Nanofiber Composite Reinforced Organohydrogels for Multifunctional and Wearable Electronics
Corresponding Author: Jiefeng Gao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 174
Abstract
Composite organohydrogels have been widely used in wearable electronics. However, it remains a great challenge to develop mechanically robust and multifunctional composite organohydrogels with good dispersion of nanofillers and strong interfacial interactions. Here, multifunctional nanofiber composite reinforced organohydrogels (NCROs) are prepared. The NCRO with a sandwich-like structure possesses excellent multi-level interfacial bonding. Simultaneously, the synergistic strengthening and toughening mechanism at three different length scales endow the NCRO with outstanding mechanical properties with a tensile strength (up to 7.38 ± 0.24 MPa), fracture strain (up to 941 ± 17%), toughness (up to 31.59 ± 1.53 MJ m−3) and fracture energy (up to 5.41 ± 0.63 kJ m−2). Moreover, the NCRO can be used for high performance electromagnetic interference shielding and strain sensing due to its high conductivity and excellent environmental tolerance such as anti-freezing performance. Remarkably, owing to the organohydrogel stabilized conductive network, the NCRO exhibits superior long-term sensing stability and durability compared to the nanofiber composite itself. This work provides new ideas for the design of high-strength, tough, stretchable, anti-freezing and conductive organohydrogels with potential applications in multifunctional and wearable electronics.
Highlights:
1 A nanofiber composite reinforced organohydrogel with multifunctionality is prepared.
2 The composite organohydrogel possesses multiple interfacial bondings and multi-level strengthening and toughening mechanism is proposed.
3 The composite organohydrogel exhibits long-term strain sensing stability and can be used for high performance electromagnetic interference shielding.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Fan, L. Zhao, Q. Ling, J. Liu, H. Gu, Mussel-induced nano-silver antibacterial, self-healing, self-adhesive, anti-freezing, and moisturizing dual-network organohydrogel based on SA-PBA/PVA/CNTs as flexible wearable strain sensors. Polymer 256, 125270 (2022). https://doi.org/10.1016/j.polymer.2022.125270
- Y. Niu, H. Liu, R. He, M. Luo, M. Shu et al., Environmentally compatible wearable electronics based on ionically conductive organohydrogels for health monitoring with thermal compatibility, anti-dehydration, and underwater adhesion. Small 17(24), 2101151 (2021). https://doi.org/10.1002/smll.202101151
- H. Zhou, J. Lai, B. Zheng, X. Jin, G. Zhao et al., From glutinous-rice-inspired adhesive organohydrogels to flexible electronic devices toward wearable sensing, power supply, and energy storage. Adv. Funct. Mater. 32(1), 2108423 (2022). https://doi.org/10.1002/adfm.202108423
- G. Yan, S. He, G. Chen, S. Ma, A. Zeng et al., Highly flexible and broad-range mechanically tunable all-wood hydrogels with nanoscale channels via the Hofmeister effect for human motion monitoring. Nano-Micro Lett. 14(1), 84 (2022). https://doi.org/10.1007/s40820-022-00827-3
- W. Feng, Y. Chen, Y. Jiang, A. Hu, W. Wang et al., Low hysteresis, anti-freezing and conductive organohydrogel prepared by thiol-ene click chemistry for human-machine interaction. Polymer 262, 125464 (2022). https://doi.org/10.1016/j.polymer.2022.125464
- B. Guo, Y. Zhong, X. Song, X. Chen, P. Zhou et al., 3D printing of mechanically elastic, self-adhesive, and biocompatible organohydrogels for wearable and breathable strain sensors. Adv. Mater. Technol. 8(5), 2201078 (2023). https://doi.org/10.1002/admt.202201078
- X. Wan, X. Xu, X. Liu, L. Jia, X. He et al., A wetting-enabled-transfer (WET) strategy for precise surface patterning of organohydrogels. Adv. Mater. 33(16), 2008557 (2021). https://doi.org/10.1002/adma.202008557
- Y. Ye, Y. Zhang, Y. Chen, X. Han, F. Jiang, Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30(35), 2003430 (2020). https://doi.org/10.1002/adfm.202003430
- J. Gu, J. Huang, G. Chen, L. Hou, J. Zhang et al., Multifunctional poly (vinyl alcohol) nanocomposite organohydrogel for flexible strain and temperature sensor. ACS Appl. Mater. Interfaces 12(36), 40815–40827 (2020). https://doi.org/10.1021/acsami.0c12176
- J. Liu, Z. Chen, Y. Chen, H.U. Rehman, Y. Guo et al., Ionic conductive organohydrogels with dynamic pattern behavior and multi-environmental stability. Adv. Funct. Mater. 31(24), 2101464 (2021). https://doi.org/10.1002/adfm.202101464
- J. Lu, J. Gu, O. Hu, Y. Fu, D. Ye et al., Highly tough, freezing-tolerant, healable and thermoplastic starch/poly (vinyl alcohol) organohydrogels for flexible electronic devices. J. Mater. Chem. A 9(34), 18406–18420 (2021). https://doi.org/10.1039/D1TA04336F
- J. Yang, C. Tang, H. Sun, Z. Liu, Z. Liu et al., Tough, transparent, and anti-freezing nanocomposite organohydrogels with photochromic properties. ACS Appl. Mater. Interfaces 13(26), 31180–31192 (2021). https://doi.org/10.1021/acsami.1c07563
- M. Wu, X. Wang, Y. Xia, Y. Zhu, S. Zhu et al., Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 95, 106967 (2022). https://doi.org/10.1016/j.nanoen.2022.106967
- K. Chen, K. Liang, H. Liu, R. Liu, Y. Liu et al., Skin-inspired ultra-tough supramolecular multifunctional hydrogel electronic skin for human–machine interaction. Nano-Micro Lett. 15(1), 102 (2023). https://doi.org/10.1007/s40820-023-01084-8
- Y. Wu, W. Xing, J. Wen, Z. Wu, Y. Zhang et al., Mixed solvent exchange enabled high-performance polymeric gels. Polymer 267, 125661 (2023). https://doi.org/10.1016/j.polymer.2022.125661
- Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14(1), 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
- W. Zhang, B. Wu, S. Sun, P. Wu, Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 12(1), 4082 (2021). https://doi.org/10.1038/s41467-021-24382-4
- S. Bao, J. Gao, T. Xu, N. Li, W. Chen et al., Anti-freezing and antibacterial conductive organohydrogel co-reinforced by 1D silk nanofibers and 2D graphitic carbon nitride nanosheets as flexible sensor. Chem. Eng. J. 411, 128470 (2021). https://doi.org/10.1016/j.cej.2021.128470
- J. Wang, T. Dai, Y. Zhou, A. Mohamed, G. Yuan et al., Adhesive and high-sensitivity modified Ti3C2TX (MXene)-based organohydrogels with wide work temperature range for wearable sensors. J. Colloid Interface Sci. 613, 94–102 (2022). https://doi.org/10.1016/j.jcis.2022.01.021
- Y. Wei, L. Xiang, H. Ou, F. Li, Y. Zhang et al., MXene-based conductive organohydrogels with long-term environmental stability and multifunctionality. Adv. Funct. Mater. 30(48), 2005135 (2020). https://doi.org/10.1002/adfm.202005135
- H. Liao, X. Guo, P. Wan, G. Yu, Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv. Funct. Mater. 29(39), 1904507 (2019). https://doi.org/10.1002/adfm.201904507
- L. Xu, X. Zhao, C. Xu, N.A. Kotov, Water-rich biomimetic composites with abiotic self-organizing nanofiber network. Adv. Mater. 30(1), 1703343 (2018). https://doi.org/10.1002/adma.201703343
- H. Mei, D. Han, S. Xiao, T. Ji, J. Tang et al., Improvement of the electromagnetic shielding properties of C/SiC composites by electrophoretic deposition of carbon nanotube on carbon fibers. Carbon 109, 149–153 (2016). https://doi.org/10.1016/j.carbon.2016.07.070
- J. Liu, S. Lin, K. Huang, C. Jia, Q. Wang et al., A large-area AgNM-modified textile with high-performance electromagnetic interference shielding. NPJ Flexible Electron. 4(1), 10 (2020). https://doi.org/10.1038/s41528-020-0074-0
- K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanop synthesis. Dalton Trans. 44(41), 17883–17905 (2015). https://doi.org/10.1039/C5DT02964C
- M. Park, J. Im, M. Shin, Y. Min, J. Park et al., Highly stretchable electric circuits from a composite material of silver nanops and elastomeric fibres. Nat. Nanotechnol. 7(12), 803–809 (2012). https://doi.org/10.1038/NNANO.2012.206
- S. Zhang, X. Huang, W. Xiao, L. Zhang, H. Yao et al., Polyvinylpyrrolidone assisted preparation of highly conductive, antioxidation, and durable nanofiber composite with an extremely high electromagnetic interference shielding effectiveness. ACS Appl. Mater. Interfaces 13(18), 21865–21875 (2021). https://doi.org/10.1021/acsami.1c05319
- S. Shi, X. Peng, T. Liu, Y.-N. Chen, C. He et al., Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties. Polymer 111, 168–176 (2017). https://doi.org/10.1016/j.polymer.2017.01.051
- J. Wang, B. Wu, P. Wei, S. Sun, P. Wu, Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat. Commun. 13(1), 4411 (2022). https://doi.org/10.1038/s41467-022-32140-3
- W. Cui, D.R. King, Y. Huang, L. Chen, T.L. Sun et al., Fiber-reinforced viscoelastomers show extraordinary crack resistance that exceeds metals. Adv. Mater. 32(31), 1907180 (2020). https://doi.org/10.1002/adma.201907180
- L. Xu, D. Qiu, Reversible switching of polymeric gel structure and property by solvent exchange. Sci. China Mater. 65(2), 547–552 (2022). https://doi.org/10.1007/s40843-021-1824-8
- X.-J. Zha, S.-T. Zhang, J.-H. Pu, X. Zhao, K. Ke et al., Nanofibrillar poly(vinyl alcohol) ionic organohydrogels for smart contact lens and human-interactive sensing. ACS Appl. Mater. Interfaces 12(20), 23514–23522 (2020). https://doi.org/10.1021/acsami.0c06263
- W.-Y. Guo, Q. Yuan, L.-Z. Huang, W. Zhang, D.-D. Li et al., Multifunctional bacterial cellulose-based organohydrogels with long-term environmental stability. J. Colloid Interface Sci. 608, 820–829 (2022). https://doi.org/10.1016/j.jcis.2021.10.057
- J. Lu, O. Hu, L. Hou, D. Ye, S. Weng et al., Highly tough and ionic conductive starch/poly(vinyl alcohol) hydrogels based on a universal soaking strategy. Int. J. Biol. Macromol. 221, 1002–1011 (2022). https://doi.org/10.1016/j.ijbiomac.2022.09.083
- M. Li, Y. Yang, C. Yue, Y. Song, M. Manzo et al., Stretchable, sensitive, and environment-tolerant ionic conductive organohydrogel reinforced with cellulose nanofibers for human motion monitoring. Cellulose 29(3), 1897–1909 (2022). https://doi.org/10.1007/s10570-022-04418-8
- D. Wang, J. Zhang, C. Fan, J. Xing, A. Wei et al., A strong, ultrastretchable, antifreezing and high sensitive strain sensor based on ionic conductive fiber reinforced organohydrogel. Compos. B 243, 110116 (2022). https://doi.org/10.1016/j.compositesb.2022.110116
- J. Wang, J. Qu, Y. Liu, S. Wang, X. Liu et al., “Crocodile skin” ultra-tough, rapidly self-recoverable, anti-dry, anti-freezing, MoS2-based ionic organohydrogel as pressure sensors. Colloids Surf. A 625, 126458 (2021). https://doi.org/10.1016/j.colsurfa.2021.126458
- Y. Wu, Y. Zhang, H. Wu, J. Wen, S. Zhang et al., Solvent-exchange assisted wet-annealing: A new strategy for super-strong, tough, stretchable and anti-fatigue hydrogels. Adv. Mater. 35(15), 2210624 (2023). https://doi.org/10.1002/adma.202210624
- R. Mishima, A. Nakao, S. Sakurai, K. Urayama, Peculiar extensibility of swollen statistical hydrogels with structural nanoheterogeneities. Polymer 115, 28–36 (2017). https://doi.org/10.1016/j.polymer.2017.03.030
- Y. Hou, W. Xie, L. Yu, L.C. Camacho, C. Nie et al., Surface roughness gradients reveal topography-specific mechanosensitive responses in human mesenchymal stem cells. Small 16(10), 1905422 (2020). https://doi.org/10.1002/smll.201905422
- R.O. Ritchie, The conflicts between strength and toughness. Nat. Mater. 10(11), 817–822 (2011). https://doi.org/10.1038/NMAT3115
- H. Sun, Y. Zhao, S. Jiao, C. Wang, Y. Jia et al., Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv. Funct. Mater. 31(24), 2101696 (2021). https://doi.org/10.1002/adfm.202101696
- Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang et al., Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 29(1), 1806220 (2019). https://doi.org/10.1002/adfm.201806220
- Q. Rong, W. Lei, L. Chen, Y. Yin, J. Zhou et al., Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew. Chem. Int. Ed. 56(45), 14159–14163 (2017). https://doi.org/10.1002/anie.201708614
- J. Wu, Z. Wu, S. Han, B.-R. Yang, X. Gui et al., Extremely deformable, transparent, and high-performance gas sensor based on ionic conductive hydrogel. ACS Appl. Mater. Interfaces 11(2), 2364–2373 (2019). https://doi.org/10.1021/acsami.8b17437
- S. Ko, A. Chhetry, D. Kim, H. Yoon, J.Y. Park, Hysteresis-free double-network hydrogel-based strain sensor for wearable smart bioelectronics. ACS Appl. Mater. Interfaces 14(27), 31363–31372 (2022). https://doi.org/10.1021/acsami.2c09895
- L. Chen, X. Chang, H. Wang, J. Chen, Y. Zhu, Stretchable and transparent multimodal electronic-skin sensors in detecting strain, temperature, and humidity. Nano Energy 96, 107077 (2022). https://doi.org/10.1016/j.nanoen.2022.107077
- G. Ge, W. Yuan, W. Zhao, Y. Lu, Y. Zhang et al., Highly stretchable and autonomously healable epidermal sensor based on multi-functional hydrogel frameworks. J. Mater. Chem. A 7(11), 5949–5956 (2019). https://doi.org/10.1039/C9TA00641A
- J. Lai, H. Zhou, M. Wang, Y. Chen, Z. Jin et al., Recyclable, stretchable and conductive double network hydrogels towards flexible strain sensors. J. Mater. Chem. C 6(48), 13316–13324 (2018). https://doi.org/10.1039/C8TC04958K
- Z. Wu, H. Ding, K. Tao, Y. Wei, X. Gui et al., Ultrasensitive, stretchable, and fast-response temperature sensors based on hydrogel films for wearable applications. ACS Appl. Mater. Interfaces 13(18), 21854–21864 (2021). https://doi.org/10.1021/acsami.1c05291
- Q. Wang, Q. Zhang, G. Wang, Y. Wang, X. Ren et al., Muscle-inspired anisotropic hydrogel strain sensors. ACS Appl. Mater. Interfaces 14(1), 1921–1928 (2022). https://doi.org/10.1021/acsami.1c18758
- Z. Gao, L. Kong, R. Jin, X. Liu, W. Hu et al., Mechanical, adhesive and self-healing ionic liquid hydrogels for electrolytes and flexible strain sensors. J. Mater. Chem. C 8(32), 11119–11127 (2020). https://doi.org/10.1039/D0TC01094D
- L. Jia, S. Wu, R. Yuan, T. Xiang, S. Zhou, Biomimetic microstructured antifatigue fracture hydrogel sensor for human motion detection with enhanced sensing sensitivity. ACS Appl. Mater. Interfaces 14(23), 27371–27382 (2022). https://doi.org/10.1021/acsami.2c04614
- C. Fu, Y. Ni, L. Chen, F. Huang, Q. Miao et al., Design of asymmetric-adhesion lignin-reinforced hydrogels based on disulfide bond crosslinking for strain sensing application. Int. J. Biol. Macromol. 212, 275–282 (2022). https://doi.org/10.1016/j.ijbiomac.2022.05.101
- Z. Zhou, C. Qian, W. Yuan, Self-healing, anti-freezing, adhesive and remoldable hydrogel sensor with ion-liquid metal dual conductivity for biomimetic skin. Compos. Sci. Technol. 203, 108608 (2021). https://doi.org/10.1016/j.compscitech.2020.108608
- C. Shao, M. Wang, L. Meng, H. Chang, B. Wang et al., Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 30(9), 3110–3121 (2018). https://doi.org/10.1021/acs.chemmater.8b01172
- Y. Chen, Y. Yang, Y. Xiong, L. Zhang, W. Xu et al., Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 38, 101204 (2021). https://doi.org/10.1016/j.nantod.2021.101204
- W.-L. Song, M.-S. Cao, M.-M. Lu, S. Bi, C.-Y. Wang et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014). https://doi.org/10.1016/j.carbon.2013.08.043
- Y. Yang, N. Wu, B. Li, W. Liu, F. Pan et al., Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16(9), 15042–15052 (2022). https://doi.org/10.1021/acsnano.2c06164
- W. Yang, B. Shao, T. Liu, Y. Zhang, R. Huang et al., Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(9), 8245–8257 (2018). https://doi.org/10.1021/acsami.7b18700
- D. Lai, X. Chen, G. Wang, X. Xu, Y. Wang, Arbitrarily reshaping and instantaneously self-healing graphene composite hydrogel with molecule polarization-enhanced ultrahigh electromagnetic interference shielding performance. Carbon 188, 513–522 (2022). https://doi.org/10.1016/j.carbon.2021.12.047
- X. Huang, L. Wang, Z. Shen, J. Ren, G. Chen et al., Super-stretchable and self-healing hydrogel with a three-dimensional silver nanowires network structure for wearable sensor and electromagnetic interference shielding. Chem. Eng. J. 446, 137136 (2022). https://doi.org/10.1016/j.cej.2022.137136
- Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2TX MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15(1), 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
References
X. Fan, L. Zhao, Q. Ling, J. Liu, H. Gu, Mussel-induced nano-silver antibacterial, self-healing, self-adhesive, anti-freezing, and moisturizing dual-network organohydrogel based on SA-PBA/PVA/CNTs as flexible wearable strain sensors. Polymer 256, 125270 (2022). https://doi.org/10.1016/j.polymer.2022.125270
Y. Niu, H. Liu, R. He, M. Luo, M. Shu et al., Environmentally compatible wearable electronics based on ionically conductive organohydrogels for health monitoring with thermal compatibility, anti-dehydration, and underwater adhesion. Small 17(24), 2101151 (2021). https://doi.org/10.1002/smll.202101151
H. Zhou, J. Lai, B. Zheng, X. Jin, G. Zhao et al., From glutinous-rice-inspired adhesive organohydrogels to flexible electronic devices toward wearable sensing, power supply, and energy storage. Adv. Funct. Mater. 32(1), 2108423 (2022). https://doi.org/10.1002/adfm.202108423
G. Yan, S. He, G. Chen, S. Ma, A. Zeng et al., Highly flexible and broad-range mechanically tunable all-wood hydrogels with nanoscale channels via the Hofmeister effect for human motion monitoring. Nano-Micro Lett. 14(1), 84 (2022). https://doi.org/10.1007/s40820-022-00827-3
W. Feng, Y. Chen, Y. Jiang, A. Hu, W. Wang et al., Low hysteresis, anti-freezing and conductive organohydrogel prepared by thiol-ene click chemistry for human-machine interaction. Polymer 262, 125464 (2022). https://doi.org/10.1016/j.polymer.2022.125464
B. Guo, Y. Zhong, X. Song, X. Chen, P. Zhou et al., 3D printing of mechanically elastic, self-adhesive, and biocompatible organohydrogels for wearable and breathable strain sensors. Adv. Mater. Technol. 8(5), 2201078 (2023). https://doi.org/10.1002/admt.202201078
X. Wan, X. Xu, X. Liu, L. Jia, X. He et al., A wetting-enabled-transfer (WET) strategy for precise surface patterning of organohydrogels. Adv. Mater. 33(16), 2008557 (2021). https://doi.org/10.1002/adma.202008557
Y. Ye, Y. Zhang, Y. Chen, X. Han, F. Jiang, Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30(35), 2003430 (2020). https://doi.org/10.1002/adfm.202003430
J. Gu, J. Huang, G. Chen, L. Hou, J. Zhang et al., Multifunctional poly (vinyl alcohol) nanocomposite organohydrogel for flexible strain and temperature sensor. ACS Appl. Mater. Interfaces 12(36), 40815–40827 (2020). https://doi.org/10.1021/acsami.0c12176
J. Liu, Z. Chen, Y. Chen, H.U. Rehman, Y. Guo et al., Ionic conductive organohydrogels with dynamic pattern behavior and multi-environmental stability. Adv. Funct. Mater. 31(24), 2101464 (2021). https://doi.org/10.1002/adfm.202101464
J. Lu, J. Gu, O. Hu, Y. Fu, D. Ye et al., Highly tough, freezing-tolerant, healable and thermoplastic starch/poly (vinyl alcohol) organohydrogels for flexible electronic devices. J. Mater. Chem. A 9(34), 18406–18420 (2021). https://doi.org/10.1039/D1TA04336F
J. Yang, C. Tang, H. Sun, Z. Liu, Z. Liu et al., Tough, transparent, and anti-freezing nanocomposite organohydrogels with photochromic properties. ACS Appl. Mater. Interfaces 13(26), 31180–31192 (2021). https://doi.org/10.1021/acsami.1c07563
M. Wu, X. Wang, Y. Xia, Y. Zhu, S. Zhu et al., Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 95, 106967 (2022). https://doi.org/10.1016/j.nanoen.2022.106967
K. Chen, K. Liang, H. Liu, R. Liu, Y. Liu et al., Skin-inspired ultra-tough supramolecular multifunctional hydrogel electronic skin for human–machine interaction. Nano-Micro Lett. 15(1), 102 (2023). https://doi.org/10.1007/s40820-023-01084-8
Y. Wu, W. Xing, J. Wen, Z. Wu, Y. Zhang et al., Mixed solvent exchange enabled high-performance polymeric gels. Polymer 267, 125661 (2023). https://doi.org/10.1016/j.polymer.2022.125661
Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14(1), 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
W. Zhang, B. Wu, S. Sun, P. Wu, Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 12(1), 4082 (2021). https://doi.org/10.1038/s41467-021-24382-4
S. Bao, J. Gao, T. Xu, N. Li, W. Chen et al., Anti-freezing and antibacterial conductive organohydrogel co-reinforced by 1D silk nanofibers and 2D graphitic carbon nitride nanosheets as flexible sensor. Chem. Eng. J. 411, 128470 (2021). https://doi.org/10.1016/j.cej.2021.128470
J. Wang, T. Dai, Y. Zhou, A. Mohamed, G. Yuan et al., Adhesive and high-sensitivity modified Ti3C2TX (MXene)-based organohydrogels with wide work temperature range for wearable sensors. J. Colloid Interface Sci. 613, 94–102 (2022). https://doi.org/10.1016/j.jcis.2022.01.021
Y. Wei, L. Xiang, H. Ou, F. Li, Y. Zhang et al., MXene-based conductive organohydrogels with long-term environmental stability and multifunctionality. Adv. Funct. Mater. 30(48), 2005135 (2020). https://doi.org/10.1002/adfm.202005135
H. Liao, X. Guo, P. Wan, G. Yu, Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv. Funct. Mater. 29(39), 1904507 (2019). https://doi.org/10.1002/adfm.201904507
L. Xu, X. Zhao, C. Xu, N.A. Kotov, Water-rich biomimetic composites with abiotic self-organizing nanofiber network. Adv. Mater. 30(1), 1703343 (2018). https://doi.org/10.1002/adma.201703343
H. Mei, D. Han, S. Xiao, T. Ji, J. Tang et al., Improvement of the electromagnetic shielding properties of C/SiC composites by electrophoretic deposition of carbon nanotube on carbon fibers. Carbon 109, 149–153 (2016). https://doi.org/10.1016/j.carbon.2016.07.070
J. Liu, S. Lin, K. Huang, C. Jia, Q. Wang et al., A large-area AgNM-modified textile with high-performance electromagnetic interference shielding. NPJ Flexible Electron. 4(1), 10 (2020). https://doi.org/10.1038/s41528-020-0074-0
K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanop synthesis. Dalton Trans. 44(41), 17883–17905 (2015). https://doi.org/10.1039/C5DT02964C
M. Park, J. Im, M. Shin, Y. Min, J. Park et al., Highly stretchable electric circuits from a composite material of silver nanops and elastomeric fibres. Nat. Nanotechnol. 7(12), 803–809 (2012). https://doi.org/10.1038/NNANO.2012.206
S. Zhang, X. Huang, W. Xiao, L. Zhang, H. Yao et al., Polyvinylpyrrolidone assisted preparation of highly conductive, antioxidation, and durable nanofiber composite with an extremely high electromagnetic interference shielding effectiveness. ACS Appl. Mater. Interfaces 13(18), 21865–21875 (2021). https://doi.org/10.1021/acsami.1c05319
S. Shi, X. Peng, T. Liu, Y.-N. Chen, C. He et al., Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties. Polymer 111, 168–176 (2017). https://doi.org/10.1016/j.polymer.2017.01.051
J. Wang, B. Wu, P. Wei, S. Sun, P. Wu, Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat. Commun. 13(1), 4411 (2022). https://doi.org/10.1038/s41467-022-32140-3
W. Cui, D.R. King, Y. Huang, L. Chen, T.L. Sun et al., Fiber-reinforced viscoelastomers show extraordinary crack resistance that exceeds metals. Adv. Mater. 32(31), 1907180 (2020). https://doi.org/10.1002/adma.201907180
L. Xu, D. Qiu, Reversible switching of polymeric gel structure and property by solvent exchange. Sci. China Mater. 65(2), 547–552 (2022). https://doi.org/10.1007/s40843-021-1824-8
X.-J. Zha, S.-T. Zhang, J.-H. Pu, X. Zhao, K. Ke et al., Nanofibrillar poly(vinyl alcohol) ionic organohydrogels for smart contact lens and human-interactive sensing. ACS Appl. Mater. Interfaces 12(20), 23514–23522 (2020). https://doi.org/10.1021/acsami.0c06263
W.-Y. Guo, Q. Yuan, L.-Z. Huang, W. Zhang, D.-D. Li et al., Multifunctional bacterial cellulose-based organohydrogels with long-term environmental stability. J. Colloid Interface Sci. 608, 820–829 (2022). https://doi.org/10.1016/j.jcis.2021.10.057
J. Lu, O. Hu, L. Hou, D. Ye, S. Weng et al., Highly tough and ionic conductive starch/poly(vinyl alcohol) hydrogels based on a universal soaking strategy. Int. J. Biol. Macromol. 221, 1002–1011 (2022). https://doi.org/10.1016/j.ijbiomac.2022.09.083
M. Li, Y. Yang, C. Yue, Y. Song, M. Manzo et al., Stretchable, sensitive, and environment-tolerant ionic conductive organohydrogel reinforced with cellulose nanofibers for human motion monitoring. Cellulose 29(3), 1897–1909 (2022). https://doi.org/10.1007/s10570-022-04418-8
D. Wang, J. Zhang, C. Fan, J. Xing, A. Wei et al., A strong, ultrastretchable, antifreezing and high sensitive strain sensor based on ionic conductive fiber reinforced organohydrogel. Compos. B 243, 110116 (2022). https://doi.org/10.1016/j.compositesb.2022.110116
J. Wang, J. Qu, Y. Liu, S. Wang, X. Liu et al., “Crocodile skin” ultra-tough, rapidly self-recoverable, anti-dry, anti-freezing, MoS2-based ionic organohydrogel as pressure sensors. Colloids Surf. A 625, 126458 (2021). https://doi.org/10.1016/j.colsurfa.2021.126458
Y. Wu, Y. Zhang, H. Wu, J. Wen, S. Zhang et al., Solvent-exchange assisted wet-annealing: A new strategy for super-strong, tough, stretchable and anti-fatigue hydrogels. Adv. Mater. 35(15), 2210624 (2023). https://doi.org/10.1002/adma.202210624
R. Mishima, A. Nakao, S. Sakurai, K. Urayama, Peculiar extensibility of swollen statistical hydrogels with structural nanoheterogeneities. Polymer 115, 28–36 (2017). https://doi.org/10.1016/j.polymer.2017.03.030
Y. Hou, W. Xie, L. Yu, L.C. Camacho, C. Nie et al., Surface roughness gradients reveal topography-specific mechanosensitive responses in human mesenchymal stem cells. Small 16(10), 1905422 (2020). https://doi.org/10.1002/smll.201905422
R.O. Ritchie, The conflicts between strength and toughness. Nat. Mater. 10(11), 817–822 (2011). https://doi.org/10.1038/NMAT3115
H. Sun, Y. Zhao, S. Jiao, C. Wang, Y. Jia et al., Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv. Funct. Mater. 31(24), 2101696 (2021). https://doi.org/10.1002/adfm.202101696
Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang et al., Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 29(1), 1806220 (2019). https://doi.org/10.1002/adfm.201806220
Q. Rong, W. Lei, L. Chen, Y. Yin, J. Zhou et al., Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew. Chem. Int. Ed. 56(45), 14159–14163 (2017). https://doi.org/10.1002/anie.201708614
J. Wu, Z. Wu, S. Han, B.-R. Yang, X. Gui et al., Extremely deformable, transparent, and high-performance gas sensor based on ionic conductive hydrogel. ACS Appl. Mater. Interfaces 11(2), 2364–2373 (2019). https://doi.org/10.1021/acsami.8b17437
S. Ko, A. Chhetry, D. Kim, H. Yoon, J.Y. Park, Hysteresis-free double-network hydrogel-based strain sensor for wearable smart bioelectronics. ACS Appl. Mater. Interfaces 14(27), 31363–31372 (2022). https://doi.org/10.1021/acsami.2c09895
L. Chen, X. Chang, H. Wang, J. Chen, Y. Zhu, Stretchable and transparent multimodal electronic-skin sensors in detecting strain, temperature, and humidity. Nano Energy 96, 107077 (2022). https://doi.org/10.1016/j.nanoen.2022.107077
G. Ge, W. Yuan, W. Zhao, Y. Lu, Y. Zhang et al., Highly stretchable and autonomously healable epidermal sensor based on multi-functional hydrogel frameworks. J. Mater. Chem. A 7(11), 5949–5956 (2019). https://doi.org/10.1039/C9TA00641A
J. Lai, H. Zhou, M. Wang, Y. Chen, Z. Jin et al., Recyclable, stretchable and conductive double network hydrogels towards flexible strain sensors. J. Mater. Chem. C 6(48), 13316–13324 (2018). https://doi.org/10.1039/C8TC04958K
Z. Wu, H. Ding, K. Tao, Y. Wei, X. Gui et al., Ultrasensitive, stretchable, and fast-response temperature sensors based on hydrogel films for wearable applications. ACS Appl. Mater. Interfaces 13(18), 21854–21864 (2021). https://doi.org/10.1021/acsami.1c05291
Q. Wang, Q. Zhang, G. Wang, Y. Wang, X. Ren et al., Muscle-inspired anisotropic hydrogel strain sensors. ACS Appl. Mater. Interfaces 14(1), 1921–1928 (2022). https://doi.org/10.1021/acsami.1c18758
Z. Gao, L. Kong, R. Jin, X. Liu, W. Hu et al., Mechanical, adhesive and self-healing ionic liquid hydrogels for electrolytes and flexible strain sensors. J. Mater. Chem. C 8(32), 11119–11127 (2020). https://doi.org/10.1039/D0TC01094D
L. Jia, S. Wu, R. Yuan, T. Xiang, S. Zhou, Biomimetic microstructured antifatigue fracture hydrogel sensor for human motion detection with enhanced sensing sensitivity. ACS Appl. Mater. Interfaces 14(23), 27371–27382 (2022). https://doi.org/10.1021/acsami.2c04614
C. Fu, Y. Ni, L. Chen, F. Huang, Q. Miao et al., Design of asymmetric-adhesion lignin-reinforced hydrogels based on disulfide bond crosslinking for strain sensing application. Int. J. Biol. Macromol. 212, 275–282 (2022). https://doi.org/10.1016/j.ijbiomac.2022.05.101
Z. Zhou, C. Qian, W. Yuan, Self-healing, anti-freezing, adhesive and remoldable hydrogel sensor with ion-liquid metal dual conductivity for biomimetic skin. Compos. Sci. Technol. 203, 108608 (2021). https://doi.org/10.1016/j.compscitech.2020.108608
C. Shao, M. Wang, L. Meng, H. Chang, B. Wang et al., Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 30(9), 3110–3121 (2018). https://doi.org/10.1021/acs.chemmater.8b01172
Y. Chen, Y. Yang, Y. Xiong, L. Zhang, W. Xu et al., Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 38, 101204 (2021). https://doi.org/10.1016/j.nantod.2021.101204
W.-L. Song, M.-S. Cao, M.-M. Lu, S. Bi, C.-Y. Wang et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014). https://doi.org/10.1016/j.carbon.2013.08.043
Y. Yang, N. Wu, B. Li, W. Liu, F. Pan et al., Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16(9), 15042–15052 (2022). https://doi.org/10.1021/acsnano.2c06164
W. Yang, B. Shao, T. Liu, Y. Zhang, R. Huang et al., Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(9), 8245–8257 (2018). https://doi.org/10.1021/acsami.7b18700
D. Lai, X. Chen, G. Wang, X. Xu, Y. Wang, Arbitrarily reshaping and instantaneously self-healing graphene composite hydrogel with molecule polarization-enhanced ultrahigh electromagnetic interference shielding performance. Carbon 188, 513–522 (2022). https://doi.org/10.1016/j.carbon.2021.12.047
X. Huang, L. Wang, Z. Shen, J. Ren, G. Chen et al., Super-stretchable and self-healing hydrogel with a three-dimensional silver nanowires network structure for wearable sensor and electromagnetic interference shielding. Chem. Eng. J. 446, 137136 (2022). https://doi.org/10.1016/j.cej.2022.137136
Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2TX MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15(1), 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830