Immobilization of Oxyanions on the Reconstructed Heterostructure Evolved from a Bimetallic Oxysulfide for the Promotion of Oxygen Evolution Reaction
Corresponding Author: Ziliang Chen
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 186
Abstract
Efficient and durable oxygen evolution reaction (OER) requires the electrocatalyst to bear abundant active sites, optimized electronic structure as well as robust component and mechanical stability. Herein, a bimetallic lanthanum-nickel oxysulfide with rich oxygen vacancies based on the La2O2S prototype is fabricated as a binder-free precatalyst for alkaline OER. The combination of advanced in situ and ex situ characterizations with theoretical calculation uncovers the synergistic effect among La, Ni, O, and S species during OER, which assures the adsorption and stabilization of the oxyanion (SO42−) onto the surface of the deeply reconstructed porous heterostructure composed of confining NiOOH nanodomains by La(OH)3 barrier. Such coupling, confinement, porosity and immobilization enable notable improvement in active site accessibility, phase stability, mass diffusion capability and the intrinsic Gibbs free energy of oxygen-containing intermediates. The optimized electrocatalyst delivers exceptional alkaline OER activity and durability, outperforming most of the Ni-based benchmark OER electrocatalysts.
Highlights:
1 A bimetallic lanthanum-nickel oxysulfide based on a La2O2S prototype was developed as a precatalyst for the electrochemical alkaline oxygen evolution reaction (OER).
2 The in situ, ex situ, and theoretical investigations demonstrated that the precatalyst underwent a deep OER-driven reconstruction into a porous heterostructure where NiOOH nanodomains were uniformly separated and confined by La(OH)3 barrier.
3 Oxyanion (SO42−) was steadily adsorbed on the surface of this in situ reconstructed NiOOH/La(OH)3 heterostructure, enabling it for enhanced OER activity and durability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
- H. Yang, P. Guo, R. Wang, Z. Chen, H. Xu et al., Sequential phase conversion-induced phosphides heteronanorod arrays for superior hydrogen evolution performance to Pt in wide pH media. Adv. Mater. 34, 2107548 (2022). https://doi.org/10.1002/adma.202107548
- B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
- B. Guo, H. Huo, Q. Zhuang, X. Ren, X. Wen et al., Iron oxyhydroxide: structure and applications in electrocatalytic oxygen evolution reaction. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202300557
- J. Wu, Y. Zhang, B. Zhang, S. Li, P. Xu, Zn-doped CoS2 nanoarrays for an efficient oxygen evolution reaction: understanding the doping effect for a precatalyst. ACS Appl. Mater. Interfaces 14, 14235–14242 (2022). https://doi.org/10.1021/acsami.2c00455
- J. Mei, T. He, J. Bai, D. Qi, A. Du et al., Surface-dependent intermediate adsorption modulation on iridium-modified black phosphorus electrocatalysts for efficient pH-universal water splitting. Adv. Mater. 33, 2104638 (2021). https://doi.org/10.1002/adma.202104638
- Z. Wu, T. Liao, S. Wang, W. Li, B. Wijerathne et al., Volcano relationships and a new activity descriptor of 2D transition metal-Fe layered double hydroxides for efficient oxygen evolution reaction. Mater. Horiz. 10, 632–645 (2023). https://doi.org/10.1039/D2MH01217K
- X.B. Yang, J. Chen, Y.Q. Chen, P.J. Feng, H.X. Lai et al., Novel Co3O4 nanops/nitrogen-doped carbon composites with extraordinary catalytic activity for oxygen evolution reaction (OER). Nano-Micro Lett. 10, 15 (2017). https://doi.org/10.1007/s40820-017-0170-4
- L. Xiao, L. Zhao, J. Yu, X.Y. Liu, X.L. Zhang et al., Water splitting: from electrode to green energy system. Nano-Micro Lett. 12, 131 (2020). https://doi.org/10.1007/s40820-020-00469-3
- N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017). https://doi.org/10.1039/C6CS00328A
- J. Zhou, Y. Wang, X. Su, S. Gu, R. Liu et al., Electrochemically accessing ultrathin co(oxy)-hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction. Energy Environ. Sci. 12, 739–746 (2019). https://doi.org/10.1039/C8EE03208D
- W. Hao, D. Yao, Q. Xu, R. Wang, C. Zhang et al., Highly efficient overall-water splitting enabled via grafting boron-inserted Fe–Ni solid solution nanosheets onto unconventional skeleton. Appl. Catal. B Environ. 292, 120188 (2021). https://doi.org/10.1016/j.apcatb.2021.120188
- J.N. Hausmann, P.W. Menezes, Effect of surface-adsorbed and intercalated (oxy) anions on the oxygen evolution reaction. Angew. Chem. Int. Ed. 61, e202207279 (2022). https://doi.org/10.1002/anie.202207279
- P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganthan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
- G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction nimo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14, 20 (2022). https://doi.org/10.1007/s40820-021-00744-x
- I. Mondal, J.N. Hausmann, G. Vijaykumar, S. Mebs, H. Dau et al., Nanostructured intermetallic nickel silicide (pre) catalyst for anodic oxygen evolution reaction and selective dehydrogenation of primary amines. Adv. Energy Mater. 12, 2200269 (2022). https://doi.org/10.1002/aenm.202200269
- W. Hao, C. Fu, Y. Wang, K. Yin, H. Yang et al., Coupling boron-modulated bimetallic oxyhydroxide with photosensitive polymer enable highly-active and ultra-stable seawater splitting. J. Energy Chem. 75, 26–37 (2022). https://doi.org/10.1016/j.jechem.2022.07.042
- J.N. Hausmann, R. Beltrán-Suito, S. Mebs, V. Hlukhyy, T.F. Fässler et al., Evolving highly active oxidic iron(III) phase from corrosion of intermetallic iron silicide to master efficient electrocatalytic water oxidation and selective oxygenation of 5-hydroxymethylfurfural. Adv. Mater. 33, 2008823 (2021). https://doi.org/10.1002/adma.202008823
- H. Yang, G. Dai, Z. Chen, J. Wu, H. Huang et al., Pseudo-periodically coupling Ni–O lattice with Ce–O lattice in ultrathin heteronanowire arrays for efficient water oxidation. Small 17, 2101727 (2021). https://doi.org/10.1002/smll.202101727
- Z. Chen, M. Chen, X. Yan, H. Jia, B. Fei et al., Vacancy occupation-driven polymorphic transformation in cobalt ditelluride for boosted oxygen evolution reaction. ACS Nano 14, 6968–6979 (2020). https://doi.org/10.1021/acsnano.0c01456
- J. Masa, S. Piontek, P. Wilde, H. Antoni, T. Eckhard et al., Ni-metalloid (B, Si, P, As, and Te) alloys as water oxidation electrocatalysts. Adv. Energy Mater. 9, 1900796 (2019). https://doi.org/10.1002/aenm.201900796
- Z. Chen, H. Yang, Z. Kang, M. Driess, P.W. Menezes, The pivotal role of s-, p-, and f-block metals in water electrolysis: status quo and perspectives. Adv. Mater. 34, 2108432 (2022). https://doi.org/10.1002/adma.202108432
- P.W. Menezes, C. Panda, S. Garai, C. Walter, A. Guiet et al., Structurally ordered intermetallic cobalt stannide nanocrystals for high-performance electrocatalytic overall water-splitting. Angew. Chem. Int. Ed. 57, 15237–15462 (2018). https://doi.org/10.1016/j.apcatb.2019.118338
- M. Yu, G. Li, C. Fu, E. Liu, K. Manna et al., Tunable eg orbital occupancy in heusler compounds for oxygen evolution reaction. Angew. Chem. Int. Ed. 60, 5800–5805 (2021). https://doi.org/10.1002/anie.202013610
- C. Wang, Q. Zhang, B. Yan, J. Zheng, C. Zhang et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
- H. Yang, J.N. Hausmann, V. Hlukhyy, T. Braun, K. Laun et al., An intermetallic CaFe6Ge6 approach to unprecedented Ca−Fe−O electrocatalyst for efficient alkaline oxygen evolution reaction. ChemCatChem 14, e202200293 (2022). https://doi.org/10.1002/cctc.202200293
- X. Liu, K. Ni, B. Wen, R. Guo, C. Niu et al., Deep reconstruction of nickel-based precatalysts for water oxidation catalysis. ACS Energy Lett. 4, 2585–2592 (2019). https://doi.org/10.1021/acsenergylett.9b01922
- H. Yang, M. Driess, P.W. Menezes, Self-supported electrocatalysts for practical water electrolysis. Adv. Energy Mater. 11, 2102074 (2021). https://doi.org/10.1002/aenm.202102074
- P.W. Menezes, C. Walter, B. Chakraborty, J.N. Hausmann, I. Zaharieva et al., Combination of highly efficient electrocatalytic water oxidation with selective oxygenation of organic substrates using manganese borophosphates. Adv. Mater. 33, 2004098 (2021). https://doi.org/10.1002/adma.202004098
- H. Liao, T. Luo, P. Tan, K. Chen, L. Lu et al., Unveiling role of sulfate ion in nickel-iron (oxy)hydroxide with enhanced oxygen-evolving performance. Adv. Funct. Mater. 31, 2102772 (2021). https://doi.org/10.1002/adfm.202102772
- S. Li, R. Ma, J. Hu, Z. Li, L. Liu et al., Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity. Nat. Commun. 13, 2916 (2022). https://doi.org/10.1038/s41467-022-30670-4
- X. Ren, C. Wei, Y. Sun, X. Liu, F. Meng et al., Constructing an adaptive heterojunction as a highly active catalyst for the oxygen evolution reaction. Adv. Mater. 32, 2001292 (2020). https://doi.org/10.1002/adma.202001292
- Z. Chen, H. Yang, S. Mebs, H. Dau, M. Driess et al., Reviving oxygen evolution electrocatalysis of bulk La–Ni intermetallics via gaseous hydrogen engineering. Adv. Mater. 35, 2208337 (2023). https://doi.org/10.1002/adma.202208337
- Y. Lu, A. Ma, Y. Yu, R. Tan, C. Liu et al., Engineering oxygen vacancies into LaCoO3 perovskite for efficient electrocatalytic oxygen evolution. ACS Sustain. Chem. Eng. 7, 2906–2910 (2019). https://doi.org/10.1021/acssuschemeng.8b05717
- Q. Dai, H. Song, M. Wang, X. Bai, B. Dong et al., Size and concentration effects on the photoluminescence of La2O2S:Eu3+ nanocrystals. J. Phys. Chem. C 112, 19399–19404 (2008). https://doi.org/10.1021/jp808343f
- P. Garnier, V. Joseph, R. Krachewski, Lanthanum interaction with surface preparations. ECS Trans. 58, 119–125 (2013). https://doi.org/10.1149/05806.0119ecst
- Y. Ding, J. Gu, J. Ke, Y.W. Zhang et al., Sodium doping controlled synthesis of monodisperse lanthanide oxysulfide ultrathin nanoplates guided by density functional calculations. Angew. Chem. Int. Ed. 50, 12330–12334 (2011). https://doi.org/10.1002/anie.201105025
- S. Tan, D. Li, Enhancing oxygen storage capability and catalytic activity of lanthanum oxysulfide (La2O2S) nanocatalysts by sodium and iron/sodium doping. ChemCatChem 10, 550–558 (2018). https://doi.org/10.1002/cctc.201701117
- Y. Yang, C. Mi, F. Yu, X. Su, C. Guo et al., Optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2O2S phosphor. Ceram. Int. 40, 9875–9880 (2014). https://doi.org/10.1016/j.ceramint.2014.02.081
- K. Shah, A. Ćirić, K.V.R. Murthy, B.S. Chakrabarty, Investigation of a new way of synthesis for Nano crystallites of La2O2S & 1%Ln3+ (Ln = Pr, Eu, Tb, Dy, Er) doped La2O2S and study their structural and optical properties. J. Alloys Compd. 851, 156725 (2021). https://doi.org/10.1016/j.jallcom.2020.156725
- B. Jaffar, H. Swart, H. Ahmed, A. Yousif, R. Kroon, Cathodoluminescence degradation of Bi doped La2O3 and La2O2S phosphor powders. Physica B 574, 411659 (2019). https://doi.org/10.1016/j.physb.2019.411659
- C. Freiburg, W. Krumpen, U. Troppenz, Determinations of Ce, Eu and Tb in the electroluminescent materials Gd2O2S and La2O2S by total-reflection X-ray spectrometry. Spectrochim. Acta Part B At. Spectrosc. 48, 263–267 (1993). https://doi.org/10.1016/0584-8547(93)80032-P
- P. Abellan, T.H. Moser, I.T. Lucas, J.W. Grate, J.E. Evans et al., The formation of cerium(iii) hydroxide nanops by a radiation mediated increase in local pH. RSC Adv. 7, 3831–3837 (2017). https://doi.org/10.1039/C6RA27066B
- M. Li, X. Wang, K. Liu, H. Sun, D. Sun et al., Reinforcing Co-O covalency via Ce(4f)-O(2p)-Co(3d) gradient orbital coupling for high-efficiency oxygen evolution. Adv. Mater. (2023). https://doi.org/10.1002/adma.202302462
- Y. Zhou, R. Fan, S. Dou, B. Dong, Y. Ma et al., Tailoring electron transfer with Ce integration in ultrathin Co(OH)2 nanosheets by fast microwave for oxygen evolution reaction. J. Energy Chem. 59, 299–305 (2021). https://doi.org/10.1016/j.jechem.2020.10.037
- X.B. Yang, J.J. Pan, J.P. Hu, S.Y. Zhao, K.J. Cheng, MOF-derived La–ZnFe2O4@Fe3O4@carbon magnetic hybrid composite as a highly efficient and recyclable photocatalyst for mycotoxins degradation. Chem. Eng. J. 467, 143381 (2023). https://doi.org/10.1016/j.cej.2023.143381
- H. Xu, J. Cao, C. Shan, B. Wang, P. Xi et al., MOF-derived hollow CoS decorated with CeOx nanops for boosting oxygen evolution reaction electrocatalysis. Angew. Chem. Int. Ed. 57, 8654–8658 (2018). https://doi.org/10.1002/anie.201804673
- K. Obata, K. Takanabe, A permselective CeOx coating improves the stability of oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 57, 1616–1620 (2018). https://doi.org/10.1002/anie.201712121
- S. Niu, S. Li, Y. Du, X. Han, P. Xu, How to reliably report the overpotential of an electrocatalyst. ACS Energy Lett. 5, 1083–1087 (2020). https://doi.org/10.1021/acsenergylett.0c00321
- G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/PhysRevB.47.558
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S.M. Woodley, R. Catlow, Sodium doping controlled synthesis of monodisperse lanthanide oxysulfide ultrathin nanoplates guided by density functional calculations. Phys. Chem. Chem. Phys. 12, 8436 (2010). https://doi.org/10.1039/C0CP90058C
- J.S. Kim, I. Park, E. Jeong, K. Jin, W.M. Seong et al., Amorphous cobalt phyllosilicate with layered crystalline motifs as water oxidation catalyst. Adv. Mater. 29, 1606893 (2017). https://doi.org/10.1002/adma.201606893
- H. Yang, Z. Chen, P. Guo, B. Fei, R. Wu, B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction. Appl. Catal. B Environ. 261, 118240 (2020). https://doi.org/10.1016/j.apcatb.2019.118240
- I.K. Moon, S. Yoon, K.-Y. Chun, J. Oh, Highly elastic and conductive n-doped monolithic graphene aerogels for multifunctional applications. Adv. Funct. Mater. 25, 6976–6984 (2015). https://doi.org/10.1002/adfm.201502395
- H. Lin, N. Liu, Z. Shi, Y. Guo, Y. Tang et al., Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution. Adv. Funct. Mater. 26, 5590–5598 (2016). https://doi.org/10.1002/adfm.201600915
- X. Tan, L. Guo, T. Zhao, D. Mao, M. Jiang et al., Direct elimination of detrimental surface phases parasitic to LiNixCo1−xO2 (x = 0.8 and 0.9) with unique 3D porous structures during synthesis. Adv. Mater. Interfaces 8, 2100392 (2021). https://doi.org/10.1002/admi.202100392
- Y. Zhou, F. Wang, Y. Zhen, J. Nan, B. Dong et al., Crystal facet engineering of perovskite cobaltite with optimized electronic regulation for water splitting. Sci. China Mater. 65, 2665–2674 (2022). https://doi.org/10.1007/s40843-022-2016-5
- H. Wang, C. Yang, C. Shao, S. Alturkistani, G. Magnotti et al., A homogeneous-heterogeneous kinetic study of oxidative coupling of methane (OCM) on La2O3/CeO2 catalyst. ChemCatChem 14, e202200927 (2022). https://doi.org/10.1002/cctc.202200927
- L.J.B. Erasmus, H.C. Swart, J.J. Terblans, La2O2S: Eu3+ stability as temperature sensor. Appl. Surf. Sci. 487, 41–51 (2019). https://doi.org/10.1016/j.apsusc.2019.05.075
- D. Yang, F. Du, Y. Ren, T. Kang, P. Hu et al., A high-performance NiO/TiO2 UV photodetector: the influence of the NiO layer position. J. Mater. Chem. C 9, 14146–14153 (2021). https://doi.org/10.1039/D1TC02687A
- N.T. Lau, M. Fang, C.K. Chan, The role of SO2 in the reduction of NO by CO on La2O2S. J. Catal. 245, 301–307 (2007). https://doi.org/10.1016/j.jcat.2006.10.025
- L. Qiu, K. Zou, G. Xu, Investigation on the sulfur state and phase transformation of spent and regenerated S zorb sorbents using XPS and XRD. Appl. Surf. Sci. 266, 230–234 (2013). https://doi.org/10.1016/j.apsusc.2012.11.156
- J. Wu, M. Hou, Z. Chen, W. Hao, X. Pan et al., Composition engineering of amorphous nickel boride nanoarchitectures enabling highly efficient electrosynthesis of hydrogen peroxide. Adv. Mater. 34, 2202995 (2022). https://doi.org/10.1002/adma.202202995
- Z. Chen, J. Wu, Z. Chen, H. Yang, K. Zou et al., Entropy enhanced perovskite oxide ceramic for efficient electrochemical reduction of oxygen to hydrogen peroxide. Angew. Chem. Int. Ed. 61, e202200086 (2022). https://doi.org/10.1002/anie.202200086
- Y. Wang, H. Huang, J. Wu, H. Yang, Z. Kang et al., Charge-polarized selenium vacancy in nickel diselenide enabling efficient and stable electrocatalytic conversion of oxygen to hydrogen peroxide. Adv. Sci. 10, 2205347 (2023). https://doi.org/10.1002/advs.202205347
- Q. Hong, Y. Wang, R. Wang, Z. Chen, H. Yang et al., In situ coupling of carbon dots with Co-ZIF nanoarrays enabling highly efficient oxygen evolution electrocatalysis. Small (2023). https://doi.org/10.1002/smll.202206723
- Y. Zhou, H. Qi, J. Wu, H. Huang, Y. Liu et al., Amino modified carbon dots with electron sink effect increase interface charge transfer rate of Cu-based electrocatalyst to enhance the CO2 conversion selectivity to C2H4. Adv. Funct. Mater. 32, 2113335 (2022). https://doi.org/10.1002/adfm.202113335
- J. Wu, Y. Han, Y. Bai, X. Wang, Y. Zhou et al., The electron transport regulation in carbon dots/In2O3 electrocatalyst enable 100% selectivity for oxygen reduction to hydrogen peroxide. Adv. Funct. Mater. 32, 2203647 (2022). https://doi.org/10.1002/adfm.202203647
- S. Zou, M.S. Burke, M.G. Kast, J. Fan, N. Danilovic et al., Fe (oxy) hydroxide oxygen evolution reaction electrocatalysis: intrinsic activity and the roles of electrical conductivity, substrate, and dissolution. Chem. Mater. 27, 8011–8020 (2015). https://doi.org/10.1021/acs.chemmater.5b03404
- X. Yu, T. Zhou, J. Ge, C. Wu, Recent advances on the modulation of electrocatalysts based on transition metal nitrides for the rechargeable Zn-air battery. ACS Mater. Lett. 2, 1423–1434 (2020). https://doi.org/10.1021/acsmaterialslett.0c00339
- T. Zhang, J. Gu, Y. Ding, Y.W. Zhang, C.H. Yan, Experimental and theoretical studies on the controlled synthesis of alkali-metal-doped rare-earth oxysulfide nanocrystals. ChemPlusChem 78, 515–521 (2013). https://doi.org/10.1002/cplu.201300092
- Z. Luo, F. Li, Q. Zhu, X. Sun, J.-G. Li et al., Low-temperature green synthesis of nanocrystalline La2O2S:Pr3+ powders and investigation of photoluminescence. J. Mater. Res. Technol. 17, 2540–2549 (2022). https://doi.org/10.1016/j.jmrt.2022.02.023
- J. Yu, Q. Cao, Y.B. Li, X. Long, S.H. Yang et al., Defect-rich NiCeOx electrocatalyst with ultrahigh stability and low overpotential for water oxidation. ACS Catal. 9, 1605–1611 (2019). https://doi.org/10.1021/acscatal.9b00191
- W. Chang, B. Ning, Q. Xu, H. Jiang, Y. Hu et al., Strongly coupled N-doped graphene quantum dots/Ni (Fe) OxHy electrocatalysts with accelerated reaction kinetics for water oxidation. Chem. Eng. J. 430, 133068 (2022). https://doi.org/10.1016/j.cej.2021.133068
- N. Zhang, Y. Hu, L. An, Q. Li, J. Yin et al., Surface activation and Ni-S stabilization in NiO/NiS2 for efficient oxygen evolution reaction. Angew. Chem. Int. Ed. 61, e202207217 (2022). https://doi.org/10.1002/anie.202207217
- X. Liu, R. Guo, K. Ni, F. Xia, C. Niu et al., Reconstruction-determined alkaline water electrolysis at industrial temperatures. Adv. Mater. 32, 2001136 (2020). https://doi.org/10.1002/adma.202001136
- M. Wu, Y. Wang, Z. Wei, L. Wang, M. Zhuo et al., Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc-air battery. J. Mater. Chem. A 6, 10918–10925 (2018). https://doi.org/10.1039/C8TA02416B
- Y. Wang, F. Wang, J. He, Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth. Nanoscale 5, 11291–11297 (2013). https://doi.org/10.1039/C3NR03969B
- P.W. Menezes, S. Yao, R. Beltrán-Suito, J.N. Hausmann, P.V. Menezes et al., Facile access to an active γ-NiOOH electrocatalyst for durable water oxidation derived from an intermetallic nickel germanide precursor. Angew. Chem. Int. Ed. 60, 4640–4647 (2021). https://doi.org/10.1002/anie.202014331
- H. Yang, P.V. Menezes, G. Dai, G. Vijaykumar, Z. Chen et al., Activation of nickel foam through in-liquid plasma-induced phosphorus incorporation for efficient quasi-industrial water oxidation and selective oxygenation of organics. Appl. Catal. B: Environ. 324, 122249 (2023). https://doi.org/10.1016/j.apcatb.2022.122249
- A. Subasri, K. Balakrishnan, E.R. Nagarajan, V. Devadoss, A. Subramania, Development of 2D La(OH)3/graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors. Electrochim. Acta 281, 329–337 (2018). https://doi.org/10.1016/j.electacta.2018.05.142
- W.W. Rudolph, G. Irmerb, G.T. Hefter, Raman spectroscopic investigation of speciation in MgSO4(aq). Phys. Chem. Chem. Phys. 5, 5253–5261 (2003). https://doi.org/10.1039/B308951G
References
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
H. Yang, P. Guo, R. Wang, Z. Chen, H. Xu et al., Sequential phase conversion-induced phosphides heteronanorod arrays for superior hydrogen evolution performance to Pt in wide pH media. Adv. Mater. 34, 2107548 (2022). https://doi.org/10.1002/adma.202107548
B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
B. Guo, H. Huo, Q. Zhuang, X. Ren, X. Wen et al., Iron oxyhydroxide: structure and applications in electrocatalytic oxygen evolution reaction. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202300557
J. Wu, Y. Zhang, B. Zhang, S. Li, P. Xu, Zn-doped CoS2 nanoarrays for an efficient oxygen evolution reaction: understanding the doping effect for a precatalyst. ACS Appl. Mater. Interfaces 14, 14235–14242 (2022). https://doi.org/10.1021/acsami.2c00455
J. Mei, T. He, J. Bai, D. Qi, A. Du et al., Surface-dependent intermediate adsorption modulation on iridium-modified black phosphorus electrocatalysts for efficient pH-universal water splitting. Adv. Mater. 33, 2104638 (2021). https://doi.org/10.1002/adma.202104638
Z. Wu, T. Liao, S. Wang, W. Li, B. Wijerathne et al., Volcano relationships and a new activity descriptor of 2D transition metal-Fe layered double hydroxides for efficient oxygen evolution reaction. Mater. Horiz. 10, 632–645 (2023). https://doi.org/10.1039/D2MH01217K
X.B. Yang, J. Chen, Y.Q. Chen, P.J. Feng, H.X. Lai et al., Novel Co3O4 nanops/nitrogen-doped carbon composites with extraordinary catalytic activity for oxygen evolution reaction (OER). Nano-Micro Lett. 10, 15 (2017). https://doi.org/10.1007/s40820-017-0170-4
L. Xiao, L. Zhao, J. Yu, X.Y. Liu, X.L. Zhang et al., Water splitting: from electrode to green energy system. Nano-Micro Lett. 12, 131 (2020). https://doi.org/10.1007/s40820-020-00469-3
N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017). https://doi.org/10.1039/C6CS00328A
J. Zhou, Y. Wang, X. Su, S. Gu, R. Liu et al., Electrochemically accessing ultrathin co(oxy)-hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction. Energy Environ. Sci. 12, 739–746 (2019). https://doi.org/10.1039/C8EE03208D
W. Hao, D. Yao, Q. Xu, R. Wang, C. Zhang et al., Highly efficient overall-water splitting enabled via grafting boron-inserted Fe–Ni solid solution nanosheets onto unconventional skeleton. Appl. Catal. B Environ. 292, 120188 (2021). https://doi.org/10.1016/j.apcatb.2021.120188
J.N. Hausmann, P.W. Menezes, Effect of surface-adsorbed and intercalated (oxy) anions on the oxygen evolution reaction. Angew. Chem. Int. Ed. 61, e202207279 (2022). https://doi.org/10.1002/anie.202207279
P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganthan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction nimo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14, 20 (2022). https://doi.org/10.1007/s40820-021-00744-x
I. Mondal, J.N. Hausmann, G. Vijaykumar, S. Mebs, H. Dau et al., Nanostructured intermetallic nickel silicide (pre) catalyst for anodic oxygen evolution reaction and selective dehydrogenation of primary amines. Adv. Energy Mater. 12, 2200269 (2022). https://doi.org/10.1002/aenm.202200269
W. Hao, C. Fu, Y. Wang, K. Yin, H. Yang et al., Coupling boron-modulated bimetallic oxyhydroxide with photosensitive polymer enable highly-active and ultra-stable seawater splitting. J. Energy Chem. 75, 26–37 (2022). https://doi.org/10.1016/j.jechem.2022.07.042
J.N. Hausmann, R. Beltrán-Suito, S. Mebs, V. Hlukhyy, T.F. Fässler et al., Evolving highly active oxidic iron(III) phase from corrosion of intermetallic iron silicide to master efficient electrocatalytic water oxidation and selective oxygenation of 5-hydroxymethylfurfural. Adv. Mater. 33, 2008823 (2021). https://doi.org/10.1002/adma.202008823
H. Yang, G. Dai, Z. Chen, J. Wu, H. Huang et al., Pseudo-periodically coupling Ni–O lattice with Ce–O lattice in ultrathin heteronanowire arrays for efficient water oxidation. Small 17, 2101727 (2021). https://doi.org/10.1002/smll.202101727
Z. Chen, M. Chen, X. Yan, H. Jia, B. Fei et al., Vacancy occupation-driven polymorphic transformation in cobalt ditelluride for boosted oxygen evolution reaction. ACS Nano 14, 6968–6979 (2020). https://doi.org/10.1021/acsnano.0c01456
J. Masa, S. Piontek, P. Wilde, H. Antoni, T. Eckhard et al., Ni-metalloid (B, Si, P, As, and Te) alloys as water oxidation electrocatalysts. Adv. Energy Mater. 9, 1900796 (2019). https://doi.org/10.1002/aenm.201900796
Z. Chen, H. Yang, Z. Kang, M. Driess, P.W. Menezes, The pivotal role of s-, p-, and f-block metals in water electrolysis: status quo and perspectives. Adv. Mater. 34, 2108432 (2022). https://doi.org/10.1002/adma.202108432
P.W. Menezes, C. Panda, S. Garai, C. Walter, A. Guiet et al., Structurally ordered intermetallic cobalt stannide nanocrystals for high-performance electrocatalytic overall water-splitting. Angew. Chem. Int. Ed. 57, 15237–15462 (2018). https://doi.org/10.1016/j.apcatb.2019.118338
M. Yu, G. Li, C. Fu, E. Liu, K. Manna et al., Tunable eg orbital occupancy in heusler compounds for oxygen evolution reaction. Angew. Chem. Int. Ed. 60, 5800–5805 (2021). https://doi.org/10.1002/anie.202013610
C. Wang, Q. Zhang, B. Yan, J. Zheng, C. Zhang et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
H. Yang, J.N. Hausmann, V. Hlukhyy, T. Braun, K. Laun et al., An intermetallic CaFe6Ge6 approach to unprecedented Ca−Fe−O electrocatalyst for efficient alkaline oxygen evolution reaction. ChemCatChem 14, e202200293 (2022). https://doi.org/10.1002/cctc.202200293
X. Liu, K. Ni, B. Wen, R. Guo, C. Niu et al., Deep reconstruction of nickel-based precatalysts for water oxidation catalysis. ACS Energy Lett. 4, 2585–2592 (2019). https://doi.org/10.1021/acsenergylett.9b01922
H. Yang, M. Driess, P.W. Menezes, Self-supported electrocatalysts for practical water electrolysis. Adv. Energy Mater. 11, 2102074 (2021). https://doi.org/10.1002/aenm.202102074
P.W. Menezes, C. Walter, B. Chakraborty, J.N. Hausmann, I. Zaharieva et al., Combination of highly efficient electrocatalytic water oxidation with selective oxygenation of organic substrates using manganese borophosphates. Adv. Mater. 33, 2004098 (2021). https://doi.org/10.1002/adma.202004098
H. Liao, T. Luo, P. Tan, K. Chen, L. Lu et al., Unveiling role of sulfate ion in nickel-iron (oxy)hydroxide with enhanced oxygen-evolving performance. Adv. Funct. Mater. 31, 2102772 (2021). https://doi.org/10.1002/adfm.202102772
S. Li, R. Ma, J. Hu, Z. Li, L. Liu et al., Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity. Nat. Commun. 13, 2916 (2022). https://doi.org/10.1038/s41467-022-30670-4
X. Ren, C. Wei, Y. Sun, X. Liu, F. Meng et al., Constructing an adaptive heterojunction as a highly active catalyst for the oxygen evolution reaction. Adv. Mater. 32, 2001292 (2020). https://doi.org/10.1002/adma.202001292
Z. Chen, H. Yang, S. Mebs, H. Dau, M. Driess et al., Reviving oxygen evolution electrocatalysis of bulk La–Ni intermetallics via gaseous hydrogen engineering. Adv. Mater. 35, 2208337 (2023). https://doi.org/10.1002/adma.202208337
Y. Lu, A. Ma, Y. Yu, R. Tan, C. Liu et al., Engineering oxygen vacancies into LaCoO3 perovskite for efficient electrocatalytic oxygen evolution. ACS Sustain. Chem. Eng. 7, 2906–2910 (2019). https://doi.org/10.1021/acssuschemeng.8b05717
Q. Dai, H. Song, M. Wang, X. Bai, B. Dong et al., Size and concentration effects on the photoluminescence of La2O2S:Eu3+ nanocrystals. J. Phys. Chem. C 112, 19399–19404 (2008). https://doi.org/10.1021/jp808343f
P. Garnier, V. Joseph, R. Krachewski, Lanthanum interaction with surface preparations. ECS Trans. 58, 119–125 (2013). https://doi.org/10.1149/05806.0119ecst
Y. Ding, J. Gu, J. Ke, Y.W. Zhang et al., Sodium doping controlled synthesis of monodisperse lanthanide oxysulfide ultrathin nanoplates guided by density functional calculations. Angew. Chem. Int. Ed. 50, 12330–12334 (2011). https://doi.org/10.1002/anie.201105025
S. Tan, D. Li, Enhancing oxygen storage capability and catalytic activity of lanthanum oxysulfide (La2O2S) nanocatalysts by sodium and iron/sodium doping. ChemCatChem 10, 550–558 (2018). https://doi.org/10.1002/cctc.201701117
Y. Yang, C. Mi, F. Yu, X. Su, C. Guo et al., Optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2O2S phosphor. Ceram. Int. 40, 9875–9880 (2014). https://doi.org/10.1016/j.ceramint.2014.02.081
K. Shah, A. Ćirić, K.V.R. Murthy, B.S. Chakrabarty, Investigation of a new way of synthesis for Nano crystallites of La2O2S & 1%Ln3+ (Ln = Pr, Eu, Tb, Dy, Er) doped La2O2S and study their structural and optical properties. J. Alloys Compd. 851, 156725 (2021). https://doi.org/10.1016/j.jallcom.2020.156725
B. Jaffar, H. Swart, H. Ahmed, A. Yousif, R. Kroon, Cathodoluminescence degradation of Bi doped La2O3 and La2O2S phosphor powders. Physica B 574, 411659 (2019). https://doi.org/10.1016/j.physb.2019.411659
C. Freiburg, W. Krumpen, U. Troppenz, Determinations of Ce, Eu and Tb in the electroluminescent materials Gd2O2S and La2O2S by total-reflection X-ray spectrometry. Spectrochim. Acta Part B At. Spectrosc. 48, 263–267 (1993). https://doi.org/10.1016/0584-8547(93)80032-P
P. Abellan, T.H. Moser, I.T. Lucas, J.W. Grate, J.E. Evans et al., The formation of cerium(iii) hydroxide nanops by a radiation mediated increase in local pH. RSC Adv. 7, 3831–3837 (2017). https://doi.org/10.1039/C6RA27066B
M. Li, X. Wang, K. Liu, H. Sun, D. Sun et al., Reinforcing Co-O covalency via Ce(4f)-O(2p)-Co(3d) gradient orbital coupling for high-efficiency oxygen evolution. Adv. Mater. (2023). https://doi.org/10.1002/adma.202302462
Y. Zhou, R. Fan, S. Dou, B. Dong, Y. Ma et al., Tailoring electron transfer with Ce integration in ultrathin Co(OH)2 nanosheets by fast microwave for oxygen evolution reaction. J. Energy Chem. 59, 299–305 (2021). https://doi.org/10.1016/j.jechem.2020.10.037
X.B. Yang, J.J. Pan, J.P. Hu, S.Y. Zhao, K.J. Cheng, MOF-derived La–ZnFe2O4@Fe3O4@carbon magnetic hybrid composite as a highly efficient and recyclable photocatalyst for mycotoxins degradation. Chem. Eng. J. 467, 143381 (2023). https://doi.org/10.1016/j.cej.2023.143381
H. Xu, J. Cao, C. Shan, B. Wang, P. Xi et al., MOF-derived hollow CoS decorated with CeOx nanops for boosting oxygen evolution reaction electrocatalysis. Angew. Chem. Int. Ed. 57, 8654–8658 (2018). https://doi.org/10.1002/anie.201804673
K. Obata, K. Takanabe, A permselective CeOx coating improves the stability of oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 57, 1616–1620 (2018). https://doi.org/10.1002/anie.201712121
S. Niu, S. Li, Y. Du, X. Han, P. Xu, How to reliably report the overpotential of an electrocatalyst. ACS Energy Lett. 5, 1083–1087 (2020). https://doi.org/10.1021/acsenergylett.0c00321
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/PhysRevB.47.558
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
S.M. Woodley, R. Catlow, Sodium doping controlled synthesis of monodisperse lanthanide oxysulfide ultrathin nanoplates guided by density functional calculations. Phys. Chem. Chem. Phys. 12, 8436 (2010). https://doi.org/10.1039/C0CP90058C
J.S. Kim, I. Park, E. Jeong, K. Jin, W.M. Seong et al., Amorphous cobalt phyllosilicate with layered crystalline motifs as water oxidation catalyst. Adv. Mater. 29, 1606893 (2017). https://doi.org/10.1002/adma.201606893
H. Yang, Z. Chen, P. Guo, B. Fei, R. Wu, B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction. Appl. Catal. B Environ. 261, 118240 (2020). https://doi.org/10.1016/j.apcatb.2019.118240
I.K. Moon, S. Yoon, K.-Y. Chun, J. Oh, Highly elastic and conductive n-doped monolithic graphene aerogels for multifunctional applications. Adv. Funct. Mater. 25, 6976–6984 (2015). https://doi.org/10.1002/adfm.201502395
H. Lin, N. Liu, Z. Shi, Y. Guo, Y. Tang et al., Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution. Adv. Funct. Mater. 26, 5590–5598 (2016). https://doi.org/10.1002/adfm.201600915
X. Tan, L. Guo, T. Zhao, D. Mao, M. Jiang et al., Direct elimination of detrimental surface phases parasitic to LiNixCo1−xO2 (x = 0.8 and 0.9) with unique 3D porous structures during synthesis. Adv. Mater. Interfaces 8, 2100392 (2021). https://doi.org/10.1002/admi.202100392
Y. Zhou, F. Wang, Y. Zhen, J. Nan, B. Dong et al., Crystal facet engineering of perovskite cobaltite with optimized electronic regulation for water splitting. Sci. China Mater. 65, 2665–2674 (2022). https://doi.org/10.1007/s40843-022-2016-5
H. Wang, C. Yang, C. Shao, S. Alturkistani, G. Magnotti et al., A homogeneous-heterogeneous kinetic study of oxidative coupling of methane (OCM) on La2O3/CeO2 catalyst. ChemCatChem 14, e202200927 (2022). https://doi.org/10.1002/cctc.202200927
L.J.B. Erasmus, H.C. Swart, J.J. Terblans, La2O2S: Eu3+ stability as temperature sensor. Appl. Surf. Sci. 487, 41–51 (2019). https://doi.org/10.1016/j.apsusc.2019.05.075
D. Yang, F. Du, Y. Ren, T. Kang, P. Hu et al., A high-performance NiO/TiO2 UV photodetector: the influence of the NiO layer position. J. Mater. Chem. C 9, 14146–14153 (2021). https://doi.org/10.1039/D1TC02687A
N.T. Lau, M. Fang, C.K. Chan, The role of SO2 in the reduction of NO by CO on La2O2S. J. Catal. 245, 301–307 (2007). https://doi.org/10.1016/j.jcat.2006.10.025
L. Qiu, K. Zou, G. Xu, Investigation on the sulfur state and phase transformation of spent and regenerated S zorb sorbents using XPS and XRD. Appl. Surf. Sci. 266, 230–234 (2013). https://doi.org/10.1016/j.apsusc.2012.11.156
J. Wu, M. Hou, Z. Chen, W. Hao, X. Pan et al., Composition engineering of amorphous nickel boride nanoarchitectures enabling highly efficient electrosynthesis of hydrogen peroxide. Adv. Mater. 34, 2202995 (2022). https://doi.org/10.1002/adma.202202995
Z. Chen, J. Wu, Z. Chen, H. Yang, K. Zou et al., Entropy enhanced perovskite oxide ceramic for efficient electrochemical reduction of oxygen to hydrogen peroxide. Angew. Chem. Int. Ed. 61, e202200086 (2022). https://doi.org/10.1002/anie.202200086
Y. Wang, H. Huang, J. Wu, H. Yang, Z. Kang et al., Charge-polarized selenium vacancy in nickel diselenide enabling efficient and stable electrocatalytic conversion of oxygen to hydrogen peroxide. Adv. Sci. 10, 2205347 (2023). https://doi.org/10.1002/advs.202205347
Q. Hong, Y. Wang, R. Wang, Z. Chen, H. Yang et al., In situ coupling of carbon dots with Co-ZIF nanoarrays enabling highly efficient oxygen evolution electrocatalysis. Small (2023). https://doi.org/10.1002/smll.202206723
Y. Zhou, H. Qi, J. Wu, H. Huang, Y. Liu et al., Amino modified carbon dots with electron sink effect increase interface charge transfer rate of Cu-based electrocatalyst to enhance the CO2 conversion selectivity to C2H4. Adv. Funct. Mater. 32, 2113335 (2022). https://doi.org/10.1002/adfm.202113335
J. Wu, Y. Han, Y. Bai, X. Wang, Y. Zhou et al., The electron transport regulation in carbon dots/In2O3 electrocatalyst enable 100% selectivity for oxygen reduction to hydrogen peroxide. Adv. Funct. Mater. 32, 2203647 (2022). https://doi.org/10.1002/adfm.202203647
S. Zou, M.S. Burke, M.G. Kast, J. Fan, N. Danilovic et al., Fe (oxy) hydroxide oxygen evolution reaction electrocatalysis: intrinsic activity and the roles of electrical conductivity, substrate, and dissolution. Chem. Mater. 27, 8011–8020 (2015). https://doi.org/10.1021/acs.chemmater.5b03404
X. Yu, T. Zhou, J. Ge, C. Wu, Recent advances on the modulation of electrocatalysts based on transition metal nitrides for the rechargeable Zn-air battery. ACS Mater. Lett. 2, 1423–1434 (2020). https://doi.org/10.1021/acsmaterialslett.0c00339
T. Zhang, J. Gu, Y. Ding, Y.W. Zhang, C.H. Yan, Experimental and theoretical studies on the controlled synthesis of alkali-metal-doped rare-earth oxysulfide nanocrystals. ChemPlusChem 78, 515–521 (2013). https://doi.org/10.1002/cplu.201300092
Z. Luo, F. Li, Q. Zhu, X. Sun, J.-G. Li et al., Low-temperature green synthesis of nanocrystalline La2O2S:Pr3+ powders and investigation of photoluminescence. J. Mater. Res. Technol. 17, 2540–2549 (2022). https://doi.org/10.1016/j.jmrt.2022.02.023
J. Yu, Q. Cao, Y.B. Li, X. Long, S.H. Yang et al., Defect-rich NiCeOx electrocatalyst with ultrahigh stability and low overpotential for water oxidation. ACS Catal. 9, 1605–1611 (2019). https://doi.org/10.1021/acscatal.9b00191
W. Chang, B. Ning, Q. Xu, H. Jiang, Y. Hu et al., Strongly coupled N-doped graphene quantum dots/Ni (Fe) OxHy electrocatalysts with accelerated reaction kinetics for water oxidation. Chem. Eng. J. 430, 133068 (2022). https://doi.org/10.1016/j.cej.2021.133068
N. Zhang, Y. Hu, L. An, Q. Li, J. Yin et al., Surface activation and Ni-S stabilization in NiO/NiS2 for efficient oxygen evolution reaction. Angew. Chem. Int. Ed. 61, e202207217 (2022). https://doi.org/10.1002/anie.202207217
X. Liu, R. Guo, K. Ni, F. Xia, C. Niu et al., Reconstruction-determined alkaline water electrolysis at industrial temperatures. Adv. Mater. 32, 2001136 (2020). https://doi.org/10.1002/adma.202001136
M. Wu, Y. Wang, Z. Wei, L. Wang, M. Zhuo et al., Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc-air battery. J. Mater. Chem. A 6, 10918–10925 (2018). https://doi.org/10.1039/C8TA02416B
Y. Wang, F. Wang, J. He, Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth. Nanoscale 5, 11291–11297 (2013). https://doi.org/10.1039/C3NR03969B
P.W. Menezes, S. Yao, R. Beltrán-Suito, J.N. Hausmann, P.V. Menezes et al., Facile access to an active γ-NiOOH electrocatalyst for durable water oxidation derived from an intermetallic nickel germanide precursor. Angew. Chem. Int. Ed. 60, 4640–4647 (2021). https://doi.org/10.1002/anie.202014331
H. Yang, P.V. Menezes, G. Dai, G. Vijaykumar, Z. Chen et al., Activation of nickel foam through in-liquid plasma-induced phosphorus incorporation for efficient quasi-industrial water oxidation and selective oxygenation of organics. Appl. Catal. B: Environ. 324, 122249 (2023). https://doi.org/10.1016/j.apcatb.2022.122249
A. Subasri, K. Balakrishnan, E.R. Nagarajan, V. Devadoss, A. Subramania, Development of 2D La(OH)3/graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors. Electrochim. Acta 281, 329–337 (2018). https://doi.org/10.1016/j.electacta.2018.05.142
W.W. Rudolph, G. Irmerb, G.T. Hefter, Raman spectroscopic investigation of speciation in MgSO4(aq). Phys. Chem. Chem. Phys. 5, 5253–5261 (2003). https://doi.org/10.1039/B308951G