One-Step Gas–Solid-Phase Diffusion-Induced Elemental Reaction for Bandgap-Tunable CuaAgm1Bim2In/CuI Thin Film Solar Cells
Corresponding Author: Zhi Zheng
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 58
Abstract
Lead-free inorganic copper-silver-bismuth-halide materials have attracted more and more attention due to their environmental friendliness, high element abundance, and low cost. Here, we developed a strategy of one-step gas–solid-phase diffusion-induced reaction to fabricate a series of bandgap-tunable CuaAgm1Bim2In/CuI bilayer films due to the atomic diffusion effect for the first time. By designing and regulating the sputtered Cu/Ag/Bi metal film thickness, the bandgap of CuaAgm1Bim2In could be reduced from 2.06 to 1.78 eV. Solar cells with the structure of FTO/TiO2/CuaAgm1Bim2In/CuI/carbon were constructed, yielding a champion power conversion efficiency of 2.76%, which is the highest reported for this class of materials owing to the bandgap reduction and the peculiar bilayer structure. The current work provides a practical path for developing the next generation of efficient, stable, and environmentally friendly photovoltaic materials.
Highlights:
1 The CuaAgm1Bim2In/CuI bilayer films are prepared simultaneously in situ by a one-step low-temperature gas-solid phase diffusion induced elemental reaction without spin coating.
2 A new type of CuaAgm1Bim2In photovoltaic material was originally designed to reduce the bandgap of this class of materials from 2.06 to 1.78 eV by breaking the restriction of double perovskite structure with a ratio of Ag:Bi = 1:1.
3 The power conversion efficiency (PCE) of solar cell with a structure of FTO/TiO2/CuaAgm1Bim2In/CuI/carbon reached 2.76%, which is the highest PCE for CuaAgm1Bim2In absorbers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Xiang, W. Tress, Review on recent progress of all-inorganic metal halide perovskites and solar cells. Adv. Mater. 31, e1902851 (2019). https://doi.org/10.1002/adma.201902851
- H. Li, W. Zhang, Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120, 9835–9950 (2020). https://doi.org/10.1021/acs.chemrev.9b00780
- S. Bellani, A. Bartolotta, A. Agresti, G. Calogero, G. Grancini et al., Solution-processed two-dimensional materials for next-generation photovoltaics. Chem. Soc. Rev. 50, 11870–11965 (2021). https://doi.org/10.1039/d1cs00106j
- X. Li, W. Zhang, X. Guo, C. Lu, J. Wei et al., Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022). https://doi.org/10.1126/science.abl5676
- N. Li, X. Niu, L. Li, H. Wang, Z. Huang et al., Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373, 561–567 (2021). https://doi.org/10.1126/science.abh3884
- W. Hui, L. Chao, H. Lu, F. Xia, Q. Wei et al., Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 371, 1359–1364 (2021). https://doi.org/10.1126/science.abf7652
- S. Chen, X. Dai, S. Xu, H. Jiao, L. Zhao et al., Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021). https://doi.org/10.1126/science.abi6323
- N. Li, X. Niu, Q. Chen, H. Zhou, Towards commercialization: the operational stability of perovskite solar cells. Chem. Soc. Rev. 49, 8235–8286 (2020). https://doi.org/10.1039/d0cs00573h
- Z. Xiao, K.Z. Du, W. Meng, D.B. Mitzi, Y. Yan, Chemical origin of the stability difference between copper(I)-and silver(I)-based halide double perovskites. Angew. Chem. Int. Ed. 56, 12107–12111 (2017). https://doi.org/10.1002/anie.201705113
- X. Yang, Y. Chen, P. Liu, H. Xiang, W. Wang et al., Simultaneous power conversion efficiency and stability enhancement of Cs2AgBiBr6 lead-free inorganic perovskite solar cell through adopting a multifunctional dye interlayer. Adv. Funct. Mater. 30, 2001557 (2020). https://doi.org/10.1002/adfm.202001557
- T. Cai, W. Shi, S. Hwang, K. Kobbekaduwa, Y. Nagaoka et al., Lead-free Cs4CuSb2Cl12 layered double perovskite nanocrystals. J. Am. Chem. Soc. 142, 11927–11936 (2020). https://doi.org/10.1021/jacs.0c04919
- A.H. Slavney, L. Leppert, D. Bartesaghi, A. Gold-Parker, M.F. Toney et al., Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption. J. Am. Chem. Soc. 139, 5015–5018 (2017). https://doi.org/10.1021/jacs.7b01629
- M. Chen, M.-G. Ju, A.D. Carl, Y. Zong, R.L. Grimm et al., Cesium titanium (IV) bromide thin films based stable lead-free perovskite solar cells. Joule 2, 558–570 (2018). https://doi.org/10.1016/j.joule.2018.01.009
- X.G. Zhao, D. Yang, Y. Sun, T. Li, L. Zhang et al., Cu-In halide perovskite solar absorbers. J. Am. Chem. Soc. 139, 6718–6725 (2017). https://doi.org/10.1021/jacs.7b02120
- Z. Zhang, Q. Sun, Y. Lu, F. Lu, X. Mu et al., Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nat. Commun. 13, 3397 (2022). https://doi.org/10.1038/s41467-022-31016-w
- X.G. Zhao, J.H. Yang, Y. Fu, D. Yang, Q. Xu et al., Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139, 2630–2638 (2017). https://doi.org/10.1021/jacs.6b09645
- B. Zhang, Y. Lei, R. Qi, H. Yu, X. Yang et al., An in-situ room temperature route to CuBiI4 based bulk-heterojunction perovskite-like solar cells. Sci. China Mater. 62, 519–526 (2018). https://doi.org/10.1007/s40843-018-9355-0
- F. Yu, L. Wang, K. Ren, S. Yang, Z. Xu et al., Cs-incorporated AgBiI4 rudorffite for efficient and stable solar cells. ACS Sustain. Chem. Eng. 8, 9980–9987 (2020). https://doi.org/10.1021/acssuschemeng.0c00496
- H.C. Sansom, G.F.S. Whitehead, M.S. Dyer, M. Zanella, T.D. Manning et al., AgBiI4 as a lead-free solar absorber with potential application in photovoltaics. Chem. Mater. 29, 1538–1549 (2017). https://doi.org/10.1021/acs.chemmater.6b04135
- H.C. Sansom, G. Longo, A.D. Wright, L.R.V. Buizza, S. Mahesh et al., Highly absorbing lead-free semiconductor Cu2AgBiI6 for photovoltaic applications from the quaternary CuI-AgI-BiI3 phase space. J. Am. Chem. Soc. 143, 3983–3992 (2021). https://doi.org/10.1021/jacs.1c00495
- L.R.V. Buizza, H.C. Sansom, A.D. Wright, A.M. Ulatowski, M.B. Johnston et al., Interplay of structure, charge-carrier localization and dynamics in copper-silver-bismuth-halide semiconductors. Adv. Funct. Mater. 32, 2108392 (2021). https://doi.org/10.1002/adfm.202108392
- F. Zhang, Z. Hu, B. Zhang, Z. Lin, J. Zhang et al., Low-temperature solution-processed Cu2AgBiI6 films for high performance photovoltaics and photodetectors. ACS Appl. Mater. Interfaces 14, 18498–18505 (2022). https://doi.org/10.1021/acsami.2c01481
- G.K. Grandhi, B. Al-Anesi, H. Pasanen, H. Ali-Loytty, K. Lahtonen et al., Enhancing the microstructure of perovskite-inspired Cu-Ag-Bi-I absorber for efficient indoor photovoltaics. Small 18, e2203768 (2022). https://doi.org/10.1002/smll.202203768
- N. Pai, M. Chatti, S.O. Fürer, A.D. Scully, S.R. Raga et al., Solution processable direct bandgap copper-silver-bismuth iodide photovoltaics: Compositional control of dimensionality and optoelectronic properties. Adv. Energy Mater. 12, 2201482 (2022). https://doi.org/10.1002/aenm.202201482
- L.R.V. Buizza, A.D. Wright, G. Longo, H.C. Sansom, C.Q. Xia et al., Charge-carrier mobility and localization in semiconducting Cu2AgBiI6 for photovoltaic applications. ACS Energy Lett. 6, 1729–1739 (2021). https://doi.org/10.1021/acsenergylett.1c00458
- H. Yu, B. Zhang, R. Qi, N. Qu, C. Zhao et al., Gradient formation and charge carrier dynamics of CuBiI4 based perovskite-like solar cells. Sustain. Energy Fuels 4, 2800–2807 (2020). https://doi.org/10.1039/c9se01288e
- Y. Lei, R. Qi, M. Chen, H. Chen, C. Xing et al., Microstructurally tailored thin β-Ag2Se films toward commercial flexible thermoelectrics. Adv. Mater. 34, e2104786 (2022). https://doi.org/10.1002/adma.202104786
- P. Dong, C. Zhao, Y. Lei, H. Song, S. Wu et al., Significant enhancement in optoelectronic properties of γ-CuxAg1–xI films induced by highly (111)-preferred orientation and Cu content at room temperature. Cryst. Growth Des. 21, 4038–4045 (2021). https://doi.org/10.1021/acs.cgd.1c00334
- M. Keshavarz, E. Debroye, M. Ottesen, C. Martin, H. Zhang et al., Tuning the structural and optoelectronic properties of Cs2AgBiBr6 double-perovskite single crystals through alkali-metal substitution. Adv. Mater. 32, e2001878 (2020). https://doi.org/10.1002/adma.202001878
- Z. Li, S.R. Kavanagh, M. Napari, R.G. Palgrave, M. Abdi-Jalebi et al., Bandgap lowering in mixed alloys of Cs2Ag(SbxBi1−x)Br6 double perovskite thin films. J. Mater. Chem. A 8, 21780–21788 (2020). https://doi.org/10.1039/d0ta07145e
- Y. Cui, M. Wang, P. Dong, S. Zhang, J. Fu et al., DMF-based large-grain spanning Cu2ZnSn(Sx, Se1-x)4 device with a PCE of 11.76%. Adv. Sci. 9, e2201241 (2022). https://doi.org/10.1002/advs.202201241
- Y. Sun, P. Qiu, W. Yu, J. Li, H. Guo et al., N-Type surface design for p-type CZTSSe thin film to attain high efficiency. Adv. Mater. 33, e2104330 (2021). https://doi.org/10.1002/adma.202104330
- N. Pai, J. Lu, T.R. Gengenbach, A. Seeber, A.S.R. Chesman et al., Silver bismuth sulfoiodide solar cells: tuning optoelectronic properties by sulfide modification for enhanced photovoltaic performance. Adv. Energy Mater. 9, 1803396 (2018). https://doi.org/10.1002/aenm.201803396
- J.A. Christians, R.C. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758–764 (2014). https://doi.org/10.1021/ja411014k
- Y. Lei, L. Gu, W. He, Z. Jia, X. Yang et al., Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture. J. Mater. Chem. A 4, 5474–5481 (2016). https://doi.org/10.1039/c6ta00614k
- E.M. Hutter, M.C. Gelvez-Rueda, D. Bartesaghi, F.C. Grozema, T.J. Savenije, Band-like charge transport in Cs2AgBi1-xSbxBr6 and mixed antimony bismuth Cs2AgBi1-xSbxBr6 halide double perovskites. ACS Omega 3, 11655–11662 (2018). https://doi.org/10.1021/acsomega.8b01705
- J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu et al., All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138, 15829–15832 (2016). https://doi.org/10.1021/jacs.6b10227
- A. Mei, X. Li, L. Liu, Z. Ku, T. Liu et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014). https://doi.org/10.1126/science.1254763
- D.H. Kang, N.G. Park, On the current-voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Adv. Mater. 31, e1805214 (2019). https://doi.org/10.1002/adma.201805214
References
W. Xiang, W. Tress, Review on recent progress of all-inorganic metal halide perovskites and solar cells. Adv. Mater. 31, e1902851 (2019). https://doi.org/10.1002/adma.201902851
H. Li, W. Zhang, Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120, 9835–9950 (2020). https://doi.org/10.1021/acs.chemrev.9b00780
S. Bellani, A. Bartolotta, A. Agresti, G. Calogero, G. Grancini et al., Solution-processed two-dimensional materials for next-generation photovoltaics. Chem. Soc. Rev. 50, 11870–11965 (2021). https://doi.org/10.1039/d1cs00106j
X. Li, W. Zhang, X. Guo, C. Lu, J. Wei et al., Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022). https://doi.org/10.1126/science.abl5676
N. Li, X. Niu, L. Li, H. Wang, Z. Huang et al., Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373, 561–567 (2021). https://doi.org/10.1126/science.abh3884
W. Hui, L. Chao, H. Lu, F. Xia, Q. Wei et al., Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 371, 1359–1364 (2021). https://doi.org/10.1126/science.abf7652
S. Chen, X. Dai, S. Xu, H. Jiao, L. Zhao et al., Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021). https://doi.org/10.1126/science.abi6323
N. Li, X. Niu, Q. Chen, H. Zhou, Towards commercialization: the operational stability of perovskite solar cells. Chem. Soc. Rev. 49, 8235–8286 (2020). https://doi.org/10.1039/d0cs00573h
Z. Xiao, K.Z. Du, W. Meng, D.B. Mitzi, Y. Yan, Chemical origin of the stability difference between copper(I)-and silver(I)-based halide double perovskites. Angew. Chem. Int. Ed. 56, 12107–12111 (2017). https://doi.org/10.1002/anie.201705113
X. Yang, Y. Chen, P. Liu, H. Xiang, W. Wang et al., Simultaneous power conversion efficiency and stability enhancement of Cs2AgBiBr6 lead-free inorganic perovskite solar cell through adopting a multifunctional dye interlayer. Adv. Funct. Mater. 30, 2001557 (2020). https://doi.org/10.1002/adfm.202001557
T. Cai, W. Shi, S. Hwang, K. Kobbekaduwa, Y. Nagaoka et al., Lead-free Cs4CuSb2Cl12 layered double perovskite nanocrystals. J. Am. Chem. Soc. 142, 11927–11936 (2020). https://doi.org/10.1021/jacs.0c04919
A.H. Slavney, L. Leppert, D. Bartesaghi, A. Gold-Parker, M.F. Toney et al., Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption. J. Am. Chem. Soc. 139, 5015–5018 (2017). https://doi.org/10.1021/jacs.7b01629
M. Chen, M.-G. Ju, A.D. Carl, Y. Zong, R.L. Grimm et al., Cesium titanium (IV) bromide thin films based stable lead-free perovskite solar cells. Joule 2, 558–570 (2018). https://doi.org/10.1016/j.joule.2018.01.009
X.G. Zhao, D. Yang, Y. Sun, T. Li, L. Zhang et al., Cu-In halide perovskite solar absorbers. J. Am. Chem. Soc. 139, 6718–6725 (2017). https://doi.org/10.1021/jacs.7b02120
Z. Zhang, Q. Sun, Y. Lu, F. Lu, X. Mu et al., Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nat. Commun. 13, 3397 (2022). https://doi.org/10.1038/s41467-022-31016-w
X.G. Zhao, J.H. Yang, Y. Fu, D. Yang, Q. Xu et al., Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139, 2630–2638 (2017). https://doi.org/10.1021/jacs.6b09645
B. Zhang, Y. Lei, R. Qi, H. Yu, X. Yang et al., An in-situ room temperature route to CuBiI4 based bulk-heterojunction perovskite-like solar cells. Sci. China Mater. 62, 519–526 (2018). https://doi.org/10.1007/s40843-018-9355-0
F. Yu, L. Wang, K. Ren, S. Yang, Z. Xu et al., Cs-incorporated AgBiI4 rudorffite for efficient and stable solar cells. ACS Sustain. Chem. Eng. 8, 9980–9987 (2020). https://doi.org/10.1021/acssuschemeng.0c00496
H.C. Sansom, G.F.S. Whitehead, M.S. Dyer, M. Zanella, T.D. Manning et al., AgBiI4 as a lead-free solar absorber with potential application in photovoltaics. Chem. Mater. 29, 1538–1549 (2017). https://doi.org/10.1021/acs.chemmater.6b04135
H.C. Sansom, G. Longo, A.D. Wright, L.R.V. Buizza, S. Mahesh et al., Highly absorbing lead-free semiconductor Cu2AgBiI6 for photovoltaic applications from the quaternary CuI-AgI-BiI3 phase space. J. Am. Chem. Soc. 143, 3983–3992 (2021). https://doi.org/10.1021/jacs.1c00495
L.R.V. Buizza, H.C. Sansom, A.D. Wright, A.M. Ulatowski, M.B. Johnston et al., Interplay of structure, charge-carrier localization and dynamics in copper-silver-bismuth-halide semiconductors. Adv. Funct. Mater. 32, 2108392 (2021). https://doi.org/10.1002/adfm.202108392
F. Zhang, Z. Hu, B. Zhang, Z. Lin, J. Zhang et al., Low-temperature solution-processed Cu2AgBiI6 films for high performance photovoltaics and photodetectors. ACS Appl. Mater. Interfaces 14, 18498–18505 (2022). https://doi.org/10.1021/acsami.2c01481
G.K. Grandhi, B. Al-Anesi, H. Pasanen, H. Ali-Loytty, K. Lahtonen et al., Enhancing the microstructure of perovskite-inspired Cu-Ag-Bi-I absorber for efficient indoor photovoltaics. Small 18, e2203768 (2022). https://doi.org/10.1002/smll.202203768
N. Pai, M. Chatti, S.O. Fürer, A.D. Scully, S.R. Raga et al., Solution processable direct bandgap copper-silver-bismuth iodide photovoltaics: Compositional control of dimensionality and optoelectronic properties. Adv. Energy Mater. 12, 2201482 (2022). https://doi.org/10.1002/aenm.202201482
L.R.V. Buizza, A.D. Wright, G. Longo, H.C. Sansom, C.Q. Xia et al., Charge-carrier mobility and localization in semiconducting Cu2AgBiI6 for photovoltaic applications. ACS Energy Lett. 6, 1729–1739 (2021). https://doi.org/10.1021/acsenergylett.1c00458
H. Yu, B. Zhang, R. Qi, N. Qu, C. Zhao et al., Gradient formation and charge carrier dynamics of CuBiI4 based perovskite-like solar cells. Sustain. Energy Fuels 4, 2800–2807 (2020). https://doi.org/10.1039/c9se01288e
Y. Lei, R. Qi, M. Chen, H. Chen, C. Xing et al., Microstructurally tailored thin β-Ag2Se films toward commercial flexible thermoelectrics. Adv. Mater. 34, e2104786 (2022). https://doi.org/10.1002/adma.202104786
P. Dong, C. Zhao, Y. Lei, H. Song, S. Wu et al., Significant enhancement in optoelectronic properties of γ-CuxAg1–xI films induced by highly (111)-preferred orientation and Cu content at room temperature. Cryst. Growth Des. 21, 4038–4045 (2021). https://doi.org/10.1021/acs.cgd.1c00334
M. Keshavarz, E. Debroye, M. Ottesen, C. Martin, H. Zhang et al., Tuning the structural and optoelectronic properties of Cs2AgBiBr6 double-perovskite single crystals through alkali-metal substitution. Adv. Mater. 32, e2001878 (2020). https://doi.org/10.1002/adma.202001878
Z. Li, S.R. Kavanagh, M. Napari, R.G. Palgrave, M. Abdi-Jalebi et al., Bandgap lowering in mixed alloys of Cs2Ag(SbxBi1−x)Br6 double perovskite thin films. J. Mater. Chem. A 8, 21780–21788 (2020). https://doi.org/10.1039/d0ta07145e
Y. Cui, M. Wang, P. Dong, S. Zhang, J. Fu et al., DMF-based large-grain spanning Cu2ZnSn(Sx, Se1-x)4 device with a PCE of 11.76%. Adv. Sci. 9, e2201241 (2022). https://doi.org/10.1002/advs.202201241
Y. Sun, P. Qiu, W. Yu, J. Li, H. Guo et al., N-Type surface design for p-type CZTSSe thin film to attain high efficiency. Adv. Mater. 33, e2104330 (2021). https://doi.org/10.1002/adma.202104330
N. Pai, J. Lu, T.R. Gengenbach, A. Seeber, A.S.R. Chesman et al., Silver bismuth sulfoiodide solar cells: tuning optoelectronic properties by sulfide modification for enhanced photovoltaic performance. Adv. Energy Mater. 9, 1803396 (2018). https://doi.org/10.1002/aenm.201803396
J.A. Christians, R.C. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758–764 (2014). https://doi.org/10.1021/ja411014k
Y. Lei, L. Gu, W. He, Z. Jia, X. Yang et al., Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture. J. Mater. Chem. A 4, 5474–5481 (2016). https://doi.org/10.1039/c6ta00614k
E.M. Hutter, M.C. Gelvez-Rueda, D. Bartesaghi, F.C. Grozema, T.J. Savenije, Band-like charge transport in Cs2AgBi1-xSbxBr6 and mixed antimony bismuth Cs2AgBi1-xSbxBr6 halide double perovskites. ACS Omega 3, 11655–11662 (2018). https://doi.org/10.1021/acsomega.8b01705
J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu et al., All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138, 15829–15832 (2016). https://doi.org/10.1021/jacs.6b10227
A. Mei, X. Li, L. Liu, Z. Ku, T. Liu et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014). https://doi.org/10.1126/science.1254763
D.H. Kang, N.G. Park, On the current-voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Adv. Mater. 31, e1805214 (2019). https://doi.org/10.1002/adma.201805214