Three-dimensional Porous Networks of Ultra-long Electrospun SnO2 Nanotubes with High Photocatalytic Performance
Corresponding Author: Guosheng Shao
Nano-Micro Letters,
Vol. 7 No. 1 (2015), Article Number: 86-95
Abstract
Recent progress in nanoscience and nanotechnology creates new opportunities in the design of novel SnO2 nanomaterials for photocatalysis and photoelectrochemical. Herein, we firstly highlight a facile method to prepare three-dimensional porous networks of ultra-long SnO2 nanotubes through the single capillary electrospinning technique. Compared with the traditional SnO2 nanofibers, the as-obtained three-dimensional porous networks show enhancement of photocurrent and photocatalytic activity, which could be ascribed to its improved light-harvesting efficiency and high separation efficiency of photogenerated electron–hole pairs. Besides, the synthesis route delivered three-dimensional sheets on the basis of interwoven nanofibrous networks, which can be readily recycled for the desirable circular application of a potent photocatalyst system.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. O’Regan, M. Gratzel, A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991). doi:10.1038/353737a0
- M. Batzill, Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy Environ. Sci. 4(1), 3275–3286 (2011). doi:10.1039/c1ee01577j
- M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995). doi:10.1021/cr00033a004
- S.U. Khan, M.M. Al-Shahry, W.B. Ingler Jr, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590), 2243–2245 (2002). doi:10.1126/science.1075035
- C. Zhu, P. Wang, L. Wang, L. Han, S. Dong, Facile synthesis of two-dimensional graphene/SnO2/Pt ternary hybrid nanomaterials and their catalytic properties. Nanoscale 3(1), 4376–4382 (2011). doi:10.1039/c1nr10634a
- Y. Liu, Y. Jiao, B. Yin, S. Zhang, F. Qu, X. Wu, Hierarchical semiconductor oxide photocatalyst: a case of the SnO2 microflower. Nano-Micro Lett. 5(4), 234–241 (2013). doi:10.1007/BF03353754
- M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–1899 (2001). doi:10.1126/science.1060367
- H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Nanowire ultraviolet photodetection and optical switches. Adv. Mater. 14(2), 158–160 (2002). doi:10.1002/1521-4095(20020116)14:2<158:AID-ADMA158>3.0.CO;2-W
- N. Chadwick, S.N. Sathasivam, A. Kafizas, S.M. Bawaked, A.Y. Obaid, S. Al-Thabaiti, S.N. Basahel, I.P. Parkina, C.J. Carmalt, Combinatorial aerosol assisted chemical vapour deposition of a photocatalytic mixed SnO2/TiO2 thin film. J. Mater. Chem. A 2(1), 5108–5116 (2014). doi:10.1039/c4ta00545g
- H. Wang, S. Kalytchuk, H. Yang, L. He, C. Hu, W.Y. Teohc, A.L. Rogach, Hierarchical growth of SnO2 nanostructured films on FTO substrates: structural defects induced by Sn(II) self-doping and their effects on optical and photoelectrochemical properties. Nanoscale 6(11), 6084–6091 (2014). doi:10.1039/c4nr00672k
- Q. Gu, J. Long, H. Zhuang, C. Zhang, Y. Zhou, X. Wang, Ternary Pt/SnOx/TiO2 photocatalysts for hydrogen production: consequence of Pt sites for synergy of dual co-catalysts. Phys. Chem. Chem. Phys. 16(1), 12521–12534 (2014). doi:10.1039/c4cp01496k
- B. Jia, W. Jia, X. Wu, F. Qu, Hierarchical porous SnO2 microflowers photocatalyst. Sci. Adv. Mater. 4(11), 1127–1133 (2012). doi:10.1166/sam.2012.1404
- B. Jia, W. Jia, Y. Ma, X. Wu, F. Qu, SnO2 core-shell microspheres with excellent photocatalytic properties. Sci. Adv. Mater. 4(7), 702–707 (2012). doi:10.1166/sam.2012.1341
- Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor and supercapacitor applications. ACS Appl. Mater. Interfaces 6(3), 2174–2184 (2014). doi:10.1021/am405301v
- B. Jia, W. Jia, F. Qu, X. Wu, General strategy for self-assembly of mesoporous SnO2 nanospheres and their applications in water purification. RSC Adv. 3(1), 12140–12148 (2013). doi:10.1039/c3ra41638k
- P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Liu, TiO2@carbon core/shell nanofibers: Controllable preparation and enhanced visible photocatalytic properties. Nanoscale 3(1), 2943–2949 (2011). doi:10.1039/c1nr10269a
- P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Liu, Core/shell nanofibers of TiO2@carbon embedded by Ag nanoparticles with enhanced visible photocatalytic activity. J. Mater. Chem. 21(1), 17746–17753 (2011). doi:10.1039/c1jm12965a
- P. Zhang, C. Shao, M. Zhang, Z. Guo, J. Mu, Z. Zhang, X. Zhang, P. Liang, Y. Liu, Controllable synthesis of Zn2TiO4@carbon core/shell nanofibers with enhanced photocatalytic performance. J. Hazard. Mater. 229–230, 265–272 (2012). doi:10.1016/j.jhazmat.2012.05.102
- P. Zhang, J. Zhang, J. Gong, Tantalum-based semiconductors for solar water splitting. Chem. Soc. Rev. 43(1), 4395–4422 (2014). doi:10.1039/c3cs60438a
- H. Tang, C.M. Hessel, J. Wang, N. Yang, R. Yu, H. Zhao, D. Wang, Two-dimensional carbon leading to new photoconversion processes. Chem. Soc. Rev. 43(1), 4281–4499 (2014). doi:10.1039/c3cs60437c
- P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Liu, In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 3(1), 3357–3363 (2011). doi:10.1039/c1nr10405e
- X. Zhou, Z. Dai, S. Liu, J. Bao, Y. Guo, Ultra-uniform SnOx/carbon nanohybrids toward advanced lithium-ion battery anodes. Adv. Mater. 26(23), 3943–3949 (2014). doi:10.1002/adma.201400173
- H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2010). doi:10.1021/nn901221k
- C. Zhang, S. Yu, Nanoparticles meet electrospinning: recent advances and future prospects. Chem. Soc. Rev. 43(1), 4423–4448 (2014). doi:10.1039/c3cs60426h
- T. Lv, L. Pan, X. Liu, T. Lu, G. Zhu, Z. Sun, Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction. J. Alloy. Compd. 509(41), 10086–10091 (2011). doi:10.1016/j.jallcom.2011.08.045
- Y. Wang, R. Shi, J. Lin, Y. Zhu, Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ. Sci. 4(2), 2922–2929 (2011). doi:10.1039/c0ee00825g
- P. Russo, A. Hu, G. Compagnini, Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett. 5(4), 250–273 (2013). doi:10.1007/BF03353757
References
B. O’Regan, M. Gratzel, A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991). doi:10.1038/353737a0
M. Batzill, Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy Environ. Sci. 4(1), 3275–3286 (2011). doi:10.1039/c1ee01577j
M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995). doi:10.1021/cr00033a004
S.U. Khan, M.M. Al-Shahry, W.B. Ingler Jr, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590), 2243–2245 (2002). doi:10.1126/science.1075035
C. Zhu, P. Wang, L. Wang, L. Han, S. Dong, Facile synthesis of two-dimensional graphene/SnO2/Pt ternary hybrid nanomaterials and their catalytic properties. Nanoscale 3(1), 4376–4382 (2011). doi:10.1039/c1nr10634a
Y. Liu, Y. Jiao, B. Yin, S. Zhang, F. Qu, X. Wu, Hierarchical semiconductor oxide photocatalyst: a case of the SnO2 microflower. Nano-Micro Lett. 5(4), 234–241 (2013). doi:10.1007/BF03353754
M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–1899 (2001). doi:10.1126/science.1060367
H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Nanowire ultraviolet photodetection and optical switches. Adv. Mater. 14(2), 158–160 (2002). doi:10.1002/1521-4095(20020116)14:2<158:AID-ADMA158>3.0.CO;2-W
N. Chadwick, S.N. Sathasivam, A. Kafizas, S.M. Bawaked, A.Y. Obaid, S. Al-Thabaiti, S.N. Basahel, I.P. Parkina, C.J. Carmalt, Combinatorial aerosol assisted chemical vapour deposition of a photocatalytic mixed SnO2/TiO2 thin film. J. Mater. Chem. A 2(1), 5108–5116 (2014). doi:10.1039/c4ta00545g
H. Wang, S. Kalytchuk, H. Yang, L. He, C. Hu, W.Y. Teohc, A.L. Rogach, Hierarchical growth of SnO2 nanostructured films on FTO substrates: structural defects induced by Sn(II) self-doping and their effects on optical and photoelectrochemical properties. Nanoscale 6(11), 6084–6091 (2014). doi:10.1039/c4nr00672k
Q. Gu, J. Long, H. Zhuang, C. Zhang, Y. Zhou, X. Wang, Ternary Pt/SnOx/TiO2 photocatalysts for hydrogen production: consequence of Pt sites for synergy of dual co-catalysts. Phys. Chem. Chem. Phys. 16(1), 12521–12534 (2014). doi:10.1039/c4cp01496k
B. Jia, W. Jia, X. Wu, F. Qu, Hierarchical porous SnO2 microflowers photocatalyst. Sci. Adv. Mater. 4(11), 1127–1133 (2012). doi:10.1166/sam.2012.1404
B. Jia, W. Jia, Y. Ma, X. Wu, F. Qu, SnO2 core-shell microspheres with excellent photocatalytic properties. Sci. Adv. Mater. 4(7), 702–707 (2012). doi:10.1166/sam.2012.1341
Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor and supercapacitor applications. ACS Appl. Mater. Interfaces 6(3), 2174–2184 (2014). doi:10.1021/am405301v
B. Jia, W. Jia, F. Qu, X. Wu, General strategy for self-assembly of mesoporous SnO2 nanospheres and their applications in water purification. RSC Adv. 3(1), 12140–12148 (2013). doi:10.1039/c3ra41638k
P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Liu, TiO2@carbon core/shell nanofibers: Controllable preparation and enhanced visible photocatalytic properties. Nanoscale 3(1), 2943–2949 (2011). doi:10.1039/c1nr10269a
P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Liu, Core/shell nanofibers of TiO2@carbon embedded by Ag nanoparticles with enhanced visible photocatalytic activity. J. Mater. Chem. 21(1), 17746–17753 (2011). doi:10.1039/c1jm12965a
P. Zhang, C. Shao, M. Zhang, Z. Guo, J. Mu, Z. Zhang, X. Zhang, P. Liang, Y. Liu, Controllable synthesis of Zn2TiO4@carbon core/shell nanofibers with enhanced photocatalytic performance. J. Hazard. Mater. 229–230, 265–272 (2012). doi:10.1016/j.jhazmat.2012.05.102
P. Zhang, J. Zhang, J. Gong, Tantalum-based semiconductors for solar water splitting. Chem. Soc. Rev. 43(1), 4395–4422 (2014). doi:10.1039/c3cs60438a
H. Tang, C.M. Hessel, J. Wang, N. Yang, R. Yu, H. Zhao, D. Wang, Two-dimensional carbon leading to new photoconversion processes. Chem. Soc. Rev. 43(1), 4281–4499 (2014). doi:10.1039/c3cs60437c
P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Liu, In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 3(1), 3357–3363 (2011). doi:10.1039/c1nr10405e
X. Zhou, Z. Dai, S. Liu, J. Bao, Y. Guo, Ultra-uniform SnOx/carbon nanohybrids toward advanced lithium-ion battery anodes. Adv. Mater. 26(23), 3943–3949 (2014). doi:10.1002/adma.201400173
H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2010). doi:10.1021/nn901221k
C. Zhang, S. Yu, Nanoparticles meet electrospinning: recent advances and future prospects. Chem. Soc. Rev. 43(1), 4423–4448 (2014). doi:10.1039/c3cs60426h
T. Lv, L. Pan, X. Liu, T. Lu, G. Zhu, Z. Sun, Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction. J. Alloy. Compd. 509(41), 10086–10091 (2011). doi:10.1016/j.jallcom.2011.08.045
Y. Wang, R. Shi, J. Lin, Y. Zhu, Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ. Sci. 4(2), 2922–2929 (2011). doi:10.1039/c0ee00825g
P. Russo, A. Hu, G. Compagnini, Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett. 5(4), 250–273 (2013). doi:10.1007/BF03353757