L. Yeh, M. Zheng, K.C.W. Wu, Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Sci. Adv. 7(10), abe9924 (2021). https://doi.org/10.1126/sciadv.abe9924