p-Type Two-Dimensional Semiconductors: From Materials Preparation to Electronic Applications
Corresponding Author: Lei Tang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 230
Abstract
Two-dimensional (2D) materials are regarded as promising candidates in many applications, including electronics and optoelectronics, because of their superior properties, including atomic-level thickness, tunable bandgaps, large specific surface area, and high carrier mobility. In order to bring 2D materials from the laboratory to industrialized applications, materials preparation is the first prerequisite. Compared to the n-type analogs, the family of p-type 2D semiconductors is relatively small, which limits the broad integration of 2D semiconductors in practical applications such as complementary logic circuits. So far, many efforts have been made in the preparation of p-type 2D semiconductors. In this review, we overview recent progresses achieved in the preparation of p-type 2D semiconductors and highlight some promising methods to realize their controllable preparation by following both the top–down and bottom–up strategies. Then, we summarize some significant application of p-type 2D semiconductors in electronic and optoelectronic devices and their superiorities. In end, we conclude the challenges existed in this field and propose the potential opportunities in aspects from the discovery of novel p-type 2D semiconductors, their controlled mass preparation, compatible engineering with silicon production line, high-κ dielectric materials, to integration and applications of p-type 2D semiconductors and their heterostructures in electronic and optoelectronic devices. Overall, we believe that this review will guide the design of preparation systems to fulfill the controllable growth of p-type 2D semiconductors with high quality and thus lay the foundations for their potential application in electronics and optoelectronics.
Highlights:
1 Compared to the n-type two-dimensional (2D) semiconductors, the family of p-type 2D semiconductors is relatively small, which limits the broad integration of 2D semiconductors in potential applications. Here, the discovery and preparation of p-type 2D semiconductors are very important and meaningful.
2 This review presents a timely and in-depth overview on the preparation and applications of p-type 2D semiconductors, which would help the related researchers to grasp the dynamics of this field and thus lay the foundations for their potential application in electronics and optoelectronics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Zhu, C. Wen, A.A. Aljarb, F. Xue, X. Xu et al., The development of integrated circuits based on two-dimensional materials. Nat. Electron. 4(11), 775–785 (2021). https://doi.org/10.1038/s41928-021-00672-z
- M. Li, S. Su, H.-S.P. Wong, L.-J. Li, How 2D semiconductors could extend moore’s law. Nature 567(7747), 169–170 (2019). https://doi.org/10.1038/d41586-019-00793-8
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004). https://doi.org/10.1126/science.1102896
- Q. Wu, J. Zhang, L. Tang, U. Khan, H. Nong et al., Iodine-assisted ultrafast growth of high-quality monolayer MoS2 with sulfur-terminated edges. Natl. Sci. Open (2023). https://doi.org/10.1360/nso/20230009
- V.K. Sangwan, H.S. Lee, H. Bergeron, I. Balla, M.E. Beck et al., Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554(7693), 500–504 (2018). https://doi.org/10.1038/nature25747
- L. Tang, C. Teng, R. Xu, Z. Zhang, U. Khan et al., Controlled growth of wafer-scale transition metal dichalcogenides with a vertical composition gradient for artificial synapses with high linearity. ACS Nano 16(8), 12318–12327 (2022). https://doi.org/10.1021/acsnano.2c03263
- J. Tang, Q. Wang, J. Tian, X. Li, N. Li et al., Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 14(1), 3633 (2023). https://doi.org/10.1038/s41467-023-39390-9
- G. Xue, X. Sui, P. Yin, Z. Zhou, X. Li et al., Modularized batch production of 12-inch transition metal dichalcogenides by local element supply. Sci. Bull. (2023). https://doi.org/10.1016/j.scib.2023.06.037
- S. Yang, K. Liu, Y. Xu, L. Liu, H. Li et al., Gate dielectrics integration for 2D electronics: challenges, advances, and outlook. Adv. Mater. 35(18), e2207901 (2023). https://doi.org/10.1002/adma.202207901
- S. Zhang, D. Sun, J. Sun, K. Ma, Z. Wei et al., Unraveling the effect of stacking configurations on charge transfer in WS2 and organic semiconductor heterojunctions. Precision Chem. (2023). https://doi.org/10.1021/prechem.3c00057
- Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi et al., Single-layer MoS2 phototransistors. ACS Nano 6(1), 74–80 (2012). https://doi.org/10.1021/nn2024557
- U. Khan, Y. Luo, L. Tang, C. Teng, J. Liu et al., Controlled vapor–solid deposition of millimeter-size single crystal 2D Bi2O2Se for high-performance phototransistors. Adv. Funct. Mater. 29(14), 1807979 (2019). https://doi.org/10.1002/adfm.201807979
- U. Khan, L. Tang, B. Ding, L. Yuting, S. Feng et al., Catalyst-free growth of atomically thin Bi2O2Se nanoribbons for high-performance electronics and optoelectronics. Adv. Funct. Mater. 31(31), 2101170 (2021). https://doi.org/10.1002/adfm.202101170
- N. Li, Q. Wang, C. Shen, Z. Wei, H. Yu et al., Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3, 711–717 (2020). https://doi.org/10.1038/s41928-020-00475-8
- L. Tang, C. Teng, Y. Luo, U. Khan, H. Pan et al., Confined van der waals epitaxial growth of two-dimensional large single-crystal In2Se3 for flexible broadband photodetectors. Research (2019). https://doi.org/10.34133/2019/2763704
- L. Shi, “Rotating” contact for bias-free photodetection with 2D materials. Nat. Nanotechnol. 18(7), 702 (2023). https://doi.org/10.1038/s41565-023-01472-6
- Q. Wu, H. Nong, R. Zheng, R. Zhang, J. Wang et al., Resolidified chalcogen precursors for high-quality 2D semiconductor growth. Angwew. Chem. Int. Ed. 62(29), e202301501 (2023). https://doi.org/10.1002/anie.202301501
- A. Kimel, A. Zvezdin, S. Sharma, S. Shallcross, N. de Sousa et al., The 2022 magneto-optics roadmap. J. Phys. D-Appl. Phys. 55(46), 463003 (2022). https://doi.org/10.1088/1361-6463/ac8da0
- H. Xu, B. Ding, Y. Xu, Z. Huang, D. Wei et al., Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride. Nat. Nanotechn. 17, 1091–1096 (2022). https://doi.org/10.1038/s41565-022-01186-1
- W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615–2622 (2013). https://doi.org/10.1021/nl4007479
- R.-S. Chen, G. Ding, Y. Zhou, S.-T. Han, Fermi-level depinning of 2D transition metal dichalcogenide transistors. J. Mater. Chem. C 9, 11407–11427 (2021). https://doi.org/10.1039/d1tc01463c
- L. Gao, Q. Liao, X. Zhang, X. Liu, L. Gu et al., Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 32(2), e1906646 (2020). https://doi.org/10.1002/adma.201906646
- W. Wang, Y. Meng, Y. Zhang, Z. Zhang, W. Wang et al., Electrically switchable polarization in Bi2O2Se ferroelectric semiconductors. Adv. Mater. 35(12), e2210854 (2023). https://doi.org/10.1002/adma.202210854
- Y. Sheng, T. Chen, Y. Lu, R.J. Chang, S. Sinha et al., High-performance ws2 monolayer light-emitting tunneling devices using 2D materials grown by chemical vapor deposition. ACS Nano 13(4), 4530–4537 (2019). https://doi.org/10.1021/acsnano.9b00211
- R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Perez De Lara, P. Jarillo-Herrero et al., Recent progress in the assembly of nanodevices and van der waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47(1), 53–68 (2018). https://doi.org/10.1039/c7cs00556c
- R. Bian, C. Li, Q. Liu, G. Cao, Q. Fu et al., Recent progress in the synthesis of novel two-dimensional van der waals materials. Natl. Sci. Rev. 9, nwab164 (2021). https://doi.org/10.1093/nsr/nwab164
- H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi et al., High-performance single layered WSe2 p-fets with chemically doped contacts. Nano Lett. 12(7), 3788–3792 (2012). https://doi.org/10.1021/nl301702r
- R. Sharma, A. Dawar, S. Ojha, R. Laishram, V.G. Sathe et al., A thrifty liquid-phase exfoliation (LPE) of MoSe2 and WSe2 nanosheets as channel materials for fet application. J. Electron. Mater. 52(4), 2819–2830 (2023). https://doi.org/10.1007/s11664-023-10245-9
- X. Duan, X. Duan, J. Luo, B. Zhao, J. Li et al., Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl. Sci. Rev. 7(4), 737–744 (2020). https://doi.org/10.1093/nsr/nwz223
- Y. Gao, Y.L. Hong, L.C. Yin, Z. Wu, Z. Yang et al., Ultrafast growth of high-quality monolayer WSe2 on au. Adv. Mater. 29(29), 1700990 (2017). https://doi.org/10.1002/adma.201700990
- Z. Wu, Y. Lyu, Y. Zhang, R. Ding, B. Zheng et al., Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater. 20(9), 1203–1209 (2021). https://doi.org/10.1038/s41563-021-01001-7
- B. Liu, M. Kopf, A.N. Abbas, X. Wang, Q. Guo et al., Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27(30), 4423–4429 (2015). https://doi.org/10.1002/adma.201501758
- N. Li, Y. Zhang, R. Cheng, J. Wang, J. Li et al., Synthesis and optoelectronic applications of a stable p-type 2D material: alpha-mns. ACS Nano 13(11), 12662–12670 (2019). https://doi.org/10.1021/acsnano.9b04205
- C. Zhao, C. Tan, D.H. Lien, X. Song, M. Amani et al., Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat. Nanotechnol. 15(1), 53–58 (2020). https://doi.org/10.1038/s41565-019-0585-9
- A. Zavabeti, P. Aukarasereenont, H. Tuohey, N. Syed, A. Jannat et al., High-mobility p-type semiconducting two-dimensional β-TeO2. Nat. Electron. 4(4), 277–283 (2021). https://doi.org/10.1038/s41928-021-00561-5
- B.Y. Zhang, K. Xu, Q. Yao, A. Jannat, G. Ren et al., Hexagonal metal oxide monolayers derived from the metal-gas interface. Nat. Mater. 20, 1073–1078 (2021). https://doi.org/10.1038/s41563-020-00899-9
- S.-Y. Ahn, S.C. Jang, A. Song, K.-B. Chung, Y.J. Kim et al., Performance enhancement of p-type SnO semiconductors via siox passivation. Mater. Today Commun. 26, 101747 (2021). https://doi.org/10.1016/j.mtcomm.2020.101747
- F. Shan, A. Liu, H. Zhu, W. Kong, J. Liu et al., High-mobility p-type niox thin-film transistors processed at low temperatures with Al2O3 high-k dielectric. J. Mater. Chem. C 4(40), 9438–9444 (2016). https://doi.org/10.1039/c6tc02137a
- Y.L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma et al., Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 369(6504), 670–674 (2020). https://doi.org/10.1126/science.abb7023
- S.A. Arabi, J. Dong, M. Mirza, P. Yu, L. Wang et al., Nanoseed assisted pvt growth of ultrathin 2d pentacene molecular crystal directly onto SiO2 substrate. Crystal Growth Design. 16(5), 2624–2630 (2016). https://doi.org/10.1021/acs.cgd.5b01726
- K.S. Novoselov, Graphene: materials in the flatland (nobel lecture). Angew. Chem. Int. Ed. 50(31), 6986–7002 (2011). https://doi.org/10.1002/anie.201101502
- Y. Huang, Y.H. Pan, R. Yang, L.H. Bao, L. Meng et al., Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11(1), 2453 (2020). https://doi.org/10.1038/s41467-020-16266-w
- Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi et al., Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). https://doi.org/10.1038/nature26160
- Y. Cao, V. Fatemi, A. Demir, S. Fang, S.L. Tomarken et al., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). https://doi.org/10.1038/nature26154
- S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo et al., Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hbn heterostructures. Nano Lett. 18(5), 3172–3179 (2018). https://doi.org/10.1021/acs.nanolett.8b00835
- V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419 (2013). https://doi.org/10.1126/science.1226419
- J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568 (2011). https://doi.org/10.1126/science.1194975
- D. Hanlon, C. Backes, E. Doherty, C.S. Cucinotta, N.C. Berner et al., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6(1), 8563 (2015). https://doi.org/10.1038/ncomms9563
- A.G. Kelly, T. Hallam, C. Backes, A. Harvey, A.S. Esmaeily et al., All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356(6333), 69–73 (2017). https://doi.org/10.1126/science.aal4062
- X. Cai, Y. Luo, B. Liu, H.M. Cheng, Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47(16), 6224–6266 (2018). https://doi.org/10.1039/c8cs00254a
- G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe et al., Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47(9), 3265–3300 (2018). https://doi.org/10.1039/C8CS00084K
- Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He et al., Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50(47), 11093–11097 (2011). https://doi.org/10.1002/anie.201106004
- R.A. Wells, M. Zhang, T.-H. Chen, V. Boureau, M. Caretti et al., High performance semiconducting nanosheets via a scalable powder-based electrochemical exfoliation technique. ACS Nano 16(4), 5719–5730 (2022). https://doi.org/10.1021/acsnano.1c10739
- D. Liu, J. Wang, S. Bian, Q. Liu, Y. Gao et al., Photoelectrochemical synthesis of ammonia with black phosphorus. Adv. Funct. Mater. 30(24), 2002731 (2020). https://doi.org/10.1002/adfm.202002731
- M. Nakano, Y. Wang, Y. Kashiwabara, H. Matsuoka, Y. Iwasa, Layer-by-layer epitaxial growth of scalable WSe2 on sapphire by molecular beam epitaxy. Nano Lett. 17(9), 5595–5599 (2017). https://doi.org/10.1021/acs.nanolett.7b02420
- H.J. Liu, L. Jiao, L. Xie, F. Yang, J.L. Chen et al., Molecular-beam epitaxy of monolayer and bilayer WSe2: a scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy. 2D Mater. 2(3), 4004 (2015). https://doi.org/10.1088/2053-1583/2/3/034004
- C.-H. Su. In Fundamentals of Physical Vapor Transport Process. ed. by SU C-H (Springer International Publishing; Cham, 2020), pp. 9–38
- S. Wu, C. Huang, G. Aivazian, J.S. Ross, D.H. Cobden et al., Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 7(3), 2768–2772 (2013). https://doi.org/10.1021/nn4002038
- Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo et al., Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357(6353), 788–792 (2017). https://doi.org/10.1126/science.aan6814
- M. Liu, S. Feng, Y. Hou, S. Zhao, L. Tang et al., High yield growth and doping of black phosphorus with tunable electronic properties. Mater. Today 36, 91–101 (2020). https://doi.org/10.1016/j.mattod.2019.12.027
- S. Anil, J. Venkatesan, M.S. Shim, E.P. Chalisserry, S.K. Kim, In 4 - Bone Response to Calcium Phosphate Coatings for Dental Implants. ed. by PIATTELLI A (Woodhead Publishing; 2017), pp. 65–88
- L. Tang, J. Tan, H. Nong, B. Liu, H.-M. Cheng, Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism. Acc. Mater. Res. 2(1), 36–47 (2020). https://doi.org/10.1021/accountsmr.0c00063
- L. Tang, T. Li, Y. Luo, S. Feng, Z. Cai et al., Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides. ACS Nano 14(4), 4646–4653 (2020). https://doi.org/10.1021/acsnano.0c00296
- S. Feng, J. Tan, S. Zhao, S. Zhang, U. Khan et al., Synthesis of ultrahigh-quality monolayer molybdenum disulfide through in situ defect healing with thiol molecules. Small 16(35), e2003357 (2020). https://doi.org/10.1002/smll.202003357
- L. Chen, B. Liu, M. Ge, Y. Ma, A.N. Abbas et al., Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano 9(8), 8368–8375 (2015). https://doi.org/10.1021/acsnano.5b03043
- T. Li, W. Guo, L. Ma, W. Li, Z. Yu et al., Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16(11), 1201–1207 (2021). https://doi.org/10.1038/s41565-021-00963-8
- L. Liu, T. Li, L. Ma, W. Li, S. Gao et al., Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605(7908), 69–75 (2022). https://doi.org/10.1038/s41586-022-04523-5
- J. Wang, X. Xu, T. Cheng, L. Gu, R. Qiao et al., Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 17, 33–38 (2021). https://doi.org/10.1038/s41565-021-01004-0
- B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma et al., Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 9(6), 6119–6127 (2015). https://doi.org/10.1021/acsnano.5b01301
- G. Clark, S. Wu, P. Rivera, J. Finney, P. Nguyen et al., Vapor-transport growth of high optical quality WSe2 monolayers. APL Mater. 2(10), 101101 (2014). https://doi.org/10.1063/1.4896591
- S.S. Li, S.F. Wang, D.M. Tang, W.J. Zhao, H.L. Xu et al., Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 1(1), 60–66 (2015). https://doi.org/10.1016/j.apmt.2015.09.001
- J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen et al., A library of atomically thin metal chalcogenides. Nature 556(7701), 355–359 (2018). https://doi.org/10.1038/s41586-018-0008-3
- S. Li, Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides. Science (2021). https://doi.org/10.1016/j.isci.2021.103229
- S. Li, J. Hong, B. Gao, Y.C. Lin, H.E. Lim et al., Tunable doping of rhenium and vanadium into transition metal dichalcogenides for two-dimensional electronics. Adv. Sci. 8(11), e2004438 (2021). https://doi.org/10.1002/advs.202004438
- J. Zou, Z. Cai, Y. Lai, J. Tan, R. Zhang et al., Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano 15(4), 7340–7347 (2021). https://doi.org/10.1021/acsnano.1c00596
- L. Tang, R.Z. Xu, J.Y. Tan, Y.T. Luo, J.Y. Zou et al., Modulating electronic structure of monolayer transition metal dichalcogenides by substitutional nb-doping. Adv. Funct. Mater. 31(5), 2006941 (2021). https://doi.org/10.1002/adfm.202006941
- T.S. Kim, K.P. Dhakal, E. Park, G. Noh, H.J. Chai et al., Gas-phase alkali metal-assisted mocvd growth of 2D transition metal dichalcogenides for large-scale precise nucleation control. Small 18(20), e2106368 (2022). https://doi.org/10.1002/smll.202106368
- D. Andrzejewski, M. Marx, A. Grundmann, O. Pfingsten, H. Kalisch et al., Improved luminescence properties of MoS2 monolayers grown via mocvd: role of pre-treatment and growth parameters. Nanotechnology 29(29), 295704 (2018). https://doi.org/10.1088/1361-6528/aabbb9
- H. Cun, M. Macha, H. Kim, K. Liu, Y. Zhao et al., Wafer-scale mocvd growth of monolayer MoS2 on sapphire and SiO2. Nano Res. 12(10), 2646–2652 (2019). https://doi.org/10.1007/s12274-019-2502-9
- K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656–660 (2015). https://doi.org/10.1038/nature14417
- H. Zhu, N. Nayir, T.H. Choudhury, A. Bansal, B. Huet et al., Step engineering for nucleation and domain orientation control in WSe2 epitaxy on c-plane sapphire. Nat. Nanotechnol. (2023). https://doi.org/10.1038/s41565-023-01456-6
- X. Zhang, F. Zhang, Y. Wang, D.S. Schulman, T. Zhang et al., Defect-controlled nucleation and orientation of WSe2 on hBN: a route to single-crystal epitaxial monolayers. ACS Nano 13(3), 3341–3352 (2019). https://doi.org/10.1021/acsnano.8b09230
- J.D. Lin, C. Han, F. Wang, R. Wang, D. Xiang et al., Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 8(5), 5323–5329 (2014). https://doi.org/10.1021/nn501580c
- L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu et al., Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14(11), 6275–6280 (2014). https://doi.org/10.1021/nl502603d
- J. Ren, C. Teng, Z. Cai, H. Pan, J. Liu et al., Controlled one step thinning and doping of two-dimensional transition metal dichalcogenides. Sci. China Mater. 62(12), 1837–1845 (2019). https://doi.org/10.1007/s40843-019-9461-8
- M. Tosun, L. Chan, M. Amani, T. Roy, G.H. Ahn et al., Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano 10(7), 6853–6860 (2016). https://doi.org/10.1021/acsnano.6b02521
- A. Azcatl, X. Qin, A. Prakash, C. Zhang, L. Cheng et al., Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 16(9), 5437–5443 (2016). https://doi.org/10.1021/acs.nanolett.6b01853
- B. Tang, Z.G. Yu, L. Huang, J. Chai, S.L. Wong et al., Direct n- to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano 12(3), 2506–2513 (2018). https://doi.org/10.1021/acsnano.7b08261
- T. Yang, B. Zheng, Z. Wang, T. Xu, C. Pan et al., Van der waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 8(1), 1906 (2017). https://doi.org/10.1038/s41467-017-02093-z
- H. Jiao, X. Wang, Y. Chen, S. Guo, S. Wu et al., Hgcdte/black phosphorus van der waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. Sci. Adv. 8(19), eabn1811 (2022). https://doi.org/10.1126/sciadv.abn1811
- H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu et al., Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10(8), 707–713 (2015). https://doi.org/10.1038/nnano.2015.112
- P.K. Venuthurumilli, P.D. Ye, X. Xu, Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 12(5), 4861–4867 (2018). https://doi.org/10.1021/acsnano.8b01660
- H.-M. Li, D. Lee, D. Qu, X. Liu, J. Ryu et al., Ultimate thin vertical p–n junction composed of two-dimensional layered molybdenum disulfide. Nat. Commun. 6(1), 6564 (2015). https://doi.org/10.1038/ncomms7564
- H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu et al., Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707 (2015). https://doi.org/10.1038/nnano.2015.112
- Z. Huang, N. Lu, Z. Wang, S. Xu, J. Guan et al., Large-scale ultrafast strain engineering of CVD-grown two-dimensional materials on strain self-limited deformable nanostructures toward enhanced field-effect transistors. Nano Lett. (2022). https://doi.org/10.1021/acs.nanolett.2c01559
- X. Yu, S. Zhang, H. Zeng, Q.J. Wang, Lateral black phosphorene p–n junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy 25, 34–41 (2016). https://doi.org/10.1016/j.nanoen.2016.04.030
- J. Pu, H. Ou, T. Yamada, N. Wada, H. Naito et al., Continuous color-tunable light-emitting devices based on compositionally graded monolayer transition metal dichalcogenide alloys. Adv. Mater. 34(44), 2203250 (2022). https://doi.org/10.1002/adma.202203250
- L. Kong, X. Zhang, Q. Tao, M. Zhang, W. Dang et al., Doping-free complementary WSe2 circuit via van der waals metal integration. Nat. Commun. 11(1), 1866 (2020). https://doi.org/10.1038/s41467-020-15776-x
- L. Yu, A. Zubair, E.J.G. Santos, X. Zhang, Y. Lin et al., High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits. Nano Lett. 15(8), 4928–4934 (2015). https://doi.org/10.1021/acs.nanolett.5b00668
- J.S. Ross, P. Klement, A.M. Jones, N.J. Ghimire, J. Yan et al., Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9(4), 268–272 (2014). https://doi.org/10.1038/nnano.2014.26
- K. Hao, G. Moody, F. Wu, C.K. Dass, L. Xu et al., Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys. 12(7), 677–682 (2016). https://doi.org/10.1038/nphys3674
- A.M. Jones, H. Yu, N.J. Ghimire, S. Wu, G. Aivazian et al., Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8(9), 634–638 (2013). https://doi.org/10.1038/nnano.2013.151
- J.X. Li, W.Q. Li, S.H. Hung, P.L. Chen, Y.C. Yang et al., Electric control of valley polarization in monolayer WSe2 using a van der waals magnet. Nat. Nanotechnol. 17(7), 721–728 (2022). https://doi.org/10.1038/s41565-022-01115-2
- X. Yang, R. Wu, B. Zheng, Z. Luo, W. You et al., A waveguide-integrated two-dimensional light-emitting diode based on p-type WSe2/n-type CdS nanoribbon heterojunction. ACS Nano 16(3), 4371–4378 (2022). https://doi.org/10.1021/acsnano.1c10607
- R. Soref, Mid-infrared photonics in silicon and germanium. Nat. Photon. 4(8), 495–497 (2010). https://doi.org/10.1038/nphoton.2010.171
- C. Chen, F. Chen, X. Chen, B. Deng, B. Eng et al., Bright mid-infrared photoluminescence from thin-film black phosphorus. Nano Lett. 19(3), 1488–1493 (2019). https://doi.org/10.1021/acs.nanolett.8b04041
- C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo et al., Widely tunable mid-infrared light emission in thin-film black phosphorus. Sci. Adv. 6(7), eaay6134 (2020). https://doi.org/10.1126/sciadv.aay6134
- H. Kim, S.Z. Uddin, D.-H. Lien, M. Yeh, N.S. Azar et al., Actively variable-spectrum optoelectronics with black phosphorus. Nature 596(7871), 232–237 (2021). https://doi.org/10.1038/s41586-021-03701-1
- J. Wang, A. Rousseau, M. Yang, T. Low, S. Francoeur et al., Mid-infrared polarized emission from black phosphorus light-emitting diodes. Nano Lett. 20(5), 3651–3655 (2020). https://doi.org/10.1021/acs.nanolett.0c00581
- X. Zong, H. Hu, G. Ouyang, J. Wang, R. Shi et al., Black phosphorus-based van der waals heterostructures for mid-infrared light-emission applications. Light Sci. Appl. 9(1), 114 (2020). https://doi.org/10.1038/s41377-020-00356-x
- N. Gupta, H. Kim, N.S. Azar, S.Z. Uddin, D.-H. Lien et al., Bright mid-wave infrared resonant-cavity light-emitting diodes based on black phosphorus. Nano Lett. 22(3), 1294–1301 (2022). https://doi.org/10.1021/acs.nanolett.1c04557
- L. Zeng, D. Wu, J. Jie, X. Ren, X. Hu et al., Van der waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 32(52), 2004412 (2020). https://doi.org/10.1002/adma.202004412
- L. Huang, K.-W. Ang, Black phosphorus photonics toward on-chip applications. Appl. Phys. Rev. 7(3), 031302 (2020). https://doi.org/10.1063/5.0005641
- L. Jia, J. Wu, Y. Zhang, Y. Qu, B. Jia et al., Fabrication technologies for the on-chip integration of 2D materials. Small Methods 6(3), 2101435 (2022). https://doi.org/10.1002/smtd.202101435
- T. Ren, K.P. Loh, On-chip integrated photonic circuits based on two-dimensional materials and hexagonal boron nitride as the optical confinement layer. J. Appl. Phys. 125(23), 230901 (2019). https://doi.org/10.1063/1.5096195
- Y. Zhao, Y. Ren, C.Ó. Coileáin, J. Li, D. Zhang et al., High response and broadband photodetection by monolayer MoSe2 with vanadium doping and mo vacancies. Appl. Surf. Sci. 564, 150399 (2021). https://doi.org/10.1016/j.apsusc.2021.150399
- R. Zhang, Y. Zhang, H. Yu, H. Zhang, R. Yang et al., Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared. Adv. Opt. Mater. 3(12), 1787–1792 (2015). https://doi.org/10.1002/adom.201500298
- K. Parto, S.I. Azzam, K. Banerjee, G. Moody, Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 k. Nat. Commun. 12(1), 3585 (2021). https://doi.org/10.1038/s41467-021-23709-5
- J. Wu, H. Ma, P. Yin, Y. Ge, Y. Zhang et al., Two-dimensional materials for integrated photonics: recent advances and future challenges. Small Sci. 1(4), 2000053 (2021). https://doi.org/10.1002/smsc.202000053
- J. You, Y. Luo, J. Yang, J. Zhang, K. Yin et al., Hybrid/integrated silicon photonics based on 2D materials in optical communication nanosystems. Laser Photon. Rev. 14(12), 2000239 (2020). https://doi.org/10.1002/lpor.202000239
- T.-Y. Chang, Y. Chen, D.-I. Luo, J.-X. Li, P.-L. Chen et al., Black phosphorus mid-infrared light-emitting diodes integrated with silicon photonic waveguides. Nano Lett. 20(9), 6824–6830 (2020). https://doi.org/10.1021/acs.nanolett.0c02818
- L. Huang, B. Dong, X. Guo, Y. Chang, N. Chen et al., Waveguide-integrated black phosphorus photodetector for mid-infrared applications. ACS Nano 13(1), 913–921 (2019). https://doi.org/10.1021/acsnano.8b08758
- N. Youngblood, C. Chen, S.J. Koester, M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 9(4), 247–252 (2015). https://doi.org/10.1038/nphoton.2015.23
- L. Huang, B. Dong, Z.G. Yu, J. Zhou, Y. Ma et al., Mid-infrared modulators integrating silicon and black phosphorus photonics. Mater. Today Adv. 12, 100170 (2021). https://doi.org/10.1016/j.mtadv.2021.100170
- F. Peyskens, C. Chakraborty, M. Muneeb, D. Van Thourhout, D. Englund, Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10(1), 4435 (2019). https://doi.org/10.1038/s41467-019-12421-0
- R. J. Baker. Cmos: Circuit Design, Layout, and Simulation (John Wiley & Sons; 2019).
- X. Duan, C. Wang, J.C. Shaw, R. Cheng, Y. Chen et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9(12), 1024–1030 (2014). https://doi.org/10.1038/nnano.2014.222
- M. Tosun, S. Chuang, H. Fang, A.B. Sachid, M. Hettick et al., High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 8(5), 4948–4953 (2014). https://doi.org/10.1021/nn5009929
- Y. Zheng, D. Xiang, J. Zhang, R. Guo, W. Wang et al., Controlling phase transition in WSe2 towards ideal n-type transistor. Nano Res. 14(8), 2703–2710 (2021). https://doi.org/10.1007/s12274-020-3275-x
- H. Shen, J. Ren, J. Hu, Z. Liu, Y. Chen et al., Low-power logic-in-memory complementary inverter based on p- WSe2 and n- WS2. Adv. Electron Mater. 8(12), 2200768 (2022). https://doi.org/10.1002/aelm.202200768
- J. Jang, H.-S. Ra, J. Ahn, T.W. Kim, S.H. Song et al., Fermi-level pinning-free WSe2 transistors via 2D van der waals metal contacts and their circuits. Adv. Mater. 34(19), 2109899 (2022). https://doi.org/10.1002/adma.202109899
- H. Chen, X. Xue, C. Liu, J. Fang, Z. Wang et al., Logic gates based on neuristors made from two-dimensional materials. Nat. Electron. 4(6), 399–404 (2021). https://doi.org/10.1038/s41928-021-00591-z
- M. Andreev, J.-W. Choi, J. Koo, H. Kim, S. Jung et al., Negative differential transconductance device with a stepped gate dielectric for multi-valued logic circuits. Nanoscale Horiz. 5(10), 1378–1385 (2020). https://doi.org/10.1039/D0NH00163E
- Y. Zheng, Z. Hu, C. Han, R. Guo, D. Xiang et al., Black phosphorus inverter devices enabled by in-situ aluminum surface modification. Nano Res. 12(3), 531–536 (2019). https://doi.org/10.1007/s12274-018-2246-y
- W. Lv, X. Fu, X. Luo, W. Lv, J. Cai et al., Multistate logic inverter based on black phosphorus/snses heterostructure. Adv. Electron. Mater. 5(1), 1800416 (2019). https://doi.org/10.1002/aelm.201800416
- W.T. Hsu, L.S. Lu, D. Wang, J.K. Huang, M.Y. Li et al., Evidence of indirect gap in monolayer WSe2. Nat. Commun. 8(1), 929 (2017). https://doi.org/10.1038/s41467-017-01012-6
- A. Kuddus, K. Yokoyama, H. Shirai, Direct synthesis of submillimeter-sized few-layer WS2 and WS0.3Se1.7 by mist chemical vapor deposition and its application to complementary mos inverter. Semicond. Sci. Technol. 37(9), 095020 (2022). https://doi.org/10.1088/1361-6641/ac84fb
- S. Wang, X. Zeng, Y. Zhou, J. Lu, Y. Hu et al., High-performance MoS2 complementary inverter prepared by oxygen plasma doping. ACS Appl. Electron. Mater. 4(3), 955–963 (2022). https://doi.org/10.1021/acsaelm.1c01070
- Z. Ma, C.J. Estrada, K. Gong, L. Zhang, M. Chan, On-chip integrated high gain complementary MoS2 inverter circuit with exceptional high hole current p-channel field-effect transistors. Adv. Electron. Mater. 8(10), 2200480 (2022). https://doi.org/10.1002/aelm.202200480
- J. Chen, J. Zhu, Q. Wang, J. Wan, R. Liu, Homogeneous 2D MoTe2 cmos inverters and p–n junctions formed by laser-irradiation-induced p-type doping. Small 16(30), 2001428 (2020). https://doi.org/10.1002/smll.202001428
- M. Huang, S. Li, Z. Zhang, X. Xiong, X. Li et al., Multifunctional high-performance van der waals heterostructures. Nat. Nanotechnol. 12(12), 1148–1154 (2017). https://doi.org/10.1038/nnano.2017.208
- L. Zhang, L.Y. Shao, G. Gu, T. Wang, X.W. Sun et al., Type-switchable inverter and amplifier based on high-performance ambipolar black-phosphorus transistors. Adv. Electron. Mater. 5(6), 1900133 (2019). https://doi.org/10.1002/aelm.201900133
- P.J. Jeon, J.S. Kim, J.Y. Lim, Y. Cho, A. Pezeshki et al., Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces 7(40), 22333–22340 (2015). https://doi.org/10.1021/acsami.5b06027
- J.S. Kim, P.J. Jeon, J. Lee, K. Choi, H.S. Lee et al., Dual gate black phosphorus field effect transistors on glass for nor logic and organic light emitting diode switching. Nano Lett. 15(9), 5778–5783 (2015). https://doi.org/10.1021/acs.nanolett.5b01746
- S. Lee, H.S. Lee, S. Yu, J.H. Park, H. Bae et al., Tungsten dichalcogenide nanoflake/ingazno thin-film heterojunction for photodetector, inverter, and ac rectifier circuits. Adv. Electron. Mater. 6(5), 2000026 (2020). https://doi.org/10.1002/aelm.202000026
- S. Wang, X. Liu, M. Xu, L. Liu, D. Yang et al., Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21(11), 1225–1239 (2022). https://doi.org/10.1038/s41563-022-01383-2
- S. Zeng, C. Liu, X. Huang, Z. Tang, L. Liu et al., An application-specific image processing array based on WSe2 transistors with electrically switchable logic functions. Nat. Commun. 13(1), 56 (2022). https://doi.org/10.1038/s41467-021-27644-3
- X. Jia, Z. Cheng, B. Han, X. Cheng, Q. Wang et al., High-performance cmos inverter array with monolithic 3D architecture based on CVD-grown n-MoS2 and p-MoTe2. Small (2023). https://doi.org/10.1002/smll.202207927
- M. Sivan, Y. Li, H. Veluri, Y. Zhao, B. Tang et al., All WSe2 1T1R resistive ram cell for future monolithic 3d embedded memory integration. Nat. Commun. 10(1), 5201 (2019). https://doi.org/10.1038/s41467-019-13176-4
- L. Mennel, J. Symonowicz, S. Wachter, D.K. Polyushkin, A.J. Molina-Mendoza et al., Ultrafast machine vision with 2D material neural network image sensors. Nature 579(7797), 62–66 (2020). https://doi.org/10.1038/s41586-020-2038-x
- N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys et al., Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13(3), 246–252 (2018). https://doi.org/10.1038/s41565-017-0035-5
- Y. Luo, S. Zhang, H. Pan, S. Xiao, Z. Guo et al., Unsaturated single atoms on monolayer transition metal dichalcogenides for ultrafast hydrogen evolution. ACS Nano 14(1), 767–776 (2020). https://doi.org/10.1021/acsnano.9b07763
- M. Graf, M. Lihter, M. Thakur, V. Georgiou, J. Topolancik et al., Fabrication and practical applications of molybdenum disulfide nanopores. Nat. Protoc. 14(4), 1130–1168 (2019). https://doi.org/10.1038/s41596-019-0131-0
- A.Y. Lu, H. Zhu, J. Xiao, C.P. Chuu, Y. Han et al., Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12(8), 744–749 (2017). https://doi.org/10.1038/nnano.2017.100
- Y. Luo, L. Tang, U. Khan, Q. Yu, H.M. Cheng et al., Morphology and surface chemistry engineering toward ph-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 10(1), 269 (2019). https://doi.org/10.1038/s41467-018-07792-9
- C. Zhang, Y. Luo, J. Tan, Q. Yu, F. Yang et al., High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution. Nat. Commun. 11(1), 3724 (2020). https://doi.org/10.1038/s41467-020-17121-8
- Y. Wang, C. Jian, W. Hong, W. Liu, Nonlayered 2D ultrathin molybdenum nitride synthesized through the ammonolysis of 2D molybdenum dioxide. Chem. Commun. 57(2), 223–226 (2021). https://doi.org/10.1039/d0cc07065c
- X.B. Zou, H.K. Liang, Y. Li, Y.C. Zou, F. Tian et al., 2D Bi2O2Te semiconductor with single-crystal native oxide layer. Adv. Funct. Mater. 33(18), 2213807 (2023). https://doi.org/10.1002/adfm.202213807
- Y. Zhang, J. Yu, R. Zhu, M. Wang, C. Tan et al., A single-crystalline native dielectric for two-dimensional semiconductors with an equivalent oxide thickness below 0.5 nm. Nat. Electron. 5(10), 643–649 (2022). https://doi.org/10.1038/s41928-022-00824-9
- B. Liu, Y. Ma, A. Zhang, L. Chen, A.N. Abbas et al., High-performance WSe2 field-effect transistors via controlled formation of in-plane heterojunctions. ACS Nano 10(5), 5153–5160 (2016). https://doi.org/10.1021/acsnano.6b00527
- N. Syed, A. Zavabeti, J.Z. Ou, M. Mohiuddin, N. Pillai et al., Printing two-dimensional gallium phosphate out of liquid metal. Nat. Commun. 9(1), 3618 (2018). https://doi.org/10.1038/s41467-018-06124-1
- R. Kappera, D. Voiry, S.E. Yalcin, W. Jen, M. Acerce et al., Metallic 1t phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. APL Mater. (2014). https://doi.org/10.1063/1.4896077
- Y. Ma, B. Liu, A. Zhang, L. Chen, M. Fathi et al., Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 9(7), 7383–7391 (2015). https://doi.org/10.1021/acsnano.5b02399
- Y. Gong, H. Yuan, C.L. Wu, P. Tang, S.Z. Yang et al., Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13(4), 294–299 (2018). https://doi.org/10.1038/s41565-018-0069-3
- Y. Luo, X. Li, X. Cai, X. Zou, F. Kang et al., Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12(5), 4565–4573 (2018). https://doi.org/10.1021/acsnano.8b00942
- R. Zhang, Y. Zhang, Q. Zhang, H. Xie, W. Qian et al., Growth of half-meter long carbon nanotubes based on schulz–flory distribution. ACS Nano 7(7), 6156–6161 (2013). https://doi.org/10.1021/nn401995z
- P.J. Wang, D.R. Yang, X.D. Pi, Toward wafer-scale production of 2D transition metal chalcogenides. Adv. Electron. Mater. (2021). https://doi.org/10.1002/aelm.202100278
- J.-K. Huang, Y. Wan, J. Shi, J. Zhang, Z. Wang et al., High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605(7909), 262–267 (2022). https://doi.org/10.1038/s41586-022-04588-2
- A.J. Yang, K. Han, K. Huang, C. Ye, W. Wen et al., Van der waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat. Electron. 5(4), 233–240 (2022). https://doi.org/10.1038/s41928-022-00753-7
- K. Liu, B. Jin, W. Han, X. Chen, P. Gong et al., Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors with a van der waals interface. Nat. Electron. 4(12), 906–913 (2021). https://doi.org/10.1038/s41928-021-00683-w
- S. Puebla, T. Pucher, V. Rouco, G. Sanchez-Santolino, Y. Xie et al., Combining freestanding ferroelectric perovskite oxides with two-dimensional semiconductors for high performance transistors. Nano Lett. 22, 7457–7466 (2022). https://doi.org/10.1021/acs.nanolett.2c02395
- T. Jin, J. Mao, J. Gao, C. Han, K.P. Loh et al., Ferroelectrics-integrated two-dimensional devices toward next-generation electronics. ACS Nano 16(9), 13595–13611 (2022). https://doi.org/10.1021/acsnano.2c07281
- K.H. Kim, S. Oh, M.M.A. Fiagbenu, J. Zheng, P. Musavigharavi et al., Scalable cmos back-end-of-line-compatible alscn/two-dimensional channel ferroelectric field-effect transistors. Nat. Nanotechnol. (2023). https://doi.org/10.1038/s41565-023-01399-y
- C. Tan, M. Yu, J. Tang, X. Gao, Y. Yin et al., 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616(7955), 66–72 (2023). https://doi.org/10.1038/s41586-023-05797-z
- T. Tu, Y. Zhang, T. Li, J. Yu, L. Liu et al., Uniform high-k amorphous native oxide synthesized by oxygen plasma for top-gated transistors. Nano Lett. 20(10), 7469–7475 (2020). https://doi.org/10.1021/acs.nanolett.0c02951
- S.J. Yun, D.L. Duong, D.M. Ha, K. Singh, T.L. Phan et al., Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Adv. Sci. 7(9), 1903076 (2020). https://doi.org/10.1002/advs.201903076
- X. Jiang, X. Hu, J. Bian, K. Zhang, L. Chen et al., Ferroelectric field-effect transistors based on WSe2/CuInP2S6 heterostructures for memory applications. ACS Appl. Electron. Mater. 3(11), 4711–4717 (2021). https://doi.org/10.1021/acsaelm.1c00492
- C. Wang, L. You, D. Cobden, J. Wang, Towards two-dimensional van der waals ferroelectrics. Nat. Mater. 22(5), 542–552 (2023). https://doi.org/10.1038/s41563-022-01422-y
- M. Wu, Z. Lou, C.M. Dai, T. Wang, J. Wang et al., Achieving ferroelectricity in a centrosymmetric high-performance semiconductor by strain engineering. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300450
- Q. Yang, J. Hu, Y.W. Fang, Y. Jia, R. Yang et al., Ferroelectricity in layered bismuth oxide down to 1 nanometer. Science 379(6638), 1218–1224 (2023). https://doi.org/10.1126/science.abm5134
- M. Wu, Two-dimensional van der waals ferroelectrics: scientific and technological opportunities. ACS Nano 15(6), 9229–9237 (2021). https://doi.org/10.1021/acsnano.0c08483
- T. Ahmed, S. Kuriakose, S. Abbas, M.J.S. Spencer, M.A. Rahman et al., Multifunctional optoelectronics via harnessing defects in layered black phosphorus. Adv. Funct. Mater. 29(39), 1901991 (2019). https://doi.org/10.1002/adfm.201901991
- Y. Liu, Y. Huang, X. Duan, Van der waals integration before and beyond two-dimensional materials. Nature 567(7748), 323–333 (2019). https://doi.org/10.1038/s41586-019-1013-x
References
K. Zhu, C. Wen, A.A. Aljarb, F. Xue, X. Xu et al., The development of integrated circuits based on two-dimensional materials. Nat. Electron. 4(11), 775–785 (2021). https://doi.org/10.1038/s41928-021-00672-z
M. Li, S. Su, H.-S.P. Wong, L.-J. Li, How 2D semiconductors could extend moore’s law. Nature 567(7747), 169–170 (2019). https://doi.org/10.1038/d41586-019-00793-8
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004). https://doi.org/10.1126/science.1102896
Q. Wu, J. Zhang, L. Tang, U. Khan, H. Nong et al., Iodine-assisted ultrafast growth of high-quality monolayer MoS2 with sulfur-terminated edges. Natl. Sci. Open (2023). https://doi.org/10.1360/nso/20230009
V.K. Sangwan, H.S. Lee, H. Bergeron, I. Balla, M.E. Beck et al., Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554(7693), 500–504 (2018). https://doi.org/10.1038/nature25747
L. Tang, C. Teng, R. Xu, Z. Zhang, U. Khan et al., Controlled growth of wafer-scale transition metal dichalcogenides with a vertical composition gradient for artificial synapses with high linearity. ACS Nano 16(8), 12318–12327 (2022). https://doi.org/10.1021/acsnano.2c03263
J. Tang, Q. Wang, J. Tian, X. Li, N. Li et al., Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 14(1), 3633 (2023). https://doi.org/10.1038/s41467-023-39390-9
G. Xue, X. Sui, P. Yin, Z. Zhou, X. Li et al., Modularized batch production of 12-inch transition metal dichalcogenides by local element supply. Sci. Bull. (2023). https://doi.org/10.1016/j.scib.2023.06.037
S. Yang, K. Liu, Y. Xu, L. Liu, H. Li et al., Gate dielectrics integration for 2D electronics: challenges, advances, and outlook. Adv. Mater. 35(18), e2207901 (2023). https://doi.org/10.1002/adma.202207901
S. Zhang, D. Sun, J. Sun, K. Ma, Z. Wei et al., Unraveling the effect of stacking configurations on charge transfer in WS2 and organic semiconductor heterojunctions. Precision Chem. (2023). https://doi.org/10.1021/prechem.3c00057
Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi et al., Single-layer MoS2 phototransistors. ACS Nano 6(1), 74–80 (2012). https://doi.org/10.1021/nn2024557
U. Khan, Y. Luo, L. Tang, C. Teng, J. Liu et al., Controlled vapor–solid deposition of millimeter-size single crystal 2D Bi2O2Se for high-performance phototransistors. Adv. Funct. Mater. 29(14), 1807979 (2019). https://doi.org/10.1002/adfm.201807979
U. Khan, L. Tang, B. Ding, L. Yuting, S. Feng et al., Catalyst-free growth of atomically thin Bi2O2Se nanoribbons for high-performance electronics and optoelectronics. Adv. Funct. Mater. 31(31), 2101170 (2021). https://doi.org/10.1002/adfm.202101170
N. Li, Q. Wang, C. Shen, Z. Wei, H. Yu et al., Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3, 711–717 (2020). https://doi.org/10.1038/s41928-020-00475-8
L. Tang, C. Teng, Y. Luo, U. Khan, H. Pan et al., Confined van der waals epitaxial growth of two-dimensional large single-crystal In2Se3 for flexible broadband photodetectors. Research (2019). https://doi.org/10.34133/2019/2763704
L. Shi, “Rotating” contact for bias-free photodetection with 2D materials. Nat. Nanotechnol. 18(7), 702 (2023). https://doi.org/10.1038/s41565-023-01472-6
Q. Wu, H. Nong, R. Zheng, R. Zhang, J. Wang et al., Resolidified chalcogen precursors for high-quality 2D semiconductor growth. Angwew. Chem. Int. Ed. 62(29), e202301501 (2023). https://doi.org/10.1002/anie.202301501
A. Kimel, A. Zvezdin, S. Sharma, S. Shallcross, N. de Sousa et al., The 2022 magneto-optics roadmap. J. Phys. D-Appl. Phys. 55(46), 463003 (2022). https://doi.org/10.1088/1361-6463/ac8da0
H. Xu, B. Ding, Y. Xu, Z. Huang, D. Wei et al., Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride. Nat. Nanotechn. 17, 1091–1096 (2022). https://doi.org/10.1038/s41565-022-01186-1
W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615–2622 (2013). https://doi.org/10.1021/nl4007479
R.-S. Chen, G. Ding, Y. Zhou, S.-T. Han, Fermi-level depinning of 2D transition metal dichalcogenide transistors. J. Mater. Chem. C 9, 11407–11427 (2021). https://doi.org/10.1039/d1tc01463c
L. Gao, Q. Liao, X. Zhang, X. Liu, L. Gu et al., Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 32(2), e1906646 (2020). https://doi.org/10.1002/adma.201906646
W. Wang, Y. Meng, Y. Zhang, Z. Zhang, W. Wang et al., Electrically switchable polarization in Bi2O2Se ferroelectric semiconductors. Adv. Mater. 35(12), e2210854 (2023). https://doi.org/10.1002/adma.202210854
Y. Sheng, T. Chen, Y. Lu, R.J. Chang, S. Sinha et al., High-performance ws2 monolayer light-emitting tunneling devices using 2D materials grown by chemical vapor deposition. ACS Nano 13(4), 4530–4537 (2019). https://doi.org/10.1021/acsnano.9b00211
R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Perez De Lara, P. Jarillo-Herrero et al., Recent progress in the assembly of nanodevices and van der waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47(1), 53–68 (2018). https://doi.org/10.1039/c7cs00556c
R. Bian, C. Li, Q. Liu, G. Cao, Q. Fu et al., Recent progress in the synthesis of novel two-dimensional van der waals materials. Natl. Sci. Rev. 9, nwab164 (2021). https://doi.org/10.1093/nsr/nwab164
H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi et al., High-performance single layered WSe2 p-fets with chemically doped contacts. Nano Lett. 12(7), 3788–3792 (2012). https://doi.org/10.1021/nl301702r
R. Sharma, A. Dawar, S. Ojha, R. Laishram, V.G. Sathe et al., A thrifty liquid-phase exfoliation (LPE) of MoSe2 and WSe2 nanosheets as channel materials for fet application. J. Electron. Mater. 52(4), 2819–2830 (2023). https://doi.org/10.1007/s11664-023-10245-9
X. Duan, X. Duan, J. Luo, B. Zhao, J. Li et al., Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl. Sci. Rev. 7(4), 737–744 (2020). https://doi.org/10.1093/nsr/nwz223
Y. Gao, Y.L. Hong, L.C. Yin, Z. Wu, Z. Yang et al., Ultrafast growth of high-quality monolayer WSe2 on au. Adv. Mater. 29(29), 1700990 (2017). https://doi.org/10.1002/adma.201700990
Z. Wu, Y. Lyu, Y. Zhang, R. Ding, B. Zheng et al., Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater. 20(9), 1203–1209 (2021). https://doi.org/10.1038/s41563-021-01001-7
B. Liu, M. Kopf, A.N. Abbas, X. Wang, Q. Guo et al., Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27(30), 4423–4429 (2015). https://doi.org/10.1002/adma.201501758
N. Li, Y. Zhang, R. Cheng, J. Wang, J. Li et al., Synthesis and optoelectronic applications of a stable p-type 2D material: alpha-mns. ACS Nano 13(11), 12662–12670 (2019). https://doi.org/10.1021/acsnano.9b04205
C. Zhao, C. Tan, D.H. Lien, X. Song, M. Amani et al., Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat. Nanotechnol. 15(1), 53–58 (2020). https://doi.org/10.1038/s41565-019-0585-9
A. Zavabeti, P. Aukarasereenont, H. Tuohey, N. Syed, A. Jannat et al., High-mobility p-type semiconducting two-dimensional β-TeO2. Nat. Electron. 4(4), 277–283 (2021). https://doi.org/10.1038/s41928-021-00561-5
B.Y. Zhang, K. Xu, Q. Yao, A. Jannat, G. Ren et al., Hexagonal metal oxide monolayers derived from the metal-gas interface. Nat. Mater. 20, 1073–1078 (2021). https://doi.org/10.1038/s41563-020-00899-9
S.-Y. Ahn, S.C. Jang, A. Song, K.-B. Chung, Y.J. Kim et al., Performance enhancement of p-type SnO semiconductors via siox passivation. Mater. Today Commun. 26, 101747 (2021). https://doi.org/10.1016/j.mtcomm.2020.101747
F. Shan, A. Liu, H. Zhu, W. Kong, J. Liu et al., High-mobility p-type niox thin-film transistors processed at low temperatures with Al2O3 high-k dielectric. J. Mater. Chem. C 4(40), 9438–9444 (2016). https://doi.org/10.1039/c6tc02137a
Y.L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma et al., Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 369(6504), 670–674 (2020). https://doi.org/10.1126/science.abb7023
S.A. Arabi, J. Dong, M. Mirza, P. Yu, L. Wang et al., Nanoseed assisted pvt growth of ultrathin 2d pentacene molecular crystal directly onto SiO2 substrate. Crystal Growth Design. 16(5), 2624–2630 (2016). https://doi.org/10.1021/acs.cgd.5b01726
K.S. Novoselov, Graphene: materials in the flatland (nobel lecture). Angew. Chem. Int. Ed. 50(31), 6986–7002 (2011). https://doi.org/10.1002/anie.201101502
Y. Huang, Y.H. Pan, R. Yang, L.H. Bao, L. Meng et al., Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11(1), 2453 (2020). https://doi.org/10.1038/s41467-020-16266-w
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi et al., Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). https://doi.org/10.1038/nature26160
Y. Cao, V. Fatemi, A. Demir, S. Fang, S.L. Tomarken et al., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). https://doi.org/10.1038/nature26154
S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo et al., Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hbn heterostructures. Nano Lett. 18(5), 3172–3179 (2018). https://doi.org/10.1021/acs.nanolett.8b00835
V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419 (2013). https://doi.org/10.1126/science.1226419
J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568 (2011). https://doi.org/10.1126/science.1194975
D. Hanlon, C. Backes, E. Doherty, C.S. Cucinotta, N.C. Berner et al., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6(1), 8563 (2015). https://doi.org/10.1038/ncomms9563
A.G. Kelly, T. Hallam, C. Backes, A. Harvey, A.S. Esmaeily et al., All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356(6333), 69–73 (2017). https://doi.org/10.1126/science.aal4062
X. Cai, Y. Luo, B. Liu, H.M. Cheng, Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47(16), 6224–6266 (2018). https://doi.org/10.1039/c8cs00254a
G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe et al., Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47(9), 3265–3300 (2018). https://doi.org/10.1039/C8CS00084K
Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He et al., Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50(47), 11093–11097 (2011). https://doi.org/10.1002/anie.201106004
R.A. Wells, M. Zhang, T.-H. Chen, V. Boureau, M. Caretti et al., High performance semiconducting nanosheets via a scalable powder-based electrochemical exfoliation technique. ACS Nano 16(4), 5719–5730 (2022). https://doi.org/10.1021/acsnano.1c10739
D. Liu, J. Wang, S. Bian, Q. Liu, Y. Gao et al., Photoelectrochemical synthesis of ammonia with black phosphorus. Adv. Funct. Mater. 30(24), 2002731 (2020). https://doi.org/10.1002/adfm.202002731
M. Nakano, Y. Wang, Y. Kashiwabara, H. Matsuoka, Y. Iwasa, Layer-by-layer epitaxial growth of scalable WSe2 on sapphire by molecular beam epitaxy. Nano Lett. 17(9), 5595–5599 (2017). https://doi.org/10.1021/acs.nanolett.7b02420
H.J. Liu, L. Jiao, L. Xie, F. Yang, J.L. Chen et al., Molecular-beam epitaxy of monolayer and bilayer WSe2: a scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy. 2D Mater. 2(3), 4004 (2015). https://doi.org/10.1088/2053-1583/2/3/034004
C.-H. Su. In Fundamentals of Physical Vapor Transport Process. ed. by SU C-H (Springer International Publishing; Cham, 2020), pp. 9–38
S. Wu, C. Huang, G. Aivazian, J.S. Ross, D.H. Cobden et al., Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 7(3), 2768–2772 (2013). https://doi.org/10.1021/nn4002038
Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo et al., Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357(6353), 788–792 (2017). https://doi.org/10.1126/science.aan6814
M. Liu, S. Feng, Y. Hou, S. Zhao, L. Tang et al., High yield growth and doping of black phosphorus with tunable electronic properties. Mater. Today 36, 91–101 (2020). https://doi.org/10.1016/j.mattod.2019.12.027
S. Anil, J. Venkatesan, M.S. Shim, E.P. Chalisserry, S.K. Kim, In 4 - Bone Response to Calcium Phosphate Coatings for Dental Implants. ed. by PIATTELLI A (Woodhead Publishing; 2017), pp. 65–88
L. Tang, J. Tan, H. Nong, B. Liu, H.-M. Cheng, Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism. Acc. Mater. Res. 2(1), 36–47 (2020). https://doi.org/10.1021/accountsmr.0c00063
L. Tang, T. Li, Y. Luo, S. Feng, Z. Cai et al., Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides. ACS Nano 14(4), 4646–4653 (2020). https://doi.org/10.1021/acsnano.0c00296
S. Feng, J. Tan, S. Zhao, S. Zhang, U. Khan et al., Synthesis of ultrahigh-quality monolayer molybdenum disulfide through in situ defect healing with thiol molecules. Small 16(35), e2003357 (2020). https://doi.org/10.1002/smll.202003357
L. Chen, B. Liu, M. Ge, Y. Ma, A.N. Abbas et al., Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano 9(8), 8368–8375 (2015). https://doi.org/10.1021/acsnano.5b03043
T. Li, W. Guo, L. Ma, W. Li, Z. Yu et al., Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16(11), 1201–1207 (2021). https://doi.org/10.1038/s41565-021-00963-8
L. Liu, T. Li, L. Ma, W. Li, S. Gao et al., Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605(7908), 69–75 (2022). https://doi.org/10.1038/s41586-022-04523-5
J. Wang, X. Xu, T. Cheng, L. Gu, R. Qiao et al., Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 17, 33–38 (2021). https://doi.org/10.1038/s41565-021-01004-0
B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma et al., Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 9(6), 6119–6127 (2015). https://doi.org/10.1021/acsnano.5b01301
G. Clark, S. Wu, P. Rivera, J. Finney, P. Nguyen et al., Vapor-transport growth of high optical quality WSe2 monolayers. APL Mater. 2(10), 101101 (2014). https://doi.org/10.1063/1.4896591
S.S. Li, S.F. Wang, D.M. Tang, W.J. Zhao, H.L. Xu et al., Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 1(1), 60–66 (2015). https://doi.org/10.1016/j.apmt.2015.09.001
J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen et al., A library of atomically thin metal chalcogenides. Nature 556(7701), 355–359 (2018). https://doi.org/10.1038/s41586-018-0008-3
S. Li, Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides. Science (2021). https://doi.org/10.1016/j.isci.2021.103229
S. Li, J. Hong, B. Gao, Y.C. Lin, H.E. Lim et al., Tunable doping of rhenium and vanadium into transition metal dichalcogenides for two-dimensional electronics. Adv. Sci. 8(11), e2004438 (2021). https://doi.org/10.1002/advs.202004438
J. Zou, Z. Cai, Y. Lai, J. Tan, R. Zhang et al., Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano 15(4), 7340–7347 (2021). https://doi.org/10.1021/acsnano.1c00596
L. Tang, R.Z. Xu, J.Y. Tan, Y.T. Luo, J.Y. Zou et al., Modulating electronic structure of monolayer transition metal dichalcogenides by substitutional nb-doping. Adv. Funct. Mater. 31(5), 2006941 (2021). https://doi.org/10.1002/adfm.202006941
T.S. Kim, K.P. Dhakal, E. Park, G. Noh, H.J. Chai et al., Gas-phase alkali metal-assisted mocvd growth of 2D transition metal dichalcogenides for large-scale precise nucleation control. Small 18(20), e2106368 (2022). https://doi.org/10.1002/smll.202106368
D. Andrzejewski, M. Marx, A. Grundmann, O. Pfingsten, H. Kalisch et al., Improved luminescence properties of MoS2 monolayers grown via mocvd: role of pre-treatment and growth parameters. Nanotechnology 29(29), 295704 (2018). https://doi.org/10.1088/1361-6528/aabbb9
H. Cun, M. Macha, H. Kim, K. Liu, Y. Zhao et al., Wafer-scale mocvd growth of monolayer MoS2 on sapphire and SiO2. Nano Res. 12(10), 2646–2652 (2019). https://doi.org/10.1007/s12274-019-2502-9
K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656–660 (2015). https://doi.org/10.1038/nature14417
H. Zhu, N. Nayir, T.H. Choudhury, A. Bansal, B. Huet et al., Step engineering for nucleation and domain orientation control in WSe2 epitaxy on c-plane sapphire. Nat. Nanotechnol. (2023). https://doi.org/10.1038/s41565-023-01456-6
X. Zhang, F. Zhang, Y. Wang, D.S. Schulman, T. Zhang et al., Defect-controlled nucleation and orientation of WSe2 on hBN: a route to single-crystal epitaxial monolayers. ACS Nano 13(3), 3341–3352 (2019). https://doi.org/10.1021/acsnano.8b09230
J.D. Lin, C. Han, F. Wang, R. Wang, D. Xiang et al., Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 8(5), 5323–5329 (2014). https://doi.org/10.1021/nn501580c
L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu et al., Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14(11), 6275–6280 (2014). https://doi.org/10.1021/nl502603d
J. Ren, C. Teng, Z. Cai, H. Pan, J. Liu et al., Controlled one step thinning and doping of two-dimensional transition metal dichalcogenides. Sci. China Mater. 62(12), 1837–1845 (2019). https://doi.org/10.1007/s40843-019-9461-8
M. Tosun, L. Chan, M. Amani, T. Roy, G.H. Ahn et al., Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano 10(7), 6853–6860 (2016). https://doi.org/10.1021/acsnano.6b02521
A. Azcatl, X. Qin, A. Prakash, C. Zhang, L. Cheng et al., Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 16(9), 5437–5443 (2016). https://doi.org/10.1021/acs.nanolett.6b01853
B. Tang, Z.G. Yu, L. Huang, J. Chai, S.L. Wong et al., Direct n- to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano 12(3), 2506–2513 (2018). https://doi.org/10.1021/acsnano.7b08261
T. Yang, B. Zheng, Z. Wang, T. Xu, C. Pan et al., Van der waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 8(1), 1906 (2017). https://doi.org/10.1038/s41467-017-02093-z
H. Jiao, X. Wang, Y. Chen, S. Guo, S. Wu et al., Hgcdte/black phosphorus van der waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. Sci. Adv. 8(19), eabn1811 (2022). https://doi.org/10.1126/sciadv.abn1811
H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu et al., Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10(8), 707–713 (2015). https://doi.org/10.1038/nnano.2015.112
P.K. Venuthurumilli, P.D. Ye, X. Xu, Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 12(5), 4861–4867 (2018). https://doi.org/10.1021/acsnano.8b01660
H.-M. Li, D. Lee, D. Qu, X. Liu, J. Ryu et al., Ultimate thin vertical p–n junction composed of two-dimensional layered molybdenum disulfide. Nat. Commun. 6(1), 6564 (2015). https://doi.org/10.1038/ncomms7564
H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu et al., Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707 (2015). https://doi.org/10.1038/nnano.2015.112
Z. Huang, N. Lu, Z. Wang, S. Xu, J. Guan et al., Large-scale ultrafast strain engineering of CVD-grown two-dimensional materials on strain self-limited deformable nanostructures toward enhanced field-effect transistors. Nano Lett. (2022). https://doi.org/10.1021/acs.nanolett.2c01559
X. Yu, S. Zhang, H. Zeng, Q.J. Wang, Lateral black phosphorene p–n junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy 25, 34–41 (2016). https://doi.org/10.1016/j.nanoen.2016.04.030
J. Pu, H. Ou, T. Yamada, N. Wada, H. Naito et al., Continuous color-tunable light-emitting devices based on compositionally graded monolayer transition metal dichalcogenide alloys. Adv. Mater. 34(44), 2203250 (2022). https://doi.org/10.1002/adma.202203250
L. Kong, X. Zhang, Q. Tao, M. Zhang, W. Dang et al., Doping-free complementary WSe2 circuit via van der waals metal integration. Nat. Commun. 11(1), 1866 (2020). https://doi.org/10.1038/s41467-020-15776-x
L. Yu, A. Zubair, E.J.G. Santos, X. Zhang, Y. Lin et al., High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits. Nano Lett. 15(8), 4928–4934 (2015). https://doi.org/10.1021/acs.nanolett.5b00668
J.S. Ross, P. Klement, A.M. Jones, N.J. Ghimire, J. Yan et al., Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9(4), 268–272 (2014). https://doi.org/10.1038/nnano.2014.26
K. Hao, G. Moody, F. Wu, C.K. Dass, L. Xu et al., Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys. 12(7), 677–682 (2016). https://doi.org/10.1038/nphys3674
A.M. Jones, H. Yu, N.J. Ghimire, S. Wu, G. Aivazian et al., Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8(9), 634–638 (2013). https://doi.org/10.1038/nnano.2013.151
J.X. Li, W.Q. Li, S.H. Hung, P.L. Chen, Y.C. Yang et al., Electric control of valley polarization in monolayer WSe2 using a van der waals magnet. Nat. Nanotechnol. 17(7), 721–728 (2022). https://doi.org/10.1038/s41565-022-01115-2
X. Yang, R. Wu, B. Zheng, Z. Luo, W. You et al., A waveguide-integrated two-dimensional light-emitting diode based on p-type WSe2/n-type CdS nanoribbon heterojunction. ACS Nano 16(3), 4371–4378 (2022). https://doi.org/10.1021/acsnano.1c10607
R. Soref, Mid-infrared photonics in silicon and germanium. Nat. Photon. 4(8), 495–497 (2010). https://doi.org/10.1038/nphoton.2010.171
C. Chen, F. Chen, X. Chen, B. Deng, B. Eng et al., Bright mid-infrared photoluminescence from thin-film black phosphorus. Nano Lett. 19(3), 1488–1493 (2019). https://doi.org/10.1021/acs.nanolett.8b04041
C. Chen, X. Lu, B. Deng, X. Chen, Q. Guo et al., Widely tunable mid-infrared light emission in thin-film black phosphorus. Sci. Adv. 6(7), eaay6134 (2020). https://doi.org/10.1126/sciadv.aay6134
H. Kim, S.Z. Uddin, D.-H. Lien, M. Yeh, N.S. Azar et al., Actively variable-spectrum optoelectronics with black phosphorus. Nature 596(7871), 232–237 (2021). https://doi.org/10.1038/s41586-021-03701-1
J. Wang, A. Rousseau, M. Yang, T. Low, S. Francoeur et al., Mid-infrared polarized emission from black phosphorus light-emitting diodes. Nano Lett. 20(5), 3651–3655 (2020). https://doi.org/10.1021/acs.nanolett.0c00581
X. Zong, H. Hu, G. Ouyang, J. Wang, R. Shi et al., Black phosphorus-based van der waals heterostructures for mid-infrared light-emission applications. Light Sci. Appl. 9(1), 114 (2020). https://doi.org/10.1038/s41377-020-00356-x
N. Gupta, H. Kim, N.S. Azar, S.Z. Uddin, D.-H. Lien et al., Bright mid-wave infrared resonant-cavity light-emitting diodes based on black phosphorus. Nano Lett. 22(3), 1294–1301 (2022). https://doi.org/10.1021/acs.nanolett.1c04557
L. Zeng, D. Wu, J. Jie, X. Ren, X. Hu et al., Van der waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 32(52), 2004412 (2020). https://doi.org/10.1002/adma.202004412
L. Huang, K.-W. Ang, Black phosphorus photonics toward on-chip applications. Appl. Phys. Rev. 7(3), 031302 (2020). https://doi.org/10.1063/5.0005641
L. Jia, J. Wu, Y. Zhang, Y. Qu, B. Jia et al., Fabrication technologies for the on-chip integration of 2D materials. Small Methods 6(3), 2101435 (2022). https://doi.org/10.1002/smtd.202101435
T. Ren, K.P. Loh, On-chip integrated photonic circuits based on two-dimensional materials and hexagonal boron nitride as the optical confinement layer. J. Appl. Phys. 125(23), 230901 (2019). https://doi.org/10.1063/1.5096195
Y. Zhao, Y. Ren, C.Ó. Coileáin, J. Li, D. Zhang et al., High response and broadband photodetection by monolayer MoSe2 with vanadium doping and mo vacancies. Appl. Surf. Sci. 564, 150399 (2021). https://doi.org/10.1016/j.apsusc.2021.150399
R. Zhang, Y. Zhang, H. Yu, H. Zhang, R. Yang et al., Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared. Adv. Opt. Mater. 3(12), 1787–1792 (2015). https://doi.org/10.1002/adom.201500298
K. Parto, S.I. Azzam, K. Banerjee, G. Moody, Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 k. Nat. Commun. 12(1), 3585 (2021). https://doi.org/10.1038/s41467-021-23709-5
J. Wu, H. Ma, P. Yin, Y. Ge, Y. Zhang et al., Two-dimensional materials for integrated photonics: recent advances and future challenges. Small Sci. 1(4), 2000053 (2021). https://doi.org/10.1002/smsc.202000053
J. You, Y. Luo, J. Yang, J. Zhang, K. Yin et al., Hybrid/integrated silicon photonics based on 2D materials in optical communication nanosystems. Laser Photon. Rev. 14(12), 2000239 (2020). https://doi.org/10.1002/lpor.202000239
T.-Y. Chang, Y. Chen, D.-I. Luo, J.-X. Li, P.-L. Chen et al., Black phosphorus mid-infrared light-emitting diodes integrated with silicon photonic waveguides. Nano Lett. 20(9), 6824–6830 (2020). https://doi.org/10.1021/acs.nanolett.0c02818
L. Huang, B. Dong, X. Guo, Y. Chang, N. Chen et al., Waveguide-integrated black phosphorus photodetector for mid-infrared applications. ACS Nano 13(1), 913–921 (2019). https://doi.org/10.1021/acsnano.8b08758
N. Youngblood, C. Chen, S.J. Koester, M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 9(4), 247–252 (2015). https://doi.org/10.1038/nphoton.2015.23
L. Huang, B. Dong, Z.G. Yu, J. Zhou, Y. Ma et al., Mid-infrared modulators integrating silicon and black phosphorus photonics. Mater. Today Adv. 12, 100170 (2021). https://doi.org/10.1016/j.mtadv.2021.100170
F. Peyskens, C. Chakraborty, M. Muneeb, D. Van Thourhout, D. Englund, Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10(1), 4435 (2019). https://doi.org/10.1038/s41467-019-12421-0
R. J. Baker. Cmos: Circuit Design, Layout, and Simulation (John Wiley & Sons; 2019).
X. Duan, C. Wang, J.C. Shaw, R. Cheng, Y. Chen et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9(12), 1024–1030 (2014). https://doi.org/10.1038/nnano.2014.222
M. Tosun, S. Chuang, H. Fang, A.B. Sachid, M. Hettick et al., High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 8(5), 4948–4953 (2014). https://doi.org/10.1021/nn5009929
Y. Zheng, D. Xiang, J. Zhang, R. Guo, W. Wang et al., Controlling phase transition in WSe2 towards ideal n-type transistor. Nano Res. 14(8), 2703–2710 (2021). https://doi.org/10.1007/s12274-020-3275-x
H. Shen, J. Ren, J. Hu, Z. Liu, Y. Chen et al., Low-power logic-in-memory complementary inverter based on p- WSe2 and n- WS2. Adv. Electron Mater. 8(12), 2200768 (2022). https://doi.org/10.1002/aelm.202200768
J. Jang, H.-S. Ra, J. Ahn, T.W. Kim, S.H. Song et al., Fermi-level pinning-free WSe2 transistors via 2D van der waals metal contacts and their circuits. Adv. Mater. 34(19), 2109899 (2022). https://doi.org/10.1002/adma.202109899
H. Chen, X. Xue, C. Liu, J. Fang, Z. Wang et al., Logic gates based on neuristors made from two-dimensional materials. Nat. Electron. 4(6), 399–404 (2021). https://doi.org/10.1038/s41928-021-00591-z
M. Andreev, J.-W. Choi, J. Koo, H. Kim, S. Jung et al., Negative differential transconductance device with a stepped gate dielectric for multi-valued logic circuits. Nanoscale Horiz. 5(10), 1378–1385 (2020). https://doi.org/10.1039/D0NH00163E
Y. Zheng, Z. Hu, C. Han, R. Guo, D. Xiang et al., Black phosphorus inverter devices enabled by in-situ aluminum surface modification. Nano Res. 12(3), 531–536 (2019). https://doi.org/10.1007/s12274-018-2246-y
W. Lv, X. Fu, X. Luo, W. Lv, J. Cai et al., Multistate logic inverter based on black phosphorus/snses heterostructure. Adv. Electron. Mater. 5(1), 1800416 (2019). https://doi.org/10.1002/aelm.201800416
W.T. Hsu, L.S. Lu, D. Wang, J.K. Huang, M.Y. Li et al., Evidence of indirect gap in monolayer WSe2. Nat. Commun. 8(1), 929 (2017). https://doi.org/10.1038/s41467-017-01012-6
A. Kuddus, K. Yokoyama, H. Shirai, Direct synthesis of submillimeter-sized few-layer WS2 and WS0.3Se1.7 by mist chemical vapor deposition and its application to complementary mos inverter. Semicond. Sci. Technol. 37(9), 095020 (2022). https://doi.org/10.1088/1361-6641/ac84fb
S. Wang, X. Zeng, Y. Zhou, J. Lu, Y. Hu et al., High-performance MoS2 complementary inverter prepared by oxygen plasma doping. ACS Appl. Electron. Mater. 4(3), 955–963 (2022). https://doi.org/10.1021/acsaelm.1c01070
Z. Ma, C.J. Estrada, K. Gong, L. Zhang, M. Chan, On-chip integrated high gain complementary MoS2 inverter circuit with exceptional high hole current p-channel field-effect transistors. Adv. Electron. Mater. 8(10), 2200480 (2022). https://doi.org/10.1002/aelm.202200480
J. Chen, J. Zhu, Q. Wang, J. Wan, R. Liu, Homogeneous 2D MoTe2 cmos inverters and p–n junctions formed by laser-irradiation-induced p-type doping. Small 16(30), 2001428 (2020). https://doi.org/10.1002/smll.202001428
M. Huang, S. Li, Z. Zhang, X. Xiong, X. Li et al., Multifunctional high-performance van der waals heterostructures. Nat. Nanotechnol. 12(12), 1148–1154 (2017). https://doi.org/10.1038/nnano.2017.208
L. Zhang, L.Y. Shao, G. Gu, T. Wang, X.W. Sun et al., Type-switchable inverter and amplifier based on high-performance ambipolar black-phosphorus transistors. Adv. Electron. Mater. 5(6), 1900133 (2019). https://doi.org/10.1002/aelm.201900133
P.J. Jeon, J.S. Kim, J.Y. Lim, Y. Cho, A. Pezeshki et al., Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces 7(40), 22333–22340 (2015). https://doi.org/10.1021/acsami.5b06027
J.S. Kim, P.J. Jeon, J. Lee, K. Choi, H.S. Lee et al., Dual gate black phosphorus field effect transistors on glass for nor logic and organic light emitting diode switching. Nano Lett. 15(9), 5778–5783 (2015). https://doi.org/10.1021/acs.nanolett.5b01746
S. Lee, H.S. Lee, S. Yu, J.H. Park, H. Bae et al., Tungsten dichalcogenide nanoflake/ingazno thin-film heterojunction for photodetector, inverter, and ac rectifier circuits. Adv. Electron. Mater. 6(5), 2000026 (2020). https://doi.org/10.1002/aelm.202000026
S. Wang, X. Liu, M. Xu, L. Liu, D. Yang et al., Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21(11), 1225–1239 (2022). https://doi.org/10.1038/s41563-022-01383-2
S. Zeng, C. Liu, X. Huang, Z. Tang, L. Liu et al., An application-specific image processing array based on WSe2 transistors with electrically switchable logic functions. Nat. Commun. 13(1), 56 (2022). https://doi.org/10.1038/s41467-021-27644-3
X. Jia, Z. Cheng, B. Han, X. Cheng, Q. Wang et al., High-performance cmos inverter array with monolithic 3D architecture based on CVD-grown n-MoS2 and p-MoTe2. Small (2023). https://doi.org/10.1002/smll.202207927
M. Sivan, Y. Li, H. Veluri, Y. Zhao, B. Tang et al., All WSe2 1T1R resistive ram cell for future monolithic 3d embedded memory integration. Nat. Commun. 10(1), 5201 (2019). https://doi.org/10.1038/s41467-019-13176-4
L. Mennel, J. Symonowicz, S. Wachter, D.K. Polyushkin, A.J. Molina-Mendoza et al., Ultrafast machine vision with 2D material neural network image sensors. Nature 579(7797), 62–66 (2020). https://doi.org/10.1038/s41586-020-2038-x
N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys et al., Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13(3), 246–252 (2018). https://doi.org/10.1038/s41565-017-0035-5
Y. Luo, S. Zhang, H. Pan, S. Xiao, Z. Guo et al., Unsaturated single atoms on monolayer transition metal dichalcogenides for ultrafast hydrogen evolution. ACS Nano 14(1), 767–776 (2020). https://doi.org/10.1021/acsnano.9b07763
M. Graf, M. Lihter, M. Thakur, V. Georgiou, J. Topolancik et al., Fabrication and practical applications of molybdenum disulfide nanopores. Nat. Protoc. 14(4), 1130–1168 (2019). https://doi.org/10.1038/s41596-019-0131-0
A.Y. Lu, H. Zhu, J. Xiao, C.P. Chuu, Y. Han et al., Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12(8), 744–749 (2017). https://doi.org/10.1038/nnano.2017.100
Y. Luo, L. Tang, U. Khan, Q. Yu, H.M. Cheng et al., Morphology and surface chemistry engineering toward ph-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 10(1), 269 (2019). https://doi.org/10.1038/s41467-018-07792-9
C. Zhang, Y. Luo, J. Tan, Q. Yu, F. Yang et al., High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution. Nat. Commun. 11(1), 3724 (2020). https://doi.org/10.1038/s41467-020-17121-8
Y. Wang, C. Jian, W. Hong, W. Liu, Nonlayered 2D ultrathin molybdenum nitride synthesized through the ammonolysis of 2D molybdenum dioxide. Chem. Commun. 57(2), 223–226 (2021). https://doi.org/10.1039/d0cc07065c
X.B. Zou, H.K. Liang, Y. Li, Y.C. Zou, F. Tian et al., 2D Bi2O2Te semiconductor with single-crystal native oxide layer. Adv. Funct. Mater. 33(18), 2213807 (2023). https://doi.org/10.1002/adfm.202213807
Y. Zhang, J. Yu, R. Zhu, M. Wang, C. Tan et al., A single-crystalline native dielectric for two-dimensional semiconductors with an equivalent oxide thickness below 0.5 nm. Nat. Electron. 5(10), 643–649 (2022). https://doi.org/10.1038/s41928-022-00824-9
B. Liu, Y. Ma, A. Zhang, L. Chen, A.N. Abbas et al., High-performance WSe2 field-effect transistors via controlled formation of in-plane heterojunctions. ACS Nano 10(5), 5153–5160 (2016). https://doi.org/10.1021/acsnano.6b00527
N. Syed, A. Zavabeti, J.Z. Ou, M. Mohiuddin, N. Pillai et al., Printing two-dimensional gallium phosphate out of liquid metal. Nat. Commun. 9(1), 3618 (2018). https://doi.org/10.1038/s41467-018-06124-1
R. Kappera, D. Voiry, S.E. Yalcin, W. Jen, M. Acerce et al., Metallic 1t phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. APL Mater. (2014). https://doi.org/10.1063/1.4896077
Y. Ma, B. Liu, A. Zhang, L. Chen, M. Fathi et al., Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 9(7), 7383–7391 (2015). https://doi.org/10.1021/acsnano.5b02399
Y. Gong, H. Yuan, C.L. Wu, P. Tang, S.Z. Yang et al., Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13(4), 294–299 (2018). https://doi.org/10.1038/s41565-018-0069-3
Y. Luo, X. Li, X. Cai, X. Zou, F. Kang et al., Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12(5), 4565–4573 (2018). https://doi.org/10.1021/acsnano.8b00942
R. Zhang, Y. Zhang, Q. Zhang, H. Xie, W. Qian et al., Growth of half-meter long carbon nanotubes based on schulz–flory distribution. ACS Nano 7(7), 6156–6161 (2013). https://doi.org/10.1021/nn401995z
P.J. Wang, D.R. Yang, X.D. Pi, Toward wafer-scale production of 2D transition metal chalcogenides. Adv. Electron. Mater. (2021). https://doi.org/10.1002/aelm.202100278
J.-K. Huang, Y. Wan, J. Shi, J. Zhang, Z. Wang et al., High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605(7909), 262–267 (2022). https://doi.org/10.1038/s41586-022-04588-2
A.J. Yang, K. Han, K. Huang, C. Ye, W. Wen et al., Van der waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat. Electron. 5(4), 233–240 (2022). https://doi.org/10.1038/s41928-022-00753-7
K. Liu, B. Jin, W. Han, X. Chen, P. Gong et al., Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors with a van der waals interface. Nat. Electron. 4(12), 906–913 (2021). https://doi.org/10.1038/s41928-021-00683-w
S. Puebla, T. Pucher, V. Rouco, G. Sanchez-Santolino, Y. Xie et al., Combining freestanding ferroelectric perovskite oxides with two-dimensional semiconductors for high performance transistors. Nano Lett. 22, 7457–7466 (2022). https://doi.org/10.1021/acs.nanolett.2c02395
T. Jin, J. Mao, J. Gao, C. Han, K.P. Loh et al., Ferroelectrics-integrated two-dimensional devices toward next-generation electronics. ACS Nano 16(9), 13595–13611 (2022). https://doi.org/10.1021/acsnano.2c07281
K.H. Kim, S. Oh, M.M.A. Fiagbenu, J. Zheng, P. Musavigharavi et al., Scalable cmos back-end-of-line-compatible alscn/two-dimensional channel ferroelectric field-effect transistors. Nat. Nanotechnol. (2023). https://doi.org/10.1038/s41565-023-01399-y
C. Tan, M. Yu, J. Tang, X. Gao, Y. Yin et al., 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616(7955), 66–72 (2023). https://doi.org/10.1038/s41586-023-05797-z
T. Tu, Y. Zhang, T. Li, J. Yu, L. Liu et al., Uniform high-k amorphous native oxide synthesized by oxygen plasma for top-gated transistors. Nano Lett. 20(10), 7469–7475 (2020). https://doi.org/10.1021/acs.nanolett.0c02951
S.J. Yun, D.L. Duong, D.M. Ha, K. Singh, T.L. Phan et al., Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Adv. Sci. 7(9), 1903076 (2020). https://doi.org/10.1002/advs.201903076
X. Jiang, X. Hu, J. Bian, K. Zhang, L. Chen et al., Ferroelectric field-effect transistors based on WSe2/CuInP2S6 heterostructures for memory applications. ACS Appl. Electron. Mater. 3(11), 4711–4717 (2021). https://doi.org/10.1021/acsaelm.1c00492
C. Wang, L. You, D. Cobden, J. Wang, Towards two-dimensional van der waals ferroelectrics. Nat. Mater. 22(5), 542–552 (2023). https://doi.org/10.1038/s41563-022-01422-y
M. Wu, Z. Lou, C.M. Dai, T. Wang, J. Wang et al., Achieving ferroelectricity in a centrosymmetric high-performance semiconductor by strain engineering. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300450
Q. Yang, J. Hu, Y.W. Fang, Y. Jia, R. Yang et al., Ferroelectricity in layered bismuth oxide down to 1 nanometer. Science 379(6638), 1218–1224 (2023). https://doi.org/10.1126/science.abm5134
M. Wu, Two-dimensional van der waals ferroelectrics: scientific and technological opportunities. ACS Nano 15(6), 9229–9237 (2021). https://doi.org/10.1021/acsnano.0c08483
T. Ahmed, S. Kuriakose, S. Abbas, M.J.S. Spencer, M.A. Rahman et al., Multifunctional optoelectronics via harnessing defects in layered black phosphorus. Adv. Funct. Mater. 29(39), 1901991 (2019). https://doi.org/10.1002/adfm.201901991
Y. Liu, Y. Huang, X. Duan, Van der waals integration before and beyond two-dimensional materials. Nature 567(7748), 323–333 (2019). https://doi.org/10.1038/s41586-019-1013-x