Ion–Electron Coupling Enables Ionic Thermoelectric Material with New Operation Mode and High Energy Density
Corresponding Author: Kuan Sun
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 101
Abstract
Ionic thermoelectrics (i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However, as ions cannot enter external circuit, the utilization of i-TE is currently based on capacitive charge/discharge, which results in discontinuous working mode and low energy density. Here, we introduce an ion–electron thermoelectric synergistic (IETS) effect by utilizing an ion–electron conductor. Electrons/holes can drift under the electric field generated by thermodiffusion of ions, thus converting the ionic current into electrical current that can pass through the external circuit. Due to the IETS effect, i-TE is able to operate continuously for over 3000 min. Moreover, our i-TE exhibits a thermopower of 32.7 mV K−1 and an energy density of 553.9 J m−2, which is more than 6.9 times of the highest reported value. Consequently, direct powering of electronics is achieved with i-TE. This work provides a novel strategy for the design of high-performance i-TE materials.
Highlights:
1 An ion–electron coupled thermoelectric material was successfully prepared, which theoretically proved the ion–electron thermoelectric synergy effect and this material can work for a long time, which promoted low-grade thermal energy conversion.
2 In the new operating mode of ion–electron thermoelectric synergy effect, our ionic thermoelectrics have a high Seebeck coefficient of 32.7 mV K−1 and a high energy density of 553.9 J m−2, enabling self-power for electronic components.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Liu, X. Qian, C.-G. Han, Q. Li, G. Chen, Ionic thermoelectric materials for near ambient temperature energy harvesting. Appl. Phys. Lett. 118(2), 020501 (2021). https://doi.org/10.1063/5.0032119
- M. Massetti, F. Jiao, A.J. Ferguson, D. Zhao, K. Wijeratne et al., Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 121(20), 12465–12547 (2021). https://doi.org/10.1021/acs.chemrev.1c00218
- X. Liu, H. Gao, J.E. Ward, X. Liu, B. Yin et al., Power generation from ambient humidity using protein nanowires. Nature 578(7796), 550–554 (2020). https://doi.org/10.1038/s41586-020-2010-9
- L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895), 1457–1461 (2008). https://doi.org/10.1126/science.1158899
- H. Yao, Z. Fan, H. Cheng, X. Guan, C. Wang et al., Recent development of thermoelectric polymers and composites. Macromol. Rapid Commun. 39(6), 1700727 (2018). https://doi.org/10.1002/marc.201700727
- B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc, R.A. Segalman, Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1(10), 16050 (2016). https://doi.org/10.1038/natrevmats.2016.50
- L. Su, D. Wang, S. Wang, B. Qin, Y. Wang et al., High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science 375(6587), 1385–1389 (2022). https://doi.org/10.1126/science.abn8997
- B. Yu, J. Duan, H. Cong, W. Xie, R. Liu et al., Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 370(6514), 342–346 (2020). https://doi.org/10.1126/science.abd6749
- Y. Liu, Q. Zhang, G.O. Odunmbaku, Y. He, Y. Zheng et al., Solvent effect on the seebeck coefficient of Fe2+/Fe3+ hydrogel thermogalvanic cells. J. Mater. Chem. A 10, 19690–19698 (2022). https://doi.org/10.1039/d1ta10508f
- J. Duan, G. Feng, B. Yu, J. Li, M. Chen et al., Aqueous thermogalvanic cells with a high seebeck coefficient for low-grade heat harvest. Nat. Commun. 9(1), 5146 (2018). https://doi.org/10.1038/s41467-018-07625-9
- T. Li, X. Zhang, S.D. Lacey, R. Mi, X. Zhao et al., Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 18(6), 608–613 (2019). https://doi.org/10.1038/s41563-019-0315-6
- D. Zhao, H. Wang, Z.U. Khan, J.C. Chen, R. Gabrielsson et al., Ionic thermoelectric supercapacitors. Energy Environ. Sci. 9(4), 1450–1457 (2016). https://doi.org/10.1039/c6ee00121a
- C. Wang, K. Sun, J. Fu, R. Chen, M. Li et al., Enhancement of conductivity and thermoelectric property of pedot: Pss via acid doping and single post-treatment for flexible power generator. Adv. Sustain. Syst. 2(12), 1800085 (2018). https://doi.org/10.1002/adsu.201800085
- H. Cheng, X. He, Z. Fan, J. Ouyang, Flexible quasi-solid state ionogels with remarkable seebeck coefficient and high thermoelectric properties. Adv. Energy Mater. 9(32), 1901085 (2019). https://doi.org/10.1002/aenm.201901085
- D. Zhao, A. Martinelli, A. Willfahrt, T. Fischer, D. Bernin et al., Polymer gels with tunable ionic seebeck coefficient for ultra-sensitive printed thermopiles. Nat. Commun. 10(1), 1093 (2019). https://doi.org/10.1038/s41467-019-08930-7
- Z.A. Akbar, J.-W. Jeon, S.-Y. Jang, Intrinsically self-healable, stretchable thermoelectric materials with a large ionic seebeck effect. Energy Environ. Sci. 13(9), 2915–2923 (2020). https://doi.org/10.1039/c9ee03861b
- Y. Fang, H. Cheng, H. He, S. Wang, J. Li et al., Stretchable and transparent ionogels with high thermoelectric properties. Adv. Funct. Mater. 30, 2004699 (2020). https://doi.org/10.1002/adfm.202004699
- C.-G. Han, X. Qian, Q. Li, B. Deng, Y. Zhu et al., Giant thermopower of ionic gelatin near room temperature. Science 368(6495), 1091–1097 (2020). https://doi.org/10.1126/science.aaz5045
- B. Kim, J.U. Hwang, E. Kim, Chloride transport in conductive polymer films for an n-type thermoelectric platform. Energy Environ. Sci. 13(3), 859–867 (2020). https://doi.org/10.1039/c9ee02399b
- M. Jeong, J. Noh, M.Z. Islam, K. Kim, A. Sohn et al., Embedding aligned graphene oxides in polyelectrolytes to facilitate thermo-diffusion of protons for high ionic thermoelectric figure-of-merit. Adv. Funct. Mater. 31, 2011016 (2021). https://doi.org/10.1002/adfm.202011016
- Y. Shu, G.O. Odunmbaku, Y. He, Y. Zhou, H. Cheng et al., Cation effect of inorganic salts on ionic seebeck coefficient. Appl. Phys. Lett. 118(10), 103902 (2021). https://doi.org/10.1063/5.0043498
- Y. Zhang, A. Sohn, A. Chakraborty, C. Yu, Colossal thermo-hydro-electrochemical voltage generation for self-sustainable operation of electronics. Nat. Commun. 12(1), 5269 (2021). https://doi.org/10.1038/s41467-021-25606-3
- C. Chi, M. An, X. Qi, Y. Li, R. Zhang et al., Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing. Nat. Commun. 13(1), 221 (2022). https://doi.org/10.1038/s41467-021-27885-2
- C. Liu, Q. Li, S. Wang, W. Liu, N.X. Fang et al., Ion regulation in double-network hydrogel module with ultrahigh thermopower for low-grade heat harvesting. Nano Energy 92, 106738 (2022). https://doi.org/10.1016/j.nanoen.2021.106738
- Q. Jiang, H. Sun, D. Zhao, F. Zhang, D. Hu et al., High thermoelectric performance in n-type perylene bisimide induced by the soret effect. Adv. Mater. 32(45), 2002752 (2020). https://doi.org/10.1002/adma.202002752
- Y. He, Q. Zhang, H. Cheng, Y. Liu, Y. Shu et al., Role of ions in hydrogels with an ionic seebeck coefficient of 52.9 mv k−1. J. Phys. Chem. Lett. 13, 4621–4627 (2022). https://doi.org/10.1021/acs.jpclett.2c00845
- X. He, H. Cheng, S. Yue, J. Ouyang, Quasi-solid state nanop/(ionic liquid) gels with significantly high ionic thermoelectric properties. J. Mater. Chem. A 8(21), 10813–10821 (2020). https://doi.org/10.1039/d0ta04100a
- Y.T. Malik, Z.A. Akbar, J.Y. Seo, S. Cho, S.Y. Jang et al., Self-healable organic–inorganic hybrid thermoelectric materials with excellent ionic thermoelectric properties. Adv. Energy Mater. 12(6), 2103070 (2021). https://doi.org/10.1002/aenm.202103070
- X. Shi, J. He, Thermopower and harvesting heat. Science 371, 343–344 (2021). https://doi.org/10.1126/science.abf3342
- H. Cheng, J. Ouyang, Ultrahigh thermoelectric power generation from both ion diffusion by temperature fluctuation and hole accumulation by temperature gradient. Adv. Energy Mater. 10(37), 2001633 (2020). https://doi.org/10.1002/aenm.202001633
- H. Cheng, S. Yue, Q. Le, Q. Qian, J. Ouyang, A mixed ion-electron conducting carbon nanotube ionogel to efficiently harvest heat from both a temperature gradient and temperature fluctuation. J. Mater. Chem. A 9(23), 13588–13596 (2021). https://doi.org/10.1039/d1ta02869c
- Y. Li, Q. Li, X. Zhang, B. Deng, C. Han et al., 3D hierarchical electrodes boosting ultrahigh power output for gelatin-KCl-FeCN4−/3− ionic thermoelectric cells. Adv. Energy Mater. 12, 2103666 (2022). https://doi.org/10.1002/aenm.202103666
- N. Sun, H. Liu, B. Xu, Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J. Mater. Chem. A 3(41), 20560–20566 (2015). https://doi.org/10.1039/c5ta05118e
- Y. Geng, W. Sun, P. Ying, Y. Zheng, J. Ding et al., Bioinspired fractal design of waste biomass-derived solar-thermal materials for highly efficient solar evaporation. Adv. Funct. Mater. 31(3), 2007648 (2020). https://doi.org/10.1002/adfm.202007648
- S.L. Kim, J.-H. Hsu, C. Yu, Thermoelectric effects in solid-state polyelectrolytes. Org. Electron. 54, 231–236 (2018). https://doi.org/10.1016/j.orgel.2017.12.021
- G. Xue, Y. Xu, T. Ding, J. Li, J. Yin et al., Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12(4), 317–321 (2017). https://doi.org/10.1038/nnano.2016.300
- H. Cheng, Y. Huang, F. Zhao, C. Yang, P. Zhang et al., Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy Environ. Sci. 11(10), 2839–2845 (2018). https://doi.org/10.1039/c8ee01502c
- H. Wang, U. Ail, R. Gabrielsson, M. Berggren, X. Crispin, Ionic seebeck effect in conducting polymers. Adv. Energy Mater. 5(11), 1500044 (2015). https://doi.org/10.1002/aenm.201500044
- S. Xiao, C. Chen, Q. Xia, Y. Liu, Y. Yao et al., Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science 374(6566), 465–471 (2021). https://doi.org/10.1126/science.abg9556
- K. Li, C.M. Clarkson, L. Wang, Y. Liu, M. Lamm et al., Alignment of cellulose nanofibers: harnessing nanoscale properties to macroscale benefits. ACS Nano 15(3), 3646–3673 (2021). https://doi.org/10.1021/acsnano.0c07613
- W. Luo, J. Schardt, C. Bommier, B. Wang, J. Razink et al., Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J. Mater. Chem. A 1, 10662–10666 (2013). https://doi.org/10.1039/c3ta12389h
- C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena et al., Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598(7882), 590–596 (2021). https://doi.org/10.1038/s41586-021-03885-6
- R. Takouachet, R. Benali-Cherif, E.-E. Bendeif, N. Benali-Cherif, S. Pillet et al., Structural analysis and IR-spectroscopy of a new anilinium hydrogenselenite hybrid compound: a subtle structural phase transition. Inorganica Chim. Acta 446, 6–12 (2016). https://doi.org/10.1016/j.ica.2016.02.047
- J. Kamcev, D.R. Paul, G.S. Manning, B.D. Freeman, Ion diffusion coefficients in ion exchange membranes: significance of counterion condensation. Macromolecules 51(15), 5519–5529 (2018). https://doi.org/10.1021/acs.macromol.8b00645
- D. Aryal, V. Ganesan, Reversal of salt concentration dependencies of salt and water diffusivities in polymer electrolyte membranes. ACS Macro Lett. 7(6), 739–744 (2018). https://doi.org/10.1021/acsmacrolett.8b00333
- G. Chen, T. Li, C. Chen, W. Kong, M. Jiao et al., Scalable wood hydrogel membrane with nanoscale channels. ACS Nano 15(7), 11244–11252 (2021). https://doi.org/10.1021/acsnano.0c10117
- C. Cho, B. Kim, S. Park, E. Kim, Bisulfate transport in hydrogels for self-healable and transparent thermoelectric harvesting films. Energy Environ. Sci. 15, 2049–2060 (2022). https://doi.org/10.1039/d2ee00341d
References
W. Liu, X. Qian, C.-G. Han, Q. Li, G. Chen, Ionic thermoelectric materials for near ambient temperature energy harvesting. Appl. Phys. Lett. 118(2), 020501 (2021). https://doi.org/10.1063/5.0032119
M. Massetti, F. Jiao, A.J. Ferguson, D. Zhao, K. Wijeratne et al., Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 121(20), 12465–12547 (2021). https://doi.org/10.1021/acs.chemrev.1c00218
X. Liu, H. Gao, J.E. Ward, X. Liu, B. Yin et al., Power generation from ambient humidity using protein nanowires. Nature 578(7796), 550–554 (2020). https://doi.org/10.1038/s41586-020-2010-9
L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895), 1457–1461 (2008). https://doi.org/10.1126/science.1158899
H. Yao, Z. Fan, H. Cheng, X. Guan, C. Wang et al., Recent development of thermoelectric polymers and composites. Macromol. Rapid Commun. 39(6), 1700727 (2018). https://doi.org/10.1002/marc.201700727
B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc, R.A. Segalman, Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1(10), 16050 (2016). https://doi.org/10.1038/natrevmats.2016.50
L. Su, D. Wang, S. Wang, B. Qin, Y. Wang et al., High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science 375(6587), 1385–1389 (2022). https://doi.org/10.1126/science.abn8997
B. Yu, J. Duan, H. Cong, W. Xie, R. Liu et al., Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 370(6514), 342–346 (2020). https://doi.org/10.1126/science.abd6749
Y. Liu, Q. Zhang, G.O. Odunmbaku, Y. He, Y. Zheng et al., Solvent effect on the seebeck coefficient of Fe2+/Fe3+ hydrogel thermogalvanic cells. J. Mater. Chem. A 10, 19690–19698 (2022). https://doi.org/10.1039/d1ta10508f
J. Duan, G. Feng, B. Yu, J. Li, M. Chen et al., Aqueous thermogalvanic cells with a high seebeck coefficient for low-grade heat harvest. Nat. Commun. 9(1), 5146 (2018). https://doi.org/10.1038/s41467-018-07625-9
T. Li, X. Zhang, S.D. Lacey, R. Mi, X. Zhao et al., Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 18(6), 608–613 (2019). https://doi.org/10.1038/s41563-019-0315-6
D. Zhao, H. Wang, Z.U. Khan, J.C. Chen, R. Gabrielsson et al., Ionic thermoelectric supercapacitors. Energy Environ. Sci. 9(4), 1450–1457 (2016). https://doi.org/10.1039/c6ee00121a
C. Wang, K. Sun, J. Fu, R. Chen, M. Li et al., Enhancement of conductivity and thermoelectric property of pedot: Pss via acid doping and single post-treatment for flexible power generator. Adv. Sustain. Syst. 2(12), 1800085 (2018). https://doi.org/10.1002/adsu.201800085
H. Cheng, X. He, Z. Fan, J. Ouyang, Flexible quasi-solid state ionogels with remarkable seebeck coefficient and high thermoelectric properties. Adv. Energy Mater. 9(32), 1901085 (2019). https://doi.org/10.1002/aenm.201901085
D. Zhao, A. Martinelli, A. Willfahrt, T. Fischer, D. Bernin et al., Polymer gels with tunable ionic seebeck coefficient for ultra-sensitive printed thermopiles. Nat. Commun. 10(1), 1093 (2019). https://doi.org/10.1038/s41467-019-08930-7
Z.A. Akbar, J.-W. Jeon, S.-Y. Jang, Intrinsically self-healable, stretchable thermoelectric materials with a large ionic seebeck effect. Energy Environ. Sci. 13(9), 2915–2923 (2020). https://doi.org/10.1039/c9ee03861b
Y. Fang, H. Cheng, H. He, S. Wang, J. Li et al., Stretchable and transparent ionogels with high thermoelectric properties. Adv. Funct. Mater. 30, 2004699 (2020). https://doi.org/10.1002/adfm.202004699
C.-G. Han, X. Qian, Q. Li, B. Deng, Y. Zhu et al., Giant thermopower of ionic gelatin near room temperature. Science 368(6495), 1091–1097 (2020). https://doi.org/10.1126/science.aaz5045
B. Kim, J.U. Hwang, E. Kim, Chloride transport in conductive polymer films for an n-type thermoelectric platform. Energy Environ. Sci. 13(3), 859–867 (2020). https://doi.org/10.1039/c9ee02399b
M. Jeong, J. Noh, M.Z. Islam, K. Kim, A. Sohn et al., Embedding aligned graphene oxides in polyelectrolytes to facilitate thermo-diffusion of protons for high ionic thermoelectric figure-of-merit. Adv. Funct. Mater. 31, 2011016 (2021). https://doi.org/10.1002/adfm.202011016
Y. Shu, G.O. Odunmbaku, Y. He, Y. Zhou, H. Cheng et al., Cation effect of inorganic salts on ionic seebeck coefficient. Appl. Phys. Lett. 118(10), 103902 (2021). https://doi.org/10.1063/5.0043498
Y. Zhang, A. Sohn, A. Chakraborty, C. Yu, Colossal thermo-hydro-electrochemical voltage generation for self-sustainable operation of electronics. Nat. Commun. 12(1), 5269 (2021). https://doi.org/10.1038/s41467-021-25606-3
C. Chi, M. An, X. Qi, Y. Li, R. Zhang et al., Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing. Nat. Commun. 13(1), 221 (2022). https://doi.org/10.1038/s41467-021-27885-2
C. Liu, Q. Li, S. Wang, W. Liu, N.X. Fang et al., Ion regulation in double-network hydrogel module with ultrahigh thermopower for low-grade heat harvesting. Nano Energy 92, 106738 (2022). https://doi.org/10.1016/j.nanoen.2021.106738
Q. Jiang, H. Sun, D. Zhao, F. Zhang, D. Hu et al., High thermoelectric performance in n-type perylene bisimide induced by the soret effect. Adv. Mater. 32(45), 2002752 (2020). https://doi.org/10.1002/adma.202002752
Y. He, Q. Zhang, H. Cheng, Y. Liu, Y. Shu et al., Role of ions in hydrogels with an ionic seebeck coefficient of 52.9 mv k−1. J. Phys. Chem. Lett. 13, 4621–4627 (2022). https://doi.org/10.1021/acs.jpclett.2c00845
X. He, H. Cheng, S. Yue, J. Ouyang, Quasi-solid state nanop/(ionic liquid) gels with significantly high ionic thermoelectric properties. J. Mater. Chem. A 8(21), 10813–10821 (2020). https://doi.org/10.1039/d0ta04100a
Y.T. Malik, Z.A. Akbar, J.Y. Seo, S. Cho, S.Y. Jang et al., Self-healable organic–inorganic hybrid thermoelectric materials with excellent ionic thermoelectric properties. Adv. Energy Mater. 12(6), 2103070 (2021). https://doi.org/10.1002/aenm.202103070
X. Shi, J. He, Thermopower and harvesting heat. Science 371, 343–344 (2021). https://doi.org/10.1126/science.abf3342
H. Cheng, J. Ouyang, Ultrahigh thermoelectric power generation from both ion diffusion by temperature fluctuation and hole accumulation by temperature gradient. Adv. Energy Mater. 10(37), 2001633 (2020). https://doi.org/10.1002/aenm.202001633
H. Cheng, S. Yue, Q. Le, Q. Qian, J. Ouyang, A mixed ion-electron conducting carbon nanotube ionogel to efficiently harvest heat from both a temperature gradient and temperature fluctuation. J. Mater. Chem. A 9(23), 13588–13596 (2021). https://doi.org/10.1039/d1ta02869c
Y. Li, Q. Li, X. Zhang, B. Deng, C. Han et al., 3D hierarchical electrodes boosting ultrahigh power output for gelatin-KCl-FeCN4−/3− ionic thermoelectric cells. Adv. Energy Mater. 12, 2103666 (2022). https://doi.org/10.1002/aenm.202103666
N. Sun, H. Liu, B. Xu, Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J. Mater. Chem. A 3(41), 20560–20566 (2015). https://doi.org/10.1039/c5ta05118e
Y. Geng, W. Sun, P. Ying, Y. Zheng, J. Ding et al., Bioinspired fractal design of waste biomass-derived solar-thermal materials for highly efficient solar evaporation. Adv. Funct. Mater. 31(3), 2007648 (2020). https://doi.org/10.1002/adfm.202007648
S.L. Kim, J.-H. Hsu, C. Yu, Thermoelectric effects in solid-state polyelectrolytes. Org. Electron. 54, 231–236 (2018). https://doi.org/10.1016/j.orgel.2017.12.021
G. Xue, Y. Xu, T. Ding, J. Li, J. Yin et al., Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12(4), 317–321 (2017). https://doi.org/10.1038/nnano.2016.300
H. Cheng, Y. Huang, F. Zhao, C. Yang, P. Zhang et al., Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy Environ. Sci. 11(10), 2839–2845 (2018). https://doi.org/10.1039/c8ee01502c
H. Wang, U. Ail, R. Gabrielsson, M. Berggren, X. Crispin, Ionic seebeck effect in conducting polymers. Adv. Energy Mater. 5(11), 1500044 (2015). https://doi.org/10.1002/aenm.201500044
S. Xiao, C. Chen, Q. Xia, Y. Liu, Y. Yao et al., Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science 374(6566), 465–471 (2021). https://doi.org/10.1126/science.abg9556
K. Li, C.M. Clarkson, L. Wang, Y. Liu, M. Lamm et al., Alignment of cellulose nanofibers: harnessing nanoscale properties to macroscale benefits. ACS Nano 15(3), 3646–3673 (2021). https://doi.org/10.1021/acsnano.0c07613
W. Luo, J. Schardt, C. Bommier, B. Wang, J. Razink et al., Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J. Mater. Chem. A 1, 10662–10666 (2013). https://doi.org/10.1039/c3ta12389h
C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena et al., Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598(7882), 590–596 (2021). https://doi.org/10.1038/s41586-021-03885-6
R. Takouachet, R. Benali-Cherif, E.-E. Bendeif, N. Benali-Cherif, S. Pillet et al., Structural analysis and IR-spectroscopy of a new anilinium hydrogenselenite hybrid compound: a subtle structural phase transition. Inorganica Chim. Acta 446, 6–12 (2016). https://doi.org/10.1016/j.ica.2016.02.047
J. Kamcev, D.R. Paul, G.S. Manning, B.D. Freeman, Ion diffusion coefficients in ion exchange membranes: significance of counterion condensation. Macromolecules 51(15), 5519–5529 (2018). https://doi.org/10.1021/acs.macromol.8b00645
D. Aryal, V. Ganesan, Reversal of salt concentration dependencies of salt and water diffusivities in polymer electrolyte membranes. ACS Macro Lett. 7(6), 739–744 (2018). https://doi.org/10.1021/acsmacrolett.8b00333
G. Chen, T. Li, C. Chen, W. Kong, M. Jiao et al., Scalable wood hydrogel membrane with nanoscale channels. ACS Nano 15(7), 11244–11252 (2021). https://doi.org/10.1021/acsnano.0c10117
C. Cho, B. Kim, S. Park, E. Kim, Bisulfate transport in hydrogels for self-healable and transparent thermoelectric harvesting films. Energy Environ. Sci. 15, 2049–2060 (2022). https://doi.org/10.1039/d2ee00341d