Synergistic Optimization of Buried Interface by Multifunctional Organic–Inorganic Complexes for Highly Efficient Planar Perovskite Solar Cells
Corresponding Author: Hsing‑Lin Wang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 156
Abstract
For the further improvement of the power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs), the buried interface between the perovskite and the electron transport layer is crucial. However, it is challenging to effectively optimize this interface as it is buried beneath the perovskite film. Herein, we have designed and synthesized a series of multifunctional organic–inorganic (OI) complexes as buried interfacial material to promote electron extraction, as well as the crystal growth of the perovskite. The OI complex with BF4− group not only eliminates oxygen vacancies on the SnO2 surface but also balances energy level alignment between SnO2 and perovskite, providing a favorable environment for charge carrier extraction. Moreover, OI complex with amine (− NH2) functional group can regulate the crystallization of the perovskite film via interaction with PbI2, resulting in highly crystallized perovskite film with large grains and low defect density. Consequently, with rational molecular design, the PSCs with optimal OI complex buried interface layer which contains both BF4− and −NH2 functional groups yield a champion device efficiency of 23.69%. More importantly, the resulting unencapsulated device performs excellent ambient stability, maintaining over 90% of its initial efficiency after 2000 h storage, and excellent light stability of 91.5% remaining PCE in the maximum power point tracking measurement (under continuous 100 mW cm−2 light illumination in N2 atmosphere) after 500 h.
Highlights:
1 Highly performed perovskite solar cells are achieved via introducing organic–inorganic CL–NH complex as multifunctional interfacial layer.
2 CL–NH complex not only reduces oxygen vacancies on the surface of SnO2 but also regulates film crystallization, resulting in a superior device efficiency of 23.69%.
3 The resulting device performs excellent stability with 91.5% initial power conversion efficiency retained after 500 h light illumination.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin et al., Efficient stable and scalable perovskite solar cells using poly(3-Hexylthiophene). Nature 567, 511–515 (2019). https://doi.org/10.1038/s41586-019-1036-3
- Y. Lin, Y. Shao, J. Dai, T. Li, Y. Liu et al., Metallic surface doping of metal halide perovskites. Nat. Commun. 12, 7 (2021). https://doi.org/10.1038/s41467-020-20110-6
- K. Liu, Y. Luo, Y. Jin, T. Liu, Y. Liang et al., Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells. Nat. Commun. 13, 4891 (2022). https://doi.org/10.1038/s41467-022-32482-y
- J. Wang, J. Li, Y. Zhou, C. Yu, Y. Hua et al., Tuning an electrode work function using organometallic complexes in inverted perovskite solar cells. J. Am. Chem. Soc. 143, 7759–7768 (2022). https://doi.org/10.1021/jacs.1c02118
- National Renewable Energy Laboratory (NREL). 2022. https://www.nrel.gov/
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
- Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng et al., Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016). https://doi.org/10.1038/nenergy
- F. Tan, M.I. Saidaminov, H. Tan, J.Z. Fan, Y. Wang et al., Dual coordination of Ti and Pb using bilinkable ligands improves perovskite solar cell performance and stability. Adv. Funct. Mater. 30, 20051551 (2020). https://doi.org/10.1002/adfm.202005155
- Z. Wang, X. Zhu, J. Feng, C. Wang, C. Zhang et al., Antisolvent- and annealing-free deposition for highly stable efficient perovskite solar cells via modified ZnO. Adv. Sci. 8, 2002860 (2021). https://doi.org/10.1002/advs.202002860
- Z. Xiong, L. Lan, Y. Wang, C. Lu, S. Qin et al., Multifunctional polymer framework modified SnO2 enabling a photostable α-FAPbI3 perovskite solar cell with efficiency exceeding 23%. ACS Energy Lett. 6, 3824–3830 (2021). https://doi.org/10.1021/acsenergylett.1c01763
- J. Li, C. Duan, Q. Wen, L. Yuan, S. Zou et al., Reciprocally photovoltaic light-emitting diode based on dispersive perovskite nanocrystal. Small 18, 2107145 (2022). https://doi.org/10.1002/smll.202107145
- C. Duan, F. Zou, Q. Wen, M. Qin, J. Li et al., A bifunctional carbazide additive for durable CsSnI3 perovskite solar cells. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300503
- L. Yuan, W. Zhu, Y. Zhang, Y. Li, C.C.S. Chan et al., A conformally bonded molecular interface retarded iodine migration for durable perovskite solar cells. Energy Environ. Sci. 16, 1597–1609 (2023). https://doi.org/10.1039/d2ee03565k
- R. Zhao, Z. Deng, Z. Zhang, J. Zhang, T. Guo et al., Alkali metal cations modulate the energy level of SnO2 via micro-agglomerating and anchoring for perovskite solar cell. ACS Appl. Mater. Interfaces 14, 36711–36720 (2022). https://doi.org/10.1021/acsami.2c09714
- T. Bu, J. Li, F. Zheng, W. Chen, X. Wen et al., Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 9, 4609 (2018). https://doi.org/10.1038/s41467-018-07099-9
- D. Gao, L. Yang, X. Ma, X. Shang, C. Wang et al., Passivating buried interface with multifunctional novel ionic liquid containing simultaneously fluorinated anion and cation yielding stable perovskite solar cells over 23% efficiency. J. Energy Chem. 69, 659–666 (2022). https://doi.org/10.1016/j.jechem.2022.02.016
- S. Zhu, J. Wu, W. Sun, W. Pan, F. Cai et al., Interlayer modification using phenylethylamine tetrafluoroborate for highly effective perovskite solar cells. ACS Appl. Energy Mater. 5, 658–666 (2022). https://doi.org/10.1021/acsaem.1c03160
- Y. Ge, F. Ye, M. Xiao, H. Wang, C. Wang et al., Internal encapsulation for lead halide perovskite films for efficient and very stable solar cells. Adv. Energy Mater. 12, 2200361 (2022). https://doi.org/10.1002/aenm.202200361
- Z. Qin, Y. Chen, X. Wang, N. Wei, X. Liu et al., Zwitterion-functionalized SnO2 substrate induced sequential deposition of black-phase FAPbI3 with rearranged PbI2 residue. Adv. Mater. 34, 2203143 (2022). https://doi.org/10.1002/adma.202203143
- M. Othman, F. Zheng, A. Seeber, A.S.R. Chesman, A.D. Scully et al., Millimeter-sized clusters of triple cation perovskite enables highly efficient and reproducible roll-to-roll fabricated inverted perovskite solar cells. Adv. Funct. Mater. 32, 2110700 (2022). https://doi.org/10.1002/adfm.202110700
- S. Wu, J. Zhang, Z. Li, D. Liu, M. Qin et al., Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells. Joule 4, 1248–1262 (2022). https://doi.org/10.1016/j.joule.2020.04.001
- H. Xu, Y. Miao, N. Wei, H. Chen, Z. Qin et al., CsI enhanced buried interface for efficient and uv-robust perovskite solar cells. Adv. Energy Mater. 12, 2103151 (2021). https://doi.org/10.1002/aenm.202103151
- H. Liu, X. Qi, J. Wang, W. Zhang, Y. Xia et al., 1,8-Octanediamine dihydroiodide-mediated grain boundary and interface passivation in two-step-processed perovskite solar cells. Sol. RRL 6, 2100960 (2022). https://doi.org/10.1002/solr.202100960
- L. Yang, J. Feng, Z. Liu, Y. Duan, S. Zhan et al., Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv. Mater. 34, 2201681 (2022). https://doi.org/10.1002/adma.202201681
- D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9, 3239 (2018). https://doi.org/10.1038/s41467-018-05760-x
- P. Xu, H. He, J. Ding, P. Wang, H. Piao et al., Simultaneous passivation of the SnO2/perovskite interface and perovskite absorber layer in perovskite solar cells using kf surface treatment. ACS Appl. Energy Mater. 4, 10921–10930 (2021). https://doi.org/10.1021/acsaem.1c01893
- Y. Dong, W. Shen, W. Dong, C. Bai, J. Zhao et al., Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells. Adv. Energy Mater. 12, 2200417 (2022). https://doi.org/10.1002/aenm.202200417
- J. Zhuang, P. Mao, Y. Luan, N. Chen, X. Cao et al., Rubidium fluoride modified SnO2 for planar n-i-p perovskite solar cells. Adv. Funct. Mater. 31, 2010385 (2021). https://doi.org/10.1002/adfm.202010385
- C.C. Zhang, S. Yuan, Y.H. Lou, Q.W. Liu, M. Li et al., Perovskite films with reduced interfacial strains via a molecular-level flexible interlayer for photovoltaic application. Adv. Mater. 32, 2001479 (2020). https://doi.org/10.1002/adma.202001479
- Ç. Kılıc, A. Zunger, Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett. 88, 9 (2002). https://doi.org/10.1103/PhysRevLett.88.095501
- Z. Zheng, F. Li, J. Gong, Y. Ma, J. Gu et al., Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Adv. Mater. 34, 2109879 (2022). https://doi.org/10.1002/adma.202109879
- W. Zhang, Y. Cai, H. Liu, Y. Xia, J. Cui et al., Organic-free and lead-free perovskite solar cells with efficiency over 11%. Adv. Energy Mater. 12, 2202491 (2022). https://doi.org/10.1002/aenm.202202491
- Z Xiong, X Chen, B Zhang, GO Odunmbaku, Z Ou et al., Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%, Adv. Mater. 34(8): 2106118. https://doi.org/10.1002/adma.202106118
- H. Liu, Z. Lu, W. Zhang, J. Wang, Z. Lu et al., Anchoring vertical dipole to enable efficient charge extraction for high-performance perovskite solar cells. Adv. Sci. 9, 2203640 (2022). https://doi.org/10.1002/advs.202203640
- Z. Zhang, J. Wang, L. Lang, Y. Dong, J. Liang et al., Size-tunable MoS2 nanosheets for controlling the crystal morphology and residual stress in sequentially deposited perovskite solar cells with over 22.5% efficiency. J. Mater. Chem. A 10, 3605–3617 (2022). https://doi.org/10.1039/D1TA10314H
- C. Ma, F.T. Eickemeyer, S.H. Lee, D.H. Kang, S.J. Kwon et al., Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379, 173–178 (2023). https://doi.org/10.1126/science.adf3349
- Q. Xiong, C. Wang, Q. Zhou, L. Wang, X. Wang et al., Rear interface engineering to suppress migration of iodide ions for efficient perovskite solar cells with minimized hysteresis. Adv. Funct. Mater. 32, 2107823 (2021). https://doi.org/10.1002/adfm.202107823
- W. Zhang, J. Xiong, J. Li, W.A. Daoud, Seed-assisted growth for low-temperature-processed all-inorganic CsPbIBr 2 solar cells with efficiency over 10%. Small 16, 2001535 (2020). https://doi.org/10.1002/smll.202001535
- F. Zheng, X. Wen, T. Bu, S. Chen, J. Yang et al., Slow response of carrier dynamics in perovskite interface upon illumination. ACS Appl. Mater. Interfaces 10, 31452–31461 (2018). https://doi.org/10.1021/acsami.8b13932
- Z. Liu, L. Qiu, L.K. Ono, S. He, Z. Hu et al., A holistic approach to interface stabilization for efficient perovskite solar modules with over 2000-hour operational stability. Nat. Energy 5, 596–604 (2020). https://doi.org/10.1038/s41560-020-0653-2
- X. Deng, F. Qi, F. Li, S. Wu, F.R. Lin et al., Co-assembled monolayers as hole-selective contact for high-performance inverted perovskite solar cells with optimized recombination loss and long-term stability. Angew. Chem. Int. Ed. 61, e202203088 (2022). https://doi.org/10.1002/anie.202203088
- M. Qin, H. Xue, H. Zhang, H. Hu, K. Liu et al., Precise control of perovskite crystallization kinetics via sequential a-site doping. Adv. Mater. 32, 2004630 (2020). https://doi.org/10.1002/adma.202004630
- M. Hou, Y. Wang, X. Yang, M. Han, H. Ren et al., Aryl quaternary ammonium modulation for perovskite solar cells with improved efficiency and stability. Nano Energy 94, 106922 (2022). https://doi.org/10.1016/j.nanoen.2022.106922
- J. Zhang, J. Yang, R. Dai, W. Sheng, Y. Su et al., Elimination of interfacial lattice mismatch and detrimental reaction by self-assembled layer dual-passivation for efficient and stable inverted perovskite solar cells. Adv. Energy Mater. 12, 2103674 (2022). https://doi.org/10.1002/aenm.202103674
- F. Sadegh, S. Akin, M. Moghadam, R. Keshavarzi, V. Mirkhani et al., Copolymer-templated nickel oxide for high-efficiency mesoscopic perovskite solar cells in inverted architecture. Adv. Funct. Mater. 31, 2102237 (2021). https://doi.org/10.1002/adfm.202102237
- P. Wang, B. Chen, R. Li, S. Wang, Y. Li et al., 2D perovskite or organic material matter? Targeted growth for efficient perovskite solar cells with efficiency exceeding 24%. Nano Energy 94, 106914 (2022). https://doi.org/10.1016/j.nanoen.2021.106914
- Q. Dong, C. Zhu, M. Chen, C. Jiang, J. Guo et al., Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat. Commun. 12, 973 (2022). https://doi.org/10.1038/s41467-021-21292-3
- Q. Fu, H. Liu, X. Tang, R. Wang, M. Chen et al., Multifunctional two-dimensional polymers for perovskite solar cells with efficiency exceeding 24%. ACS Energy Lett. 7, 1128–1136 (2022). https://doi.org/10.1021/acsenergylett.1c02812
- L. Li, S. Tu, G. You, J. Cao, D. Wu et al., Enhancing performance and stability of perovskite solar cells through defect passivation with a polyamide derivative obtained from benzoxazine-isocyanide chemistry. Chem. Eng. J. 431, 11953 (2022). https://doi.org/10.1016/j.cej.2021.133951
- Y. Yun, F. Wang, H. Huang, Y. Fang, S. Liu et al., A nontoxic bifunctional (anti)solvent as digestive-ripening agent for high-performance perovskite solar cells. Adv. Mater. 32, 1907123 (2020). https://doi.org/10.1002/adma.201907123
- Y. Zhao, T. Heumueller, J. Zhang, J. Luo, O. Kasian et al., A bilayer conducting polymer structure for planar perovskite solar cells with over 1400 hours operational stability at elevated temperatures. Nat. Energy 7, 144–152 (2021). https://doi.org/10.1038/s41560-021-00953-z
- J. Suo, B. Yang, J. Jeong, T. Zhang, S. Olthof et al., A hagfeldt, interfacial engineering from material to solvent: A mechanistic understanding on stabilizing α-formamidinium lead triiodide perovskite photovoltaics. Nano Energy 94, 106924 (2022). https://doi.org/10.1016/j.nanoen.2022.106924
- J. Huang, H. Wang, Y. Li, F. Zhang, D. Zhang et al., (2022) Diaminobenzene dihydroiodide-MA0.6FA0.4PbI3−xClx unsymmetrical perovskites with over 22% efficiency for high stability solar cells. Adv. Funct. Mater. 32, 2110788. https://doi.org/10.1002/adfm.202110788
- L. Cheng, K. Meng, Z. Qiao, Y. Zhai, R. Yu et al., Tailoring interlayer spacers for efficient and stable formamidinium-based low-dimensional perovskite solar cells. Adv. Mater. 34, 2106380 (2022). https://doi.org/10.1002/adma.202106380
- Y. Li, W. Xu, N. Mussakhanuly, Y. Cho, J. Bing et al., Homologous bromides treatment for improving the open-circuit voltage of perovskite solar cells. Adv. Mater. 34, 2106280 (2022). https://doi.org/10.1002/adma.202106280
- Y. Zhang, L. Xu, Y. Wu, H. Zhang, F. Zeng et al., (2023), Synergetic excess PbI2 and reduced Pb leakage management strategy for 24.28% efficient stable and eco-friendly perovskite solar cells. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202214102
- J. Luo, J. Zhu, F. Lin, J. Xia, H. Yang et al., Molecular doping of a hole-transporting material for efficient and stable perovskite solar cells. Chem. Mater. 34, 1499–1508 (2022). https://doi.org/10.1021/acs.chemmater.1c02920
- H. Li, J. Shi, J. Deng, Z. Chen, Y. Li et al., Intermolecular π–π conjugation self-assembly to stabilize surface passivation of highly efficient perovskite solar cells. Adv. Mater. 32, 1907396 (2020). https://doi.org/10.1002/adma.201907396
- S. Hu, K. Otsuka, R. Murdey, T. Nakamura, M.A. Truong et al., Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15, 2096–2107 (2022). https://doi.org/10.1039/d2ee00288d
- X. Wang, D. Liu, R. Liu, X. Du, B. Zhang et al., PbI6 octahedra stabilization strategy based on π–π stacking small molecule toward highly efficient and stable perovskite solar cells. Adv. Energy Mater. (2023). https://doi.org/10.1002/aenm.202203635
References
E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin et al., Efficient stable and scalable perovskite solar cells using poly(3-Hexylthiophene). Nature 567, 511–515 (2019). https://doi.org/10.1038/s41586-019-1036-3
Y. Lin, Y. Shao, J. Dai, T. Li, Y. Liu et al., Metallic surface doping of metal halide perovskites. Nat. Commun. 12, 7 (2021). https://doi.org/10.1038/s41467-020-20110-6
K. Liu, Y. Luo, Y. Jin, T. Liu, Y. Liang et al., Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells. Nat. Commun. 13, 4891 (2022). https://doi.org/10.1038/s41467-022-32482-y
J. Wang, J. Li, Y. Zhou, C. Yu, Y. Hua et al., Tuning an electrode work function using organometallic complexes in inverted perovskite solar cells. J. Am. Chem. Soc. 143, 7759–7768 (2022). https://doi.org/10.1021/jacs.1c02118
National Renewable Energy Laboratory (NREL). 2022. https://www.nrel.gov/
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng et al., Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016). https://doi.org/10.1038/nenergy
F. Tan, M.I. Saidaminov, H. Tan, J.Z. Fan, Y. Wang et al., Dual coordination of Ti and Pb using bilinkable ligands improves perovskite solar cell performance and stability. Adv. Funct. Mater. 30, 20051551 (2020). https://doi.org/10.1002/adfm.202005155
Z. Wang, X. Zhu, J. Feng, C. Wang, C. Zhang et al., Antisolvent- and annealing-free deposition for highly stable efficient perovskite solar cells via modified ZnO. Adv. Sci. 8, 2002860 (2021). https://doi.org/10.1002/advs.202002860
Z. Xiong, L. Lan, Y. Wang, C. Lu, S. Qin et al., Multifunctional polymer framework modified SnO2 enabling a photostable α-FAPbI3 perovskite solar cell with efficiency exceeding 23%. ACS Energy Lett. 6, 3824–3830 (2021). https://doi.org/10.1021/acsenergylett.1c01763
J. Li, C. Duan, Q. Wen, L. Yuan, S. Zou et al., Reciprocally photovoltaic light-emitting diode based on dispersive perovskite nanocrystal. Small 18, 2107145 (2022). https://doi.org/10.1002/smll.202107145
C. Duan, F. Zou, Q. Wen, M. Qin, J. Li et al., A bifunctional carbazide additive for durable CsSnI3 perovskite solar cells. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300503
L. Yuan, W. Zhu, Y. Zhang, Y. Li, C.C.S. Chan et al., A conformally bonded molecular interface retarded iodine migration for durable perovskite solar cells. Energy Environ. Sci. 16, 1597–1609 (2023). https://doi.org/10.1039/d2ee03565k
R. Zhao, Z. Deng, Z. Zhang, J. Zhang, T. Guo et al., Alkali metal cations modulate the energy level of SnO2 via micro-agglomerating and anchoring for perovskite solar cell. ACS Appl. Mater. Interfaces 14, 36711–36720 (2022). https://doi.org/10.1021/acsami.2c09714
T. Bu, J. Li, F. Zheng, W. Chen, X. Wen et al., Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 9, 4609 (2018). https://doi.org/10.1038/s41467-018-07099-9
D. Gao, L. Yang, X. Ma, X. Shang, C. Wang et al., Passivating buried interface with multifunctional novel ionic liquid containing simultaneously fluorinated anion and cation yielding stable perovskite solar cells over 23% efficiency. J. Energy Chem. 69, 659–666 (2022). https://doi.org/10.1016/j.jechem.2022.02.016
S. Zhu, J. Wu, W. Sun, W. Pan, F. Cai et al., Interlayer modification using phenylethylamine tetrafluoroborate for highly effective perovskite solar cells. ACS Appl. Energy Mater. 5, 658–666 (2022). https://doi.org/10.1021/acsaem.1c03160
Y. Ge, F. Ye, M. Xiao, H. Wang, C. Wang et al., Internal encapsulation for lead halide perovskite films for efficient and very stable solar cells. Adv. Energy Mater. 12, 2200361 (2022). https://doi.org/10.1002/aenm.202200361
Z. Qin, Y. Chen, X. Wang, N. Wei, X. Liu et al., Zwitterion-functionalized SnO2 substrate induced sequential deposition of black-phase FAPbI3 with rearranged PbI2 residue. Adv. Mater. 34, 2203143 (2022). https://doi.org/10.1002/adma.202203143
M. Othman, F. Zheng, A. Seeber, A.S.R. Chesman, A.D. Scully et al., Millimeter-sized clusters of triple cation perovskite enables highly efficient and reproducible roll-to-roll fabricated inverted perovskite solar cells. Adv. Funct. Mater. 32, 2110700 (2022). https://doi.org/10.1002/adfm.202110700
S. Wu, J. Zhang, Z. Li, D. Liu, M. Qin et al., Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells. Joule 4, 1248–1262 (2022). https://doi.org/10.1016/j.joule.2020.04.001
H. Xu, Y. Miao, N. Wei, H. Chen, Z. Qin et al., CsI enhanced buried interface for efficient and uv-robust perovskite solar cells. Adv. Energy Mater. 12, 2103151 (2021). https://doi.org/10.1002/aenm.202103151
H. Liu, X. Qi, J. Wang, W. Zhang, Y. Xia et al., 1,8-Octanediamine dihydroiodide-mediated grain boundary and interface passivation in two-step-processed perovskite solar cells. Sol. RRL 6, 2100960 (2022). https://doi.org/10.1002/solr.202100960
L. Yang, J. Feng, Z. Liu, Y. Duan, S. Zhan et al., Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv. Mater. 34, 2201681 (2022). https://doi.org/10.1002/adma.202201681
D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9, 3239 (2018). https://doi.org/10.1038/s41467-018-05760-x
P. Xu, H. He, J. Ding, P. Wang, H. Piao et al., Simultaneous passivation of the SnO2/perovskite interface and perovskite absorber layer in perovskite solar cells using kf surface treatment. ACS Appl. Energy Mater. 4, 10921–10930 (2021). https://doi.org/10.1021/acsaem.1c01893
Y. Dong, W. Shen, W. Dong, C. Bai, J. Zhao et al., Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells. Adv. Energy Mater. 12, 2200417 (2022). https://doi.org/10.1002/aenm.202200417
J. Zhuang, P. Mao, Y. Luan, N. Chen, X. Cao et al., Rubidium fluoride modified SnO2 for planar n-i-p perovskite solar cells. Adv. Funct. Mater. 31, 2010385 (2021). https://doi.org/10.1002/adfm.202010385
C.C. Zhang, S. Yuan, Y.H. Lou, Q.W. Liu, M. Li et al., Perovskite films with reduced interfacial strains via a molecular-level flexible interlayer for photovoltaic application. Adv. Mater. 32, 2001479 (2020). https://doi.org/10.1002/adma.202001479
Ç. Kılıc, A. Zunger, Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett. 88, 9 (2002). https://doi.org/10.1103/PhysRevLett.88.095501
Z. Zheng, F. Li, J. Gong, Y. Ma, J. Gu et al., Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Adv. Mater. 34, 2109879 (2022). https://doi.org/10.1002/adma.202109879
W. Zhang, Y. Cai, H. Liu, Y. Xia, J. Cui et al., Organic-free and lead-free perovskite solar cells with efficiency over 11%. Adv. Energy Mater. 12, 2202491 (2022). https://doi.org/10.1002/aenm.202202491
Z Xiong, X Chen, B Zhang, GO Odunmbaku, Z Ou et al., Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%, Adv. Mater. 34(8): 2106118. https://doi.org/10.1002/adma.202106118
H. Liu, Z. Lu, W. Zhang, J. Wang, Z. Lu et al., Anchoring vertical dipole to enable efficient charge extraction for high-performance perovskite solar cells. Adv. Sci. 9, 2203640 (2022). https://doi.org/10.1002/advs.202203640
Z. Zhang, J. Wang, L. Lang, Y. Dong, J. Liang et al., Size-tunable MoS2 nanosheets for controlling the crystal morphology and residual stress in sequentially deposited perovskite solar cells with over 22.5% efficiency. J. Mater. Chem. A 10, 3605–3617 (2022). https://doi.org/10.1039/D1TA10314H
C. Ma, F.T. Eickemeyer, S.H. Lee, D.H. Kang, S.J. Kwon et al., Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379, 173–178 (2023). https://doi.org/10.1126/science.adf3349
Q. Xiong, C. Wang, Q. Zhou, L. Wang, X. Wang et al., Rear interface engineering to suppress migration of iodide ions for efficient perovskite solar cells with minimized hysteresis. Adv. Funct. Mater. 32, 2107823 (2021). https://doi.org/10.1002/adfm.202107823
W. Zhang, J. Xiong, J. Li, W.A. Daoud, Seed-assisted growth for low-temperature-processed all-inorganic CsPbIBr 2 solar cells with efficiency over 10%. Small 16, 2001535 (2020). https://doi.org/10.1002/smll.202001535
F. Zheng, X. Wen, T. Bu, S. Chen, J. Yang et al., Slow response of carrier dynamics in perovskite interface upon illumination. ACS Appl. Mater. Interfaces 10, 31452–31461 (2018). https://doi.org/10.1021/acsami.8b13932
Z. Liu, L. Qiu, L.K. Ono, S. He, Z. Hu et al., A holistic approach to interface stabilization for efficient perovskite solar modules with over 2000-hour operational stability. Nat. Energy 5, 596–604 (2020). https://doi.org/10.1038/s41560-020-0653-2
X. Deng, F. Qi, F. Li, S. Wu, F.R. Lin et al., Co-assembled monolayers as hole-selective contact for high-performance inverted perovskite solar cells with optimized recombination loss and long-term stability. Angew. Chem. Int. Ed. 61, e202203088 (2022). https://doi.org/10.1002/anie.202203088
M. Qin, H. Xue, H. Zhang, H. Hu, K. Liu et al., Precise control of perovskite crystallization kinetics via sequential a-site doping. Adv. Mater. 32, 2004630 (2020). https://doi.org/10.1002/adma.202004630
M. Hou, Y. Wang, X. Yang, M. Han, H. Ren et al., Aryl quaternary ammonium modulation for perovskite solar cells with improved efficiency and stability. Nano Energy 94, 106922 (2022). https://doi.org/10.1016/j.nanoen.2022.106922
J. Zhang, J. Yang, R. Dai, W. Sheng, Y. Su et al., Elimination of interfacial lattice mismatch and detrimental reaction by self-assembled layer dual-passivation for efficient and stable inverted perovskite solar cells. Adv. Energy Mater. 12, 2103674 (2022). https://doi.org/10.1002/aenm.202103674
F. Sadegh, S. Akin, M. Moghadam, R. Keshavarzi, V. Mirkhani et al., Copolymer-templated nickel oxide for high-efficiency mesoscopic perovskite solar cells in inverted architecture. Adv. Funct. Mater. 31, 2102237 (2021). https://doi.org/10.1002/adfm.202102237
P. Wang, B. Chen, R. Li, S. Wang, Y. Li et al., 2D perovskite or organic material matter? Targeted growth for efficient perovskite solar cells with efficiency exceeding 24%. Nano Energy 94, 106914 (2022). https://doi.org/10.1016/j.nanoen.2021.106914
Q. Dong, C. Zhu, M. Chen, C. Jiang, J. Guo et al., Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat. Commun. 12, 973 (2022). https://doi.org/10.1038/s41467-021-21292-3
Q. Fu, H. Liu, X. Tang, R. Wang, M. Chen et al., Multifunctional two-dimensional polymers for perovskite solar cells with efficiency exceeding 24%. ACS Energy Lett. 7, 1128–1136 (2022). https://doi.org/10.1021/acsenergylett.1c02812
L. Li, S. Tu, G. You, J. Cao, D. Wu et al., Enhancing performance and stability of perovskite solar cells through defect passivation with a polyamide derivative obtained from benzoxazine-isocyanide chemistry. Chem. Eng. J. 431, 11953 (2022). https://doi.org/10.1016/j.cej.2021.133951
Y. Yun, F. Wang, H. Huang, Y. Fang, S. Liu et al., A nontoxic bifunctional (anti)solvent as digestive-ripening agent for high-performance perovskite solar cells. Adv. Mater. 32, 1907123 (2020). https://doi.org/10.1002/adma.201907123
Y. Zhao, T. Heumueller, J. Zhang, J. Luo, O. Kasian et al., A bilayer conducting polymer structure for planar perovskite solar cells with over 1400 hours operational stability at elevated temperatures. Nat. Energy 7, 144–152 (2021). https://doi.org/10.1038/s41560-021-00953-z
J. Suo, B. Yang, J. Jeong, T. Zhang, S. Olthof et al., A hagfeldt, interfacial engineering from material to solvent: A mechanistic understanding on stabilizing α-formamidinium lead triiodide perovskite photovoltaics. Nano Energy 94, 106924 (2022). https://doi.org/10.1016/j.nanoen.2022.106924
J. Huang, H. Wang, Y. Li, F. Zhang, D. Zhang et al., (2022) Diaminobenzene dihydroiodide-MA0.6FA0.4PbI3−xClx unsymmetrical perovskites with over 22% efficiency for high stability solar cells. Adv. Funct. Mater. 32, 2110788. https://doi.org/10.1002/adfm.202110788
L. Cheng, K. Meng, Z. Qiao, Y. Zhai, R. Yu et al., Tailoring interlayer spacers for efficient and stable formamidinium-based low-dimensional perovskite solar cells. Adv. Mater. 34, 2106380 (2022). https://doi.org/10.1002/adma.202106380
Y. Li, W. Xu, N. Mussakhanuly, Y. Cho, J. Bing et al., Homologous bromides treatment for improving the open-circuit voltage of perovskite solar cells. Adv. Mater. 34, 2106280 (2022). https://doi.org/10.1002/adma.202106280
Y. Zhang, L. Xu, Y. Wu, H. Zhang, F. Zeng et al., (2023), Synergetic excess PbI2 and reduced Pb leakage management strategy for 24.28% efficient stable and eco-friendly perovskite solar cells. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202214102
J. Luo, J. Zhu, F. Lin, J. Xia, H. Yang et al., Molecular doping of a hole-transporting material for efficient and stable perovskite solar cells. Chem. Mater. 34, 1499–1508 (2022). https://doi.org/10.1021/acs.chemmater.1c02920
H. Li, J. Shi, J. Deng, Z. Chen, Y. Li et al., Intermolecular π–π conjugation self-assembly to stabilize surface passivation of highly efficient perovskite solar cells. Adv. Mater. 32, 1907396 (2020). https://doi.org/10.1002/adma.201907396
S. Hu, K. Otsuka, R. Murdey, T. Nakamura, M.A. Truong et al., Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15, 2096–2107 (2022). https://doi.org/10.1039/d2ee00288d
X. Wang, D. Liu, R. Liu, X. Du, B. Zhang et al., PbI6 octahedra stabilization strategy based on π–π stacking small molecule toward highly efficient and stable perovskite solar cells. Adv. Energy Mater. (2023). https://doi.org/10.1002/aenm.202203635