Anti-Parkinsonian Therapy: Strategies for Crossing the Blood–Brain Barrier and Nano-Biological Effects of Nanomaterials
Corresponding Author: Tongkai Chen
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 105
Abstract
Parkinson’s disease (PD), a neurodegenerative disease that shows a high incidence in older individuals, is becoming increasingly prevalent. Unfortunately, there is no clinical cure for PD, and novel anti-PD drugs are therefore urgently required. However, the selective permeability of the blood–brain barrier (BBB) poses a huge challenge in the development of such drugs. Fortunately, through strategies based on the physiological characteristics of the BBB and other modifications, including enhancement of BBB permeability, nanotechnology can offer a solution to this problem and facilitate drug delivery across the BBB. Although nanomaterials are often used as carriers for PD treatment, their biological activity is ignored. Several studies in recent years have shown that nanomaterials can improve PD symptoms via their own nano-bio effects. In this review, we first summarize the physiological features of the BBB and then discuss the design of appropriate brain-targeted delivery nanoplatforms for PD treatment. Subsequently, we highlight the emerging strategies for crossing the BBB and the development of novel nanomaterials with anti-PD nano-biological effects. Finally, we discuss the current challenges in nanomaterial-based PD treatment and the future trends in this field. Our review emphasizes the clinical value of nanotechnology in PD treatment based on recent patents and could guide researchers working in this area in the future.
Highlights:
1 Strategies for crossing the blood–brain barrier and the nano-biological effects of nanomaterials used for anti-Parkinsonian therapy are summarized.
2 Patents related to nanotechnology-based anti-Parkinsonian therapy are reviewed, and the status of progress in this field are discussed.
3 Current challenges in nanotechnology-based Parkinson’s disease treatment are discussed, with insights into the future trends in this field.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Hou, X. Dan, M. Babbar, Y. Wei, S.G. Hasselbalch et al., Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565–581 (2019). https://doi.org/10.1038/s41582-019-0244-7
- L.V. Kalia, A.E. Lang, Parkinson’s disease. The Lancet 386(9996), 896–912 (2015). https://doi.org/10.1016/s0140-6736(14)61393-3
- M. Goedert, A. Compston, Parkinson’s disease - the story of an eponym. Nat. Rev. Neurol. 14, 57–62 (2018). https://doi.org/10.1038/nrneurol.2017.165
- W. Poewe, K. Seppi, C.M. Tanner, G.M. Halliday, P. Brundin et al., Parkinson disease. Nat. Rev. Dis. Primers 3, 17013 (2017). https://doi.org/10.1038/nrdp.2017.13
- S. Przedborski, The two-century journey of Parkinson disease research. Nat. Rev. Neurosci. 18, 251–259 (2017). https://doi.org/10.1038/nrn.2017.25
- J. Kulisevsky, L. Oliveira, S.H. Fox, Update in therapeutic strategies for Parkinson’s disease. Curr. Opin. Neurol. 31(4), 439–447 (2018). https://doi.org/10.1097/WCO.0000000000000579
- D. Charvin, R. Medori, R.A. Hauser, O. Rascol, Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nat. Rev. Drug Discov. 17, 804–822 (2018). https://doi.org/10.1038/nrd.2018.136
- A. Elkouzi, V. Vedam-Mai, R.S. Eisinger, M.S. Okun, Emerging therapies in Parkinson disease - repurposed drugs and new approaches. Nat. Rev. Neurol. 15, 204–223 (2019). https://doi.org/10.1038/s41582-019-0155-7
- H. Homayoun, Parkinson disease. Ann. Int. Med. 169, ITC33–ITC48 (2018). https://doi.org/10.7326/AITC201809040
- K. Liaw, Z. Zhang, S. Kannan, Neuronanotechnology for brain regeneration. Adv. Drug Deliv. Rev. 148, 3–18 (2019). https://doi.org/10.1016/j.addr.2019.04.004
- N. Bengoa-Vergniory, R.F. Roberts, R. Wade-Martins, J. Alegre-Abarrategui, Alpha-synuclein oligomers: a new hope. Acta Neuropathol. 134, 819–838 (2017). https://doi.org/10.1007/s00401-017-1755-1
- D. Eleftheriadou, D. Kesidou, F. Moura, E. Felli, W. Song, Redox-responsive nanobiomaterials-based therapeutics for neurodegenerative diseases. Small 16(43), 1907308 (2020). https://doi.org/10.1002/smll.201907308
- J. Bicker, G. Alves, A. Fortuna, A. Falcao, Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur. J. Pharm. Biopharm. 87(3), 409–432 (2014). https://doi.org/10.1016/j.ejpb.2014.03.012
- W.A. Banks, From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 15, 275–292 (2016). https://doi.org/10.1038/nrd.2015.21
- M.D. Sweeney, Z. Zhao, A. Montagne, A.R. Nelson, B.V. Zlokovic, Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21–78 (2019). https://doi.org/10.1152/physrev.00050.2017
- F. Meng, J. Wang, F. Ding, Y. Xie, Y. Zhang et al., Neuroprotective effect of matrine on MPTP-induced Parkinson’s disease and on Nrf2 expression. Oncol. Lett. 13, 296–300 (2017). https://doi.org/10.3892/ol.2016.5383
- A. Bhat, A.M. Mahalakshmi, B. Ray, S. Tuladhar, T.A. Hediyal et al., Benefits of curcumin in brain disorders. BioFactors 45(5), 666–689 (2019). https://doi.org/10.1002/biof.1533
- S.C. Cunnane, E. Trushina, C. Morland, A. Prigione, G. Casadesus et al., Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 19, 609–633 (2020). https://doi.org/10.1038/s41573-020-0072-x
- C. Liu, J. Shin, S. Son, Y. Choe, N. Farokhzad et al., Pnictogens in medicinal chemistry: evolution from erstwhile drugs to emerging layered photonic nanomedicine. Chem. Soc. Rev. 50(4), 2260–2279 (2021). https://doi.org/10.1039/d0cs01175d
- J. Zhang, K. Hu, L. Di, P. Wang, Z. Liu et al., Traditional herbal medicine and nanomedicine: converging disciplines to improve therapeutic efficacy and human health. Adv. Drug Deliv. Rev. 178, 113964 (2021). https://doi.org/10.1016/j.addr.2021.113964
- D. Furtado, M. Björnmalm, S. Ayton, A.I. Bush, K. Kempe et al., Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases. Adv. Mater. 30, e1801362 (2018). https://doi.org/10.1002/adma.201801362
- W. Tang, W. Fan, J. Lau, L. Deng, Z. Shen et al., Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev. 48(11), 2967–3014 (2019). https://doi.org/10.1039/c8cs00805a
- J. Kreuter, Drug delivery to the central nervous system by polymeric nanops: what do we know? Adv. Drug Deliv. Rev. 71, 2–14 (2014). https://doi.org/10.1016/j.addr.2013.08.008
- J.Y. Ljubimova, T. Sun, L. Mashouf, A.V. Ljubimov, L.L. Israel et al., Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv. Drug Deliv. Rev. 113, 177–200 (2017). https://doi.org/10.1016/j.addr.2017.06.002
- B. Oller-Salvia, M. Sanchez-Navarro, E. Giralt, M. Teixido, Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem. Soc. Rev. 45(17), 4690–4707 (2016). https://doi.org/10.1039/c6cs00076b
- Y. Luo, H. Yang, Y.F. Zhou, B. Hu, Dual and multi-targeted nanops for site-specific brain drug delivery. J. Control. Release 317, 195–215 (2020). https://doi.org/10.1016/j.jconrel.2019.11.037
- Y. Cheng, R.A. Morshed, B. Auffinger, A.L. Tobias, M.S. Lesniak, Multifunctional nanops for brain tumor imaging and therapy. Adv. Drug Deliv. Rev. 66, 42–57 (2014). https://doi.org/10.1016/j.addr.2013.09.006
- R. Pandit, L. Chen, J. Gotz, The blood-brain barrier: physiology and strategies for drug delivery. Adv. Drug Deliv. Rev. 165–166, 1–14 (2019). https://doi.org/10.1016/j.addr.2019.11.009
- W. Fu, W. Zhou, P.K. Chu, X.F. Yu, Inherent chemotherapeutic anti-cancer effects of low-dimensional nanomaterials. Chemistry 25(47), 10995–11006 (2019). https://doi.org/10.1002/chem.201901841
- C. Cheng, S. Li, A. Thomas, N.A. Kotov, R. Haag, Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem. Rev. 117(3), 1826–1914 (2017). https://doi.org/10.1021/acs.chemrev.6b00520
- W. Chen, J. Ouyang, X. Yi, Y. Xu, C. Niu et al., Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater. 30(3), 1703458 (2018). https://doi.org/10.1002/adma.201703458
- L.L. Dugan, L. Tian, K.L. Quick, J.I. Hardt, M. Karimi et al., Carboxyfullerene neuroprotection postinjury in Parkinsonian nonhuman primates. Ann. Neurol. 76(3), 393–402 (2014). https://doi.org/10.1002/ana.24220
- C. Hao, A. Qu, L. Xu, M. Sun, H. Zhang et al., Chiral molecule-mediated porous CuxO nanop clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 141(2), 1091–1099 (2019). https://doi.org/10.1021/jacs.8b11856
- C.D. Arvanitis, G.B. Ferraro, R.K. Jain, The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020). https://doi.org/10.1038/s41568-019-0205-x
- A. Oddo, B. Peng, Z. Tong, Y. Wei, W.Y. Tong et al., Advances in microfluidic blood-brain barrier (BBB) models. Trends Biotechnol. 37(12), 1295–1314 (2019). https://doi.org/10.1016/j.tibtech.2019.04.006
- L. Xu, A. Nirwane, Y. Yao, Basement membrane and blood-brain barrier. Stroke Vasc. Neurol. 4(2), 78–82 (2019). https://doi.org/10.1136/svn-2018-000198
- Z. Zhao, A.R. Nelson, C. Betsholtz, B.V. Zlokovic, Establishment and dysfunction of the blood-brain barrier. Cell 163(5), 1064–1078 (2015). https://doi.org/10.1016/j.cell.2015.10.067
- S. Liebner, R.M. Dijkhuizen, Y. Reiss, K.H. Plate, D. Agalliu et al., Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol. 135, 311–336 (2018). https://doi.org/10.1007/s00401-018-1815-1
- N. Bengoa-Vergniory, R.F. Roberts, W. Rade-Martins, J. Alegre-Abarrategui, Alpha-synuclein oligomers: a new hope. Acta Neuropathol. 134, 819–838 (2017). https://doi.org/10.1007/s00401-017-1755-1
- L.H. Morais, H.L. Schreiber, S.K. Mazmanian, The gut microbiota-brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 19, 241–255 (2021). https://doi.org/10.1038/s41579-020-00460-0
- R.A. Travagli, K.N. Browning, M. Camilleri, Parkinson disease and the gut: new insights into pathogenesis and clinical relevance. Nat. Rev. Gastroenterol. Hepatol. 17, 673–685 (2020). https://doi.org/10.1038/s41575-020-0339-z
- I. Javed, X. Cui, X. Wang, M. Mortimer, N. Andrikopoulos et al., Implications of the human gut-brain and gut-cancer axes for future nanomedicine. ACS Nano 14(11), 14391–14416 (2020). https://doi.org/10.1021/acsnano.0c07258
- S. Kim, S.H. Kwon, T.I. Kam, N. Panicker, S.S. Karuppagounder et al., Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103(4), 627–641 (2019). https://doi.org/10.1016/j.neuron.2019.05.035
- T.R. Sampson, J.W. Debelius, T. Thron, S. Janssen, G.G. Shastri et al., Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6), 1469–1480 (2016). https://doi.org/10.1016/j.cell.2016.11.018
- J. Samal, A.L. Rebelo, A. Pandit, A window into the brain: tools to assess pre-clinical efficacy of biomaterials-based therapies on central nervous system disorders. Adv. Drug Deliv. Rev. 148, 68–145 (2019). https://doi.org/10.1016/j.addr.2019.01.012
- Y.H. Tsou, X.Q. Zhang, H. Zhu, S. Syed, X. Xu, Drug delivery to the brain across the blood-brain barrier using nanomaterials. Small 13(43), 170192 (2018). https://doi.org/10.1002/smll.201701921
- S. Shen, Y. Wu, Y. Liu, D. Wu, High drug-loading nanomedicines: progress, current status, and prospects. Int. J. Nanomed. 12, 4085–4109 (2017). https://doi.org/10.2147/IJN.S132780
- Y. Liu, Y.G. Ang, S. Jin, L. Xu, C.X. Zhao, Development of high-drug-loading nanops. ChemPlusChem 85(9), 2143–2157 (2020). https://doi.org/10.1002/cplu.202000496
- W. Chen, J. Ouyang, H. Liu, M. Chen, K. Zeng et al., Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 29(5), 1603864 (2017). https://doi.org/10.1002/adma.201603864
- J. Mosquera, I. Garcia, L.M. Liz-Marzan, Cellular uptake of nanops versus small molecules: a matter of size. Acc. Chem. Res. 51(9), 2305–2313 (2018). https://doi.org/10.1021/acs.accounts.8b00292
- O. Betzer, M. Shilo, R. Opochinsky, E. Barnoy, M. Motiei et al., The effect of nanop size on the ability to cross the blood-brain barrier: an in vivo study. Nanomedicine 12(13), 1533–1546 (2017). https://doi.org/10.2217/nnm-2017-0022
- G. Wen, X. Li, Y. Zhang, X. Han, X. Xu et al., Effective phototheranostics of brain tumor assisted by near-infrared-II light-responsive semiconducting polymer nanops. ACS Appl. Mater. Interfaces 12(30), 33492–33499 (2020). https://doi.org/10.1021/acsami.0c08562
- Y.H. Tsou, X.Q. Zhang, H. Zhu, S. Syed, X. Xu, Drug delivery to the brain across the blood-brain barrier using nanomaterials. Small 14(25), 1801588 (2018). https://doi.org/10.1002/smll.201801588
- W. Xie, Z. Guo, F. Gao, Q. Gao, D. Wang et al., Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanops for magnetic theranostics. Theranostics 8(12), 3284–3307 (2018). https://doi.org/10.7150/thno.25220
- Z. Shen, H. Ye, X. Yi, Y. Li, Membrane wrapping efficiency of elastic nanops during endocytosis: size and shape matter. ACS Nano 13(1), 215–228 (2018). https://doi.org/10.1021/acsnano.8b05340
- P. Kolhar, A.C. Anselmo, V. Gupta, K. Pant, B. Prabhakarpandian et al., Using shape effects to target antibody-coated nanops to lung and brain endothelium. PNAS 110(26), 10753–10758 (2013). https://doi.org/10.1073/pnas.1308345110
- H.J. Byeon, Q. Thao, S. Lee, S.Y. Min, E.S. Lee et al., Doxorubicin-loaded nanops consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors. J. Control. Release 225, 301–313 (2016). https://doi.org/10.1016/j.jconrel.2016.01.046
- J.S. Suk, Q. Xu, N. Kim, J. Hanes, L.M. Ensign, PEGylation as a strategy for improving nanop-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016). https://doi.org/10.1016/j.addr.2015.09.012
- G.T. Kozma, T. Shimizu, T. Ishida, J. Szebeni, Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug Deliv. Rev. 154–155, 163–175 (2020). https://doi.org/10.1016/j.addr.2020.07.024
- K.Y. Choi, H.S. Han, E.S. Lee, J.M. Shin, B.D. Almquist et al., Hyaluronic acid-based activatable nanomaterials for stimuli-responsive imaging and therapeutics: beyond CD44-mediated drug delivery. Adv. Mater. 31(34), 1803549 (2019). https://doi.org/10.1002/adma.201803549
- L. Ye, Y. Zhang, B. Yang, X. Zhou, J. Li et al., Zwitterionic-modified starch-based stealth micelles for prolonging circulation time and reducing macrophage response. ACS Appl. Mater. Interfaces 8(7), 4385–4398 (2016). https://doi.org/10.1021/acsami.5b10811
- A.R. Khan, X. Yang, M. Fu, G. Zhai, Recent progress of drug nanoformulations targeting to brain. J. Control. Release 291, 37–64 (2018). https://doi.org/10.1016/j.jconrel.2018.10.004
- D. Furtado, M. Bjornmalm, S. Ayton, A.I. Bush, K. Kempe et al., Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases. Adv. Mater. 30, 1801362 (2018). https://doi.org/10.1002/adma.201801362
- V. Agrahari, P.A. Burnouf, T. Burnouf, V. Agrahari, Nanoformulation properties, characterization, and behavior in complex biological matrices: challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv. Drug Deliv. Rev. 148, 146–180 (2019). https://doi.org/10.1016/j.addr.2019.02.008
- M.J. Fowler, J.D. Cotter, B.E. Knight, E.M. Sevick-Muraca, D.I. Sandberg et al., Intrathecal drug delivery in the era of nanomedicine. Adv. Drug Deliv. Rev. 165–166, 77–95 (2020). https://doi.org/10.1016/j.addr.2020.02.006
- N. Tambasco, M. Romoli, P. Calabresi, Levodopa in Parkinson’s disease: current status and future developments. Curr. Neuropharmacol. 16(8), 1239–1252 (2018). https://doi.org/10.2174/1570159X15666170510143821
- X. Li, Q. Liu, D. Zhu, Y. Che, X. Feng, Preparation of levodopa-loaded crystalsomes through thermally induced crystallization reverses functional deficits in Parkinsonian mice. Biomater. Sci. 7(4), 1623–1631 (2019). https://doi.org/10.1039/c8bm01098f
- V. Sánchez-Giraldo, Y. Monsalve, J. Palacio, M. Mendivil-Perez, L. Sierra et al., Role of a novel (−)-epigallocatechin-3-gallate delivery system on the prevention against oxidative stress damage in vitro and in vivo model of Parkinson’s disease. J. Drug Deliv. Sci. Technol. 55, 101466 (2020). https://doi.org/10.1016/j.jddst.2019.101466
- S. Xiong, W. Liu, Y. Zhou, Y. Mo, Y. Liu et al., Enhancement of oral bioavailability and anti-Parkinsonian efficacy of resveratrol through a nanocrystal formulation. Asian J. Pharm. Sci. 15(4), 518–528 (2019). https://doi.org/10.1016/j.ajps.2019.04.003
- Y. Liu, W. Liu, S. Xiong, J. Luo, Y. Li et al., Highly stabilized nanocrystals delivering Ginkgolide B in protecting against the Parkinson’s disease. Int. J. Pharm. 577, 119053 (2020). https://doi.org/10.1016/j.ijpharm.2020.119053
- T. Chen, C. Li, Y. Li, X. Yi, S.M. Lee et al., Oral delivery of a nanocrystal formulation of Schisantherin A with improved bioavailability and brain delivery for the treatment of Parkinson’s disease. Mol. Pharm. 13(11), 3864–3875 (2016). https://doi.org/10.1021/acs.molpharmaceut.6b00644
- S. Xiong, W. Liu, D. Li, X. Chen, F. Liu et al., Oral delivery of puerarin nanocrystals to improve brain accumulation and anti-Parkinsonian efficacy. Mol. Pharm. 16(4), 1444–1455 (2019). https://doi.org/10.1021/acs.molpharmaceut.8b01012
- T. Chen, Y. Li, C. Li, X. Yi, R. Wang et al., Pluronic P85/F68 micelles of baicalein could interfere with mitochondria to overcome MRP2-mediated efflux and offer improved anti-Parkinsonian activity. Mol. Pharm. 14(10), 3331–3342 (2017). https://doi.org/10.1021/acs.molpharmaceut.7b00374
- N. Dudhipala, T. Gorre, Neuroprotective effect of ropinirole lipid nanops enriched hydrogel for Parkinson’s disease: in vitro, ex vivo, pharmacokinetic and pharmacodynamic evaluation. Pharmaceutics 12(5), 448 (2020). https://doi.org/10.3390/pharmaceutics12050448
- P. Kundu, M. Das, K. Tripathy, S.K. Sahoo, Delivery of dual drug loaded lipid based nanops across the blood-brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson’s disease. ACS Chem. Neurosci. 7(12), 1658–1670 (2016). https://doi.org/10.1021/acschemneuro.6b00207
- T. Chen, W. Liu, S. Xiong, D. Li, S. Fang et al., Nanops mediating the sustained puerarin release facilitate improved brain delivery to treat Parkinson’s disease. ACS Appl. Mater. Interfaces 11(48), 45276–45289 (2019). https://doi.org/10.1021/acsami.9b16047
- E. Barcia, L. Boeva, L. Garcia-Garcia, K. Slowing, A. Fernandez-Carballido et al., Nanotechnology-based drug delivery of ropinirole for Parkinson’s disease. Drug Deliv. 24(1), 1112–1123 (2017). https://doi.org/10.1080/10717544.2017.1359862
- K. Hu, X. Chen, W. Chen, L. Zhang, J. Li et al., Neuroprotective effect of gold nanops composites in Parkinson’s disease model. Nanomed. Nanotechnol. Bio. Med. 14(4), 1123–1136 (2018). https://doi.org/10.1016/j.nano.2018.01.020
- A.K. Srivastava, S.R. Choudhury, S. Karmakar, Melatonin/polydopamine nanostructures for collective neuroprotection-based Parkinson’s disease therapy. Biomater. Sci. 8(5), 1345–1363 (2020). https://doi.org/10.1039/c9bm01602c
- M.N. Sardoiwala, A.K. Srivastava, B. Kaundal, S. Karmakar, S.R. Choudhury, Recuperative effect of metformin loaded polydopamine nanoformulation promoting EZH2 mediated proteasomal degradation of phospho-alpha-synuclein in Parkinson’s disease model. Nanomedicine 24, 102088 (2020). https://doi.org/10.1016/j.nano.2019.102088
- N.R. Bali, P.S. Salve, Selegiline nanop embedded transdermal film: an alternative approach for brain targeting in Parkinson’s disease. J. Drug Deliv. Sci. Technol. 54, 101299 (2019). https://doi.org/10.1016/j.jddst.2019.101299
- T. Chen, C. Li, Y. Li, X. Yi, R. Wang et al., Small-sized mPEG–PLGA nanops of Schisantherin A with sustained release for enhanced brain uptake and anti-Parkinsonian activity. ACS Appl. Mater. Interfaces 9(11), 9516–9527 (2017). https://doi.org/10.1021/acsami.7b01171
- L.B. Vong, Y. Sato, P. Chonpathompikunlert, S. Tanasawet, P. Hutamekalin et al., Self-assembled polydopamine nanops improve treatment in Parkinson’s disease model mice and suppress dopamine-induced dyskinesia. Acta Biomater. 109, 220–228 (2020). https://doi.org/10.1016/j.actbio.2020.03.021
- X.Y. Meng, A.Q. Huang, A. Khan, L. Zhang, X.Q. Sun et al., Vascular endothelial growth factor-loaded poly-lactic-co-glycolic acid nanops with controlled release protect the dopaminergic neurons in Parkinson’s rats. Chem. Biol. Drug Des. 95(6), 631–639 (2020). https://doi.org/10.1111/cbdd.13681
- S. Sharma, S.A. Rabbani, J.K. Narang, F.H. Pottoo, J. Ali et al., Role of rutin nanoemulsion in ameliorating oxidative stress: pharmacokinetic and pharmacodynamics studies. Chem. Phys. Lipids 228, 104890 (2020). https://doi.org/10.1016/j.chemphyslip.2020.104890
- B.K. Gupta, S. Kumar, H. Kaur, J. Ali, S. Baboota, Attenuation of oxidative damage by coenzyme Q10 loaded nanoemulsion through oral route for the management of Parkinson’s disease. Rejuv. Res. 21(3), 232–248 (2018). https://doi.org/10.1089/rej.2017.1959
- S. Setya, T. Madaan, M. Tariq, B.K. Razdan, S. Talegaonkar, Appraisal of transdermal water-in-oil nanoemulgel of selegiline HCl for the effective management of Parkinson’s disease: pharmacodynamic, pharmacokinetic, and biochemical investigations. AAPS PharmSciTech 19, 573–589 (2018). https://doi.org/10.1208/s12249-017-0868-0
- L. Liu, M. Li, M. Xu, Z. Wang, Z. Zeng et al., Actively targeted gold nanop composites improve behavior and cognitive impairment in Parkinson’s disease mice. Mater. Sci. Eng. C 114, 111028 (2020). https://doi.org/10.1016/j.msec.2020.111028
- S. Niu, L.K. Zhang, L. Zhang, S. Zhuang, X. Zhan et al., Inhibition by multifunctional magnetic nanops loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease model. Theranostics 7(2), 344–356 (2017). https://doi.org/10.7150/thno.16562
- L. Gan, Z. Li, Q. Lv, W. Huang, Rabies virus glycoprotein (RVG29)-linked microRNA-124-loaded polymeric nanops inhibit neuroinflammation in a Parkinson’s disease model. Int. J. Pharm. 567, 118449 (2019). https://doi.org/10.1016/j.ijpharm.2019.118449
- L. You, J. Wang, T. Liu, Y. Zhang, X. Han et al., Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanops reverses functional deficits in Parkinsonian mice. ACS Nano 12(5), 4123–4139 (2018). https://doi.org/10.1021/acsnano.7b08172
- M. Qu, Q. Lin, S. He, L. Wang, Y. Fu et al., A brain targeting functionalized liposomes of the dopamine derivative N-3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson’s disease. J. Control. Release 277, 173–182 (2018). https://doi.org/10.1016/j.jconrel.2018.03.019
- M. Kahana, A. Weizman, M. Gabay, Y. Loboda, H. Segal-Gavish et al., Liposome-based targeting of dopamine to the brain: a novel approach for the treatment of Parkinson’s disease. Mol. Psychiatry. 26, 2626–2632 (2020). https://doi.org/10.1038/s41380-020-0742-4
- W. Zhang, H. Chen, L. Ding, J. Gong, M. Zhang et al., Trojan horse delivery of 4,4’-dimethoxychalcone for Parkinsonian neuroprotection. Adv. Sci. 8, 2004555 (2021). https://doi.org/10.1002/advs.202004555
- Y. Li, Z. Chen, Z. Lu, Q. Yang, L. Liu et al., “Cell-addictive” dual-target traceable nanodrug for Parkinson’s disease treatment via flotillins pathway. Theranostics 8(9), 5469–5481 (2018). https://doi.org/10.7150/thno.28295
- H. Javed, S.A. Menon, K.M. Al-Mansoori, A. Al-Wandi, N.K. Majbour et al., Development of nonviral vectors targeting the brain as a therapeutic approach for Parkinson’s disease and other brain disorders. Mol. Ther. 24(4), 746–758 (2016). https://doi.org/10.1038/mt.2015.232
- Q. Guo, H. You, X. Yang, B. Lin, Z. Zhu et al., Functional single-walled carbon nanotubes ‘CAR’ for targeting dopamine delivery into the brain of parkinsonian mice. Nanoscale 9(30), 10832–10845 (2017). https://doi.org/10.1039/c7nr02682j
- V. Sridhar, R. Gaud, A. Bajaj, S. Wairkar, Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanops with improved brain delivery in Parkinson’s disease. Nanomedicine 14(8), 2609–2618 (2018). https://doi.org/10.1016/j.nano.2018.08.004
- C. Bi, A. Wang, Y. Chu, S. Liu, H. Mu et al., Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanops for Parkinson’s disease treatment. Int. J. Nanomed. 11, 6547–6559 (2016). https://doi.org/10.2147/IJN.S120939
- C. Wu, B. Li, Y. Zhang, T. Chen, C. Chen et al., Intranasal delivery of paeoniflorin nanocrystals for brain targeting. Asian J. Pharm. Sci. 15(3), 326–335 (2020). https://doi.org/10.1016/j.ajps.2019.11.002
- S.K. Bhattamisra, A.T. Shak, L.W. Xi, N.H. Safian, H. Choudhury et al., Nose to brain delivery of rotigotine loaded chitosan nanops in human SH-SY5Y neuroblastoma cells and animal model of Parkinson’s disease. Int. J. Pharm. 579, 119148 (2020). https://doi.org/10.1016/j.ijpharm.2020.119148
- S. Kumar, S. Dang, K. Nigam, J. Ali, S. Baboota, Selegiline nanoformulation in attenuation of oxidative stress and upregulation of dopamine in the brain for the treatment of Parkinson’s disease. Rejuv. Res. 21(5), 464–476 (2018). https://doi.org/10.1089/rej.2017.2035
- B. Gaba, T. Khan, M.F. Haider, T. Alam, S. Baboota et al., Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model. Biomed. Res. Int. 2019, 2382563 (2019). https://doi.org/10.1155/2019/2382563
- S. Arisoy, O. Sayiner, T. Comoglu, D. Onal, O. Atalay et al., In vitro and in vivo evaluation of levodopa-loaded nanops for nose to brain delivery. Pharm. Dev. Technol. 25(6), 735–747 (2020). https://doi.org/10.1080/10837450.2020.1740257
- S. Hernando, E. Herran, J. Figueiro-Silva, J.L. Pedraz, M. Igartua et al., Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson’s disease. Mol. Neurobiol. 55, 145–155 (2018). https://doi.org/10.1007/s12035-017-0728-7
- E.R.O. Junior, E. Truzzi, L. Ferraro, M. Fogagnolo, B. Pavan et al., Nasal administration of nanoencapsulated geraniol/ursodeoxycholic acid conjugate: towards a new approach for the management of Parkinson’s disease. J. Control. Release 321, 540–552 (2020). https://doi.org/10.1016/j.jconrel.2020.02.033
- F. Rinaldi, L. Seguella, S. Gigli, P.N. Hanieh, E.D. Favero et al., inPentasomes: an innovative nose-to-brain pentamidine delivery blunts MPTP Parkinsonism in mice. J. Control. Release 294, 17–26 (2019). https://doi.org/10.1016/j.jconrel.2018.12.007
- O. Gartziandia, E. Herran, J.A. Ruiz-Ortega, C. Miguelez, M. Igartua et al., Intranasal administration of chitosan-coated nanostructured lipid carriers loaded with GDNF improves behavioral and histological recovery in a partial lesion model of Parkinson’s disease. J. Biomed. Nanotechnol. 12(12), 2220–2230 (2016). https://doi.org/10.1166/jbn.2016.2313
- J. Liu, C. Liu, J. Zhang, Y. Zhang, K. Liu et al., A self-assembled alpha-synuclein nanoscavenger for Parkinson’s disease. ACS Nano 14(2), 1533–1549 (2020). https://doi.org/10.1021/acsnano.9b06453
- S. Tang, A. Wang, X. Yan, L. Chu, X. Yang et al., Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanops for treating Parkinson’s disease. Drug Deliv. 26(1), 700–707 (2019). https://doi.org/10.1080/10717544.2019.1636420
- M. Rao, D.K. Agrawal, C. Shirsath, Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson’s disease. Drug Dev. Ind. Pharm. 43(1), 142–150 (2017). https://doi.org/10.1080/03639045.2016.1225754
- Y. Tan, Y. Liu, Y. Liu, R. Ma, J. Luo et al., Rational design of thermosensitive hydrogel to deliver nanocrystals with intranasal administration for brain targeting in Parkinson’s disease. Research (2021). https://doi.org/10.34133/2021/9812523
- J. Garcia-Pardo, F. Novio, F. Nador, I. Cavaliere, S. Suarez-Garcia et al., Bioinspired theranostic coordination polymer nanops for intranasal dopamine replacement in Parkinson’s disease. ACS Nano 15(5), 8592–8609 (2021). https://doi.org/10.1021/acsnano.1c00453
- H. Peng, Y. Li, W. Ji, R. Zhao, Z. Lu et al., Intranasal administration of self-oriented nanocarriers based on therapeutic exosomes for synergistic treatment of Parkinson’s disease. ACS Nano 16(1), 869–884 (2022). https://doi.org/10.1021/acsnano.1c08473
- X. Ren, Y. Zhao, F. Xue, Y. Zheng, H. Huang et al., Exosomal DNA aptamer targeting alpha-synuclein aggregates reduced neuropathological deficits in a mouse Parkinson’s disease model. Mol. Ther. Nucleic Acids 17, 726–740 (2019). https://doi.org/10.1016/j.omtn.2019.07.008
- M. Qu, Q. Lin, L. Huang, Y. Fu, L. Wang et al., Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J. Control. Release 287, 156–166 (2018). https://doi.org/10.1016/j.jconrel.2018.08.035
- C.Y. Lin, Y.C. Lin, C.Y. Huang, S.R. Wu, C.M. Chen et al., Ultrasound-responsive neurotrophic factor-loaded microbubble- liposome complex: preclinical investigation for Parkinson’s disease treatment. J. Control. Release 321, 519–528 (2020). https://doi.org/10.1016/j.jconrel.2020.02.044
- B. Ji, M. Wang, D. Gao, S. Xing, L. Li et al., Combining nanoscale magnetic nimodipine liposomes with magnetic resonance image for Parkinson’s disease targeting therapy. Nanomedicine 12(3), 237–253 (2017). https://doi.org/10.2217/nnm-2016-0267
- M. Wang, L. Li, X. Zhang, Y. Liu, R. Zhu et al., Magnetic resveratrol liposomes as a new theranostic platform for magnetic resonance imaging guided Parkinson’s disease targeting therapy. ACS Sustain. Chem. Eng. 6(12), 17124–17133 (2018). https://doi.org/10.1021/acssuschemeng.8b04507
- S. Xiong, Z. Li, Y. Liu, Q. Wang, J. Luo et al., Brain-targeted delivery shuttled by black phosphorus nanostructure to treat Parkinson’s disease. Biomaterials 260, 120339 (2020). https://doi.org/10.1016/j.biomaterials.2020.120339
- Y. Liu, D. Zhu, J. Luo, X. Chen, L. Gao et al., NIR-II-activated yolk–shell nanostructures as an intelligent platform for Parkinsonian therapy. ACS Appl. Bio Mater. 3(10), 6876–6887 (2020). https://doi.org/10.1021/acsabm.0c00794
- Y. Liu, H. Hong, J. Xue, J. Luo, Q. Liu et al., Near-infrared radiation-assisted drug delivery nanoplatform to realize blood-brain barrier crossing and protection for Parkinsonian therapy. ACS Appl. Mater. Interfaces 13(31), 37746–37760 (2021). https://doi.org/10.1021/acsami.1c12675
- J. Niu, J. Xie, K. Guo, X. Zhang, F. Xia et al., Efficient treatment of Parkinson’s disease using ultrasonography-guided rhFGF20 proteoliposomes. Drug Deliv. 25(1), 1560–1569 (2018). https://doi.org/10.1080/10717544.2018.1482972
- B.P. Mead, N. Kim, G.W. Miller, D. Hodges, P. Mastorakos et al., Novel focused ultrasound gene therapy approach noninvasively restores dopaminergic neuron function in a rat Parkinson’s disease model. Nano Lett. 17(6), 3533–3542 (2017). https://doi.org/10.1021/acs.nanolett.7b00616
- N. Zhang, F. Yan, X. Liang, M. Wu, Y. Shen et al., Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson’s disease therapy. Theranostics 8(8), 2264–2277 (2018). https://doi.org/10.7150/thno.23734
- C.Y. Lin, H.Y. Hsieh, C.M. Chen, S.R. Wu, C.H. Tsai et al., Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson’s disease mouse model. J. Control. Release 235, 72–81 (2016). https://doi.org/10.1016/j.jconrel.2016.05.052
- L. Long, X. Cai, R. Guo, P. Wang, L. Wu et al., Treatment of Parkinson’s disease in rats by Nrf2 transfection using MRI-guided focused ultrasound delivery of nanomicrobubbles. Biochem. Biophys. Res. Commun. 482(1), 75–80 (2017). https://doi.org/10.1016/j.bbrc.2016.10.141
- H. Liu, Y. Han, T. Wang, H. Zhang, Q. Xu et al., Targeting microglia for therapy of Parkinson’s disease by using biomimetic ultrasmall nanops. J. Am. Chem. Soc. 142(52), 21730–21742 (2020). https://doi.org/10.1021/jacs.0c09390
- S.G. Antimisiaris, A. Marazioti, M. Kannavou, E. Natsaridis, F. Gkartziou et al., Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev. 174, 53–86 (2021). https://doi.org/10.1016/j.addr.2021.01.019
- A. Singh, W. Kim, Y. Kim, K. Jeong, C.S. Kang et al., Multifunctional photonics nanops for crossing the blood-brain barrier and effecting optically trackable brain theranostics. Adv. Funct. Mater. 26(39), 7057–7066 (2016). https://doi.org/10.1002/adfm.201602808
- R. Pandit, L. Chen, J. Götz, The blood-brain barrier: physiology and strategies for drug delivery. Adv. Drug Deliv. Rev. 165–166, 1–14 (2020). https://doi.org/10.1016/j.addr.2019.11.009
- D. Wu, M. Qin, D. Xu, L. Wang, C. Liu et al., A bioinspired platform for effective delivery of protein therapeutics to the central nervous system. Adv. Mater. 31(18), 1807557 (2019). https://doi.org/10.1002/adma.201807557
- L.N. Nguyen, D. Ma, G. Shui, P. Wong, A. Cazenave-Gassiot et al., Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509, 503–506 (2014). https://doi.org/10.1038/nature13241
- G.C. Terstappen, A.H. Meyer, R.D. Bell, W. Zhang, Strategies for delivering therapeutics across the blood-brain barrier. Nat. Rev. Drug Discov. 20, 362–383 (2021). https://doi.org/10.1038/s41573-021-00139-y
- E.D. Hood, C.F. Greineder, C. Dodia, J. Han, C. Mesaros et al., Antioxidant protection by PECAM-targeted delivery of a novel NADPH-oxidase inhibitor to the endothelium in vitro and in vivo. J. Control. Release 163(2), 161–169 (2012). https://doi.org/10.1016/j.jconrel.2012.08.031
- V.V. Shuvaev, S. Muro, E. Arguiri, M. Khoshnejad, S. Tliba et al., Size and targeting to PECAM vs ICAM control endothelial delivery, internalization and protective effect of multimolecular SOD conjugates. J. Control. Release 234, 115–123 (2016). https://doi.org/10.1016/j.jconrel.2016.05.040
- O.A. Marcos-Contreras, J.S. Brenner, R.Y. Kiseleva, V. Zuluaga-Ramirez, C.F. Greineder et al., Combining vascular targeting and the local first pass provides 100-fold higher uptake of ICAM-1-targeted vs untargeted nanocarriers in the inflamed brain. J. Control. Release 301, 54–61 (2019). https://doi.org/10.1016/j.jconrel.2019.03.008
- O.A. Marcos-Contreras, C.F. Greineder, R.Y. Kiseleva, H. Parhiz, L.R. Walsh et al., Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood-brain barrier. PNAS 117(7), 3405–3414 (2020). https://doi.org/10.1073/pnas.1912012117
- C.C. Yu, H.L. Chen, M.H. Chen, C.H. Lu, N.W. Tsai et al., Vascular inflammation is a risk factor associated with brain atrophy and disease severity in Parkinson’s disease: a case-control study. Oxid. Med. Cell. Longev. 2020, 2591248 (2020). https://doi.org/10.1155/2020/2591248
- T.P. Crowe, M.H.W. Greenlee, A.G. Kanthasamy, W.H. Hsu, Mechanism of intranasal drug delivery directly to the brain. Life Sci. 195, 44–52 (2018). https://doi.org/10.1016/j.lfs.2017.12.025
- M. Agrawal, S. Saraf, S. Saraf, S.G. Antimisiaris, M.B. Chougule et al., Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Release 281, 139–177 (2018). https://doi.org/10.1016/j.jconrel.2018.05.011
- U.K. Sukumar, R.J.C. Bose, M. Malhotra, H.A. Babikir, R. Afjei et al., Intranasal delivery of targeted polyfunctional gold-iron oxide nanops loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials 218, 119342 (2019). https://doi.org/10.1016/j.biomaterials.2019.119342
- E. Samaridou, H. Walgrave, E. Salta, D.M. Alvarez, V. Castro-Lopez et al., Nose-to-brain delivery of enveloped RNA - cell permeating peptide nanocomplexes for the treatment of neurodegenerative diseases. Biomaterials 230, 119657 (2020). https://doi.org/10.1016/j.biomaterials.2019.119657
- P. Balakrishnan, E.K. Park, C.K. Song, H.J. Ko, T.W. Hahn et al., Carbopol-incorporated thermoreversible gel for intranasal drug delivery. Molecules 20, 4124–4135 (2015). https://doi.org/10.3390/molecules20034124
- C.M.J. Hu, L. Zhang, S. Aryal, C. Cheung, R.H. Fang et al., Erythrocyte membrane-camouflaged polymeric nanops as a biomimetic delivery platform. PNAS 108(27), 10980–10985 (2011). https://doi.org/10.1073/pnas.1106634108
- X. Dong, J. Gao, C.Y. Zhang, C. Hayworth, M. Frank et al., Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke. ACS Nano 13(2), 1272–1283 (2019). https://doi.org/10.1021/acsnano.8b06572
- J. Ma, S. Zhang, J. Liu, F. Liu, F. Du et al., Targeted drug delivery to stroke via chemotactic recruitment of nanops coated with membrane of engineered neural stem cells. Small 15(35), e1902011 (2019). https://doi.org/10.1002/smll.201902011
- H. Ye, K. Wang, M. Wang, R. Liu, H. Song et al., Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition. Biomaterials 206, 1–12 (2019). https://doi.org/10.1016/j.biomaterials.2019.03.024
- Y. Zou, Y. Liu, Z. Yang, D. Zhang, Y. Lu et al., Effective and targeted human orthotopic glioblastoma xenograft therapy via a multifunctional biomimetic nanomedicine. Adv. Mater. 30(51), 1803717 (2018). https://doi.org/10.1002/adma.201803717
- S. Fu, M. Liang, Y. Wang, L. Cui, C. Gao et al., Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma. ACS Appl. Mater. Interfaces 11(2), 1841–1854 (2019). https://doi.org/10.1021/acsami.8b18664
- N. Perets, O. Betzer, R. Shapira, S. Brenstein, A. Angel et al., Golden exosomes selectively target brain pathologies in neurodegenerative and neurodevelopmental disorders. Nano Lett. 19(6), 3422–3431 (2019). https://doi.org/10.1021/acs.nanolett.8b04148
- E.V. Batrakova, S. Li, A.D. Reynolds, R.L. Mosley, T.K. Bronich et al., A macrophage-nanozyme delivery system for Parkinson’s disease. Bioconjugate Chem. 18(5), 1498–1506 (2007). https://doi.org/10.1021/bc700184b
- A.M. Brynskikh, Y. Zhao, R.L. Mosley, S. Li, M.D. Boska et al., Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson’s disease. Nanomedicine 5(3), 379–396 (2010). https://doi.org/10.2217/nnm.10.7
- K. Biju, Q. Zhou, G. Li, S.Z. Imam, J.L. Roberts, W.W. Morgan et al., Macrophage-mediated GDNF delivery protects against dopaminergic neurodegeneration: a therapeutic strategy for Parkinson’s disease. Mol. Ther. 18(8), 1536–1544 (2010). https://doi.org/10.1038/mt.2010.107
- Y. Zhao, M.J. Haney, V. Mahajan, B.C. Reiner, A. Dunaevsky et al., Active targeted macrophage-mediated delivery of catalase to affected brain regions in models of Parkinson’s disease. J. Nanomed. Nanotechnol. S4, 003 (2011). https://doi.org/10.4172/2157-7439.S4-003
- Y. Zhao, M.J. Haney, Y.S. Jin, O. Uvarov, N. Vinod et al., GDNF-expressing macrophages restore motor functions at a severe late-stage, and produce long-term neuroprotective effects at an early-stage of Parkinson’s disease in transgenic Parkin Q311X(A) mice. J. Control. Release 315, 139–149 (2019). https://doi.org/10.1016/j.jconrel.2019.10.027
- K.C. Biju, R.A. Santacruz, C. Chen, Q. Zhou, J. Yao et al., Bone marrow-derived microglia-based neurturin delivery protects against dopaminergic neurodegeneration in a mouse model of Parkinson’s disease. Neurosci. Lett. 535, 24–29 (2013). https://doi.org/10.1016/j.neulet.2012.12.034
- J. Xue, Z. Zhao, L. Zhang, L. Xue, S. Shen et al., Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 12, 692–700 (2017). https://doi.org/10.1038/nnano.2017.54
- D. Dehaini, X. Wei, R.H. Fang, S. Masson, P. Angsantikul et al., Erythrocyte-platelet hybrid membrane coating for enhanced nanop functionalization. Adv. Mater. 29(16), 1606209 (2017). https://doi.org/10.1002/adma.201606209
- L.L. Israel, A. Galstyan, E. Holler, J.Y. Ljubimova, Magnetic iron oxide nanops for imaging, targeting and treatment of primary and metastatic tumors of the brain. J. Control. Release 320, 45–62 (2020). https://doi.org/10.1016/j.jconrel.2020.01.009
- G. Liu, J. Gao, H. Ai, X. Chen, Applications and potential toxicity of magnetic iron oxide nanops. Small 9(9–10), 1533–1545 (2013). https://doi.org/10.1002/smll.201201531
- Y. Huang, B. Zhang, S. Xie, B. Yang, Q. Xu et al., Superparamagnetic iron oxide nanops modified with tween 80 pass through the intact blood-brain barrier in rats under magnetic field. ACS Appl. Mater. Interfaces 8(18), 11336–11341 (2016). https://doi.org/10.1021/acsami.6b02838
- H.Y. Kim, T.J. Kim, L. Kang, Y.J. Kim, M.K. Kang et al., Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke. Biomaterials 243, 119942 (2020). https://doi.org/10.1016/j.biomaterials.2020.119942
- Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48(7), 2053–2108 (2019). https://doi.org/10.1039/c8cs00618k
- S. Liu, X. Pan, H. Liu, Two-dimensional nanomaterials for photothermal therapy. Angew. Chem. Int. Ed. 59(15), 5890–5900 (2020). https://doi.org/10.1002/anie.201911477
- X. Li, J.F. Lovell, J. Yoon, X. Chen, Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin Oncol. 17, 657–674 (2020). https://doi.org/10.1038/s41571-020-0410-2
- H. Zhou, Y. Gong, Y. Liu, A. Huang, X. Zhu et al., Intelligently thermoresponsive flower-like hollow nano-ruthenium system for sustained release of nerve growth factor to inhibit hyperphosphorylation of tau and neuronal damage for the treatment of Alzheimer’s disease. Biomaterials 237, 119822 (2020). https://doi.org/10.1016/j.biomaterials.2020.119822
- M. Aryal, C.D. Arvanitis, P.M. Alexander, N. McDannold, Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Adv. Drug Deliv. Rev. 72, 94–109 (2014). https://doi.org/10.1016/j.addr.2014.01.008
- K. Hynynen, N. McDannold, N. Vykhodtseva, F.A. Jolesz, Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220(30), 640–646 (2001). https://doi.org/10.1148/radiol.2202001804
- H. Zhang, T. Wang, W. Qiu, Y. Han, Q. Sun et al., Monitoring the opening and recovery of the blood–brain barrier with noninvasive molecular imaging by biodegradable ultrasmall Cu2–xSe nanops. Nano Lett. 18(8), 4985–4992 (2018). https://doi.org/10.1021/acs.nanolett.8b01818
- J.O. Szablowski, A. Lee-Gosselin, B. Lue, D. Malounda, M.G. Shapiro, Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat. Biomed. Eng. 2, 475–484 (2018). https://doi.org/10.1038/s41551-018-0258-2
- Y. Jiang, J.M. Fay, C.D. Poon, N. Vinod, Y. Zhao et al., Nanoformulation of brain-derived neurotrophic factor with target receptor-triggered-release in the central nervous system. Adv. Funct. Mater. 28(6), 1703982 (2018). https://doi.org/10.1002/adfm.201703982
- K. Xhima, K. Markham-Coultes, H. Nedev, S. Heinen, H.U. Saragovi et al., Focused ultrasound delivery of a selective TrkA agonist rescues cholinergic function in a mouse model of Alzheimer's disease. Sci. Adv. 6(4), eaax6646 (2020). https://doi.org/10.1126/sciadv.aax6646
- N. Lipsman, Y. Meng, A.J. Bethune, Y. Huang, B. Lam et al., Blood-brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat. Commun. 9, 2336 (2018). https://doi.org/10.1038/s41467-018-04529-6
- C. Gasca-Salas, B. Fernandez-Rodriguez, J.A. Pineda-Pardo, R. Rodriguez-Rojas, I. Obeso et al., Blood-brain barrier opening with focused ultrasound in Parkinson’s disease dementia. Nat. Commun. 12, 779 (2021). https://doi.org/10.1038/s41467-021-21022-9
- G. Foffani, I. Trigo-Damas, J.A. Pineda-Pardo, J. Blesa, R. Rodríguez-Rojas et al., Focused ultrasound in Parkinson’s disease: a twofold path toward disease modification. Mov. Disord. 34(9), 1262–1273 (2019). https://doi.org/10.1002/mds.27805
- G. Leinenga, C. Langton, R. Nisbet, J. Gotz, Ultrasound treatment of neurological diseases–current and emerging applications. Nat. Rev. Neurol. 12, 161–174 (2016). https://doi.org/10.1038/nrneurol.2016.13
- A. Joseph, C. Contini, D. Cecchin, S. Nyberg, L. Ruiz-Perez et al., Chemotactic synthetic vesicles: design and applications in blood-brain barrier crossing. Sci. Adv. 3(8), e1700362 (2017). https://doi.org/10.1126/sciadv.1700362
- C.P. Foley, D.G. Rubin, A. Santillan, D. Sondhi, J.P. Dyke et al., Intra-arterial delivery of AAV vectors to the mouse brain after mannitol mediated blood brain barrier disruption. J. Control. Release 196, 71–78 (2014). https://doi.org/10.1016/j.jconrel.2014.09.018
- S.I. Rapoport, Advances in osmotic opening of the blood-brain barrier to enhance CNS chemotherapy. Expert Opin. Investig. Drugs. 10(10), 1809–1818 (2001). https://doi.org/10.1517/13543784.10.10.1809
- R. Shaltiel-Karyo, M. Frenkel-Pinter, E. Rockenstein, C. Patrick, M. Levy-Sakin et al., A blood-brain barrier (BBB) disrupter is also a potent alpha-synuclein (alpha-syn) aggregation inhibitor: a novel dual mechanism of mannitol for the treatment of Parkinson disease (PD). J. Biol. Chem. 288(24), 17579–17588 (2013). https://doi.org/10.1074/jbc.M112.434787
- X. Zhang, G. Chen, L. Wen, F. Yang, A.L. Shao et al., Novel multiple agents loaded PLGA nanops for brain delivery via inner ear administration: in vitro and in vivo evaluation. Eur. J. Pharm. Sci. 48, 595–603 (2013). https://doi.org/10.1016/j.ejps.2013.01.007
- N. Singh, M.A. Savanur, S. Srivastava, P. D’Silva, G. Mugesh, A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew. Chem. Int. Ed. 56(45), 14267–14271 (2017). https://doi.org/10.1002/anie.201708573
- H.J. Kwon, D. Kim, K. Seo, Y.G. Kim, S.I. Han et al., Ceria nanop systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson’s disease. Angew. Chem. Int. Ed. 57(30), 9408–9412 (2018). https://doi.org/10.1002/anie.201805052
- C. Ren, X. Hu, Q. Zhou, Graphene oxide quantum dots reduce oxidative stress and inhibit neurotoxicity in vitro and in vivo through catalase-like activity and metabolic regulation. Adv. Sci. 5(5), 1700595 (2018). https://doi.org/10.1002/advs.201700595
- M.A. Hegazy, H.M. Maklad, D.M. Samy, D.A. Abdelmonsif, B.M.E. Sabaa et al., Cerium oxide nanops could ameliorate behavioral and neurochemical impairments in 6-hydroxydopamine induced Parkinson’s disease in rats. Neurochem. Int. 108, 361–371 (2017). https://doi.org/10.1016/j.neuint.2017.05.011
- Y.Q. Liu, Y. Mao, E. Xu, H. Jia, S. Zhang et al., Nanozyme scavenging ROS for prevention of pathologic α-synuclein transmission in Parkinson’s disease. Nano Today 36, 101027 (2021). https://doi.org/10.1016/j.nantod.2020.101027
- Y. Li, Y. Li, H. Wang, R. Liu, Yb3+, Er3+ codoped cerium oxide upconversion nanops enhanced the enzymelike catalytic activity and antioxidative activity for Parkinson’s disease treatment. ACS Appl. Mater. Interfaces 13(12), 13968–13977 (2021). https://doi.org/10.1021/acsami.1c00157
- W. Feng, X. Han, H. Hu, M. Chang, L. Ding et al., 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 12, 2203 (2021). https://doi.org/10.1038/s41467-021-22278-x
- D. Kim, J.M. Yoo, H. Wang, J. Lee, S.H. Lee et al., Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease. Nat. Nanotechnol. 13, 812–818 (2018). https://doi.org/10.1038/s41565-018-0179-y
- G. Gao, R. Chen, M. He, J. Li, J. Li et al., Gold nanoclusters for Parkinson’s disease treatment. Biomaterials 194, 36–46 (2019). https://doi.org/10.1016/j.biomaterials.2018.12.013
- L. Wang, X. Li, Y. Han, T. Wang, Y. Zhao et al., Quantum dots protect against MPP+-induced neurotoxicity in a cell model of Parkinson’s disease through autophagy induction. Sci. China Chem. 59, 1486–1491 (2016). https://doi.org/10.1007/s11426-016-0103-7
- H. Mohammad-Beigi, A. Hosseini, M. Adeli, M.R. Ejtehadi, G. Christiansen et al., Mechanistic understanding of the interactions between nano-objects with different surface properties and alpha-synuclein. ACS Nano 13(3), 3243–3256 (2019). https://doi.org/10.1021/acsnano.8b08983
- N. Joshi, S. Basak, S. Kundu, G. De, A. Mukhopadhyay et al., Attenuation of the early events of alpha-synuclein aggregation: a fluorescence correlation spectroscopy and laser scanning microscopy study in the presence of surface-coated Fe3O4 nanops. Langmuir 31(4), 1469–1478 (2015). https://doi.org/10.1021/la503749e
- J. Yoo, E. Lee, H.Y. Kim, D.H. Youn, J. Jung et al., Electromagnetized gold nanops mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson’s disease therapy. Nat. Nanotechnol. 12, 1006–1014 (2017). https://doi.org/10.1038/nnano.2017.133
- S. Zhang, P. Sun, K. Lin, F.H.L. Chan, Q. Gao et al., Extracellular nanomatrix-induced self-organization of neural stem cells into miniature substantia nigra-like structures with therapeutic effects on Parkinsonian rats. Adv. Sci. 6(24), 1901822 (2019). https://doi.org/10.1002/advs.201901822
- T.H. Chung, S.C. Hsu, S.H. Wu, J.K. Hsiao, C.P. Lin et al., Dextran-coated iron oxide nanop-improved therapeutic effects of human mesenchymal stem cells in a mouse model of Parkinson’s disease. Nanoscale 10(6), 2998–3007 (2018). https://doi.org/10.1039/c7nr06976f
- B. Yang, Y. Chen, J. Shi, Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 119(8), 4881–4985 (2019). https://doi.org/10.1021/acs.chemrev.8b00626
- S. Manoharan, G.J. Guillemin, R.S. Abiramasundari, M.M. Essa, M. Akbar et al., The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: a mini review. Oxid. Med. Cell. Longev. 2016, 8590578 (2016). https://doi.org/10.1155/2016/8590578
- M.D. Howard, E.D. Hood, C.F. Greineder, I.S. Alferiev, M. Chorny et al., Targeting to endothelial cells augments the protective effect of novel dual bioactive antioxidant/anti-inflammatory nanops. Mol. Pharm. 11(7), 2262–2270 (2014). https://doi.org/10.1021/mp400677y
- V.V. Shuvaev, J. Han, K.J. Yu, S. Huang, B.J. Hawkins et al., PECAM-targeted delivery of SOD inhibits endothelial inflammatory response. FASEB J. 25(1), 348–357 (2011). https://doi.org/10.1096/fj.10-169789
- N. Feliu, D. Docter, M. Heine, P.D. Pino, S. Ashraf et al., In vivo degeneration and the fate of inorganic nanops. Chem. Soc. Rev. 45, 2440–2457 (2016). https://doi.org/10.1039/c5cs00699f
- A. Bencsik, P. Lestaevel, I.G. Canu, Nano- and neurotoxicology: an emerging discipline. Prog. Neurobiol. 160, 45–63 (2018). https://doi.org/10.1016/j.pneurobio.2017.10.003
- L. Maroteaux, J.T. Campanelli, R.H. Scheller, Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 8(8), 2804–2815 (1988). https://doi.org/10.1523/JNEUROSCI.08-08-02804.1988
- A.D. Stephens, M. Zacharopoulou, G.S.K. Schierle, The cellular environment affects monomeric α-synuclein structure. Trends Biochem. Sci. 44(5), 453–466 (2019). https://doi.org/10.1016/j.tibs.2018.11.005
- S. Ghio, F. Kamp, R. Cauchi, A. Giese, N. Vassallo, Interaction of alpha-synuclein with biomembranes in Parkinson’s disease–role of cardiolipin. Prog. Lipid Res. 61, 73–82 (2016). https://doi.org/10.1016/j.plipres.2015.10.005
- Z.A. Sorrentino, B.I. Giasson, P. Chakrabarty, α-Synuclein and astrocytes: tracing the pathways from homeostasis to neurodegeneration in Lewy body disease. Acta Neuropathol. 138, 1–21 (2019). https://doi.org/10.1007/s00401-019-01977-2
- M.J. Hajipour, M.R. Santoso, F. Rezaee, H. Aghaverdi, M. Mahmoudi et al., Advances in Alzheimer’s diagnosis and therapy: the implications of nanotechnology. Trends Biotechnol. 35(10), 937–953 (2017). https://doi.org/10.1016/j.tibtech.2017.06.002
- A. Villar-Piqué, T.L. Fonseca, T.F. Outeiro, Structure, function and toxicity of alpha-synuclein: the Bermuda triangle in synucleinopathies. J. Neurochem. 139(S1), 240–255 (2016). https://doi.org/10.1111/jnc.13249
- R.A. Barker, M. Götz, M. Parmar, New approaches for brain repair—from rescue to reprogramming. Nature 557, 329–334 (2018). https://doi.org/10.1038/s41586-018-0087-1
- C. Vissers, G.L. Ming, H. Song, Nanop technology and stem cell therapy team up against neurodegenerative disorders. Adv. Drug Deliv. Rev. 148, 239–251 (2019). https://doi.org/10.1016/j.addr.2019.02.007
- N. Daviaud, R.H. Friedel, H. Zou, Vascularization and engraftment of transplanted human cerebral organoids in mouse cortex. eNeuro 5(6), 219–18 (2018). https://doi.org/10.1523/ENEURO.0219-18.2018
- H. Qian, X. Kang, J. Hu, D. Zhang, Z. Liang et al., Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 582, 550–556 (2020). https://doi.org/10.1038/s41586-020-2388-4
References
Y. Hou, X. Dan, M. Babbar, Y. Wei, S.G. Hasselbalch et al., Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565–581 (2019). https://doi.org/10.1038/s41582-019-0244-7
L.V. Kalia, A.E. Lang, Parkinson’s disease. The Lancet 386(9996), 896–912 (2015). https://doi.org/10.1016/s0140-6736(14)61393-3
M. Goedert, A. Compston, Parkinson’s disease - the story of an eponym. Nat. Rev. Neurol. 14, 57–62 (2018). https://doi.org/10.1038/nrneurol.2017.165
W. Poewe, K. Seppi, C.M. Tanner, G.M. Halliday, P. Brundin et al., Parkinson disease. Nat. Rev. Dis. Primers 3, 17013 (2017). https://doi.org/10.1038/nrdp.2017.13
S. Przedborski, The two-century journey of Parkinson disease research. Nat. Rev. Neurosci. 18, 251–259 (2017). https://doi.org/10.1038/nrn.2017.25
J. Kulisevsky, L. Oliveira, S.H. Fox, Update in therapeutic strategies for Parkinson’s disease. Curr. Opin. Neurol. 31(4), 439–447 (2018). https://doi.org/10.1097/WCO.0000000000000579
D. Charvin, R. Medori, R.A. Hauser, O. Rascol, Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nat. Rev. Drug Discov. 17, 804–822 (2018). https://doi.org/10.1038/nrd.2018.136
A. Elkouzi, V. Vedam-Mai, R.S. Eisinger, M.S. Okun, Emerging therapies in Parkinson disease - repurposed drugs and new approaches. Nat. Rev. Neurol. 15, 204–223 (2019). https://doi.org/10.1038/s41582-019-0155-7
H. Homayoun, Parkinson disease. Ann. Int. Med. 169, ITC33–ITC48 (2018). https://doi.org/10.7326/AITC201809040
K. Liaw, Z. Zhang, S. Kannan, Neuronanotechnology for brain regeneration. Adv. Drug Deliv. Rev. 148, 3–18 (2019). https://doi.org/10.1016/j.addr.2019.04.004
N. Bengoa-Vergniory, R.F. Roberts, R. Wade-Martins, J. Alegre-Abarrategui, Alpha-synuclein oligomers: a new hope. Acta Neuropathol. 134, 819–838 (2017). https://doi.org/10.1007/s00401-017-1755-1
D. Eleftheriadou, D. Kesidou, F. Moura, E. Felli, W. Song, Redox-responsive nanobiomaterials-based therapeutics for neurodegenerative diseases. Small 16(43), 1907308 (2020). https://doi.org/10.1002/smll.201907308
J. Bicker, G. Alves, A. Fortuna, A. Falcao, Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur. J. Pharm. Biopharm. 87(3), 409–432 (2014). https://doi.org/10.1016/j.ejpb.2014.03.012
W.A. Banks, From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 15, 275–292 (2016). https://doi.org/10.1038/nrd.2015.21
M.D. Sweeney, Z. Zhao, A. Montagne, A.R. Nelson, B.V. Zlokovic, Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21–78 (2019). https://doi.org/10.1152/physrev.00050.2017
F. Meng, J. Wang, F. Ding, Y. Xie, Y. Zhang et al., Neuroprotective effect of matrine on MPTP-induced Parkinson’s disease and on Nrf2 expression. Oncol. Lett. 13, 296–300 (2017). https://doi.org/10.3892/ol.2016.5383
A. Bhat, A.M. Mahalakshmi, B. Ray, S. Tuladhar, T.A. Hediyal et al., Benefits of curcumin in brain disorders. BioFactors 45(5), 666–689 (2019). https://doi.org/10.1002/biof.1533
S.C. Cunnane, E. Trushina, C. Morland, A. Prigione, G. Casadesus et al., Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 19, 609–633 (2020). https://doi.org/10.1038/s41573-020-0072-x
C. Liu, J. Shin, S. Son, Y. Choe, N. Farokhzad et al., Pnictogens in medicinal chemistry: evolution from erstwhile drugs to emerging layered photonic nanomedicine. Chem. Soc. Rev. 50(4), 2260–2279 (2021). https://doi.org/10.1039/d0cs01175d
J. Zhang, K. Hu, L. Di, P. Wang, Z. Liu et al., Traditional herbal medicine and nanomedicine: converging disciplines to improve therapeutic efficacy and human health. Adv. Drug Deliv. Rev. 178, 113964 (2021). https://doi.org/10.1016/j.addr.2021.113964
D. Furtado, M. Björnmalm, S. Ayton, A.I. Bush, K. Kempe et al., Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases. Adv. Mater. 30, e1801362 (2018). https://doi.org/10.1002/adma.201801362
W. Tang, W. Fan, J. Lau, L. Deng, Z. Shen et al., Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev. 48(11), 2967–3014 (2019). https://doi.org/10.1039/c8cs00805a
J. Kreuter, Drug delivery to the central nervous system by polymeric nanops: what do we know? Adv. Drug Deliv. Rev. 71, 2–14 (2014). https://doi.org/10.1016/j.addr.2013.08.008
J.Y. Ljubimova, T. Sun, L. Mashouf, A.V. Ljubimov, L.L. Israel et al., Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv. Drug Deliv. Rev. 113, 177–200 (2017). https://doi.org/10.1016/j.addr.2017.06.002
B. Oller-Salvia, M. Sanchez-Navarro, E. Giralt, M. Teixido, Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem. Soc. Rev. 45(17), 4690–4707 (2016). https://doi.org/10.1039/c6cs00076b
Y. Luo, H. Yang, Y.F. Zhou, B. Hu, Dual and multi-targeted nanops for site-specific brain drug delivery. J. Control. Release 317, 195–215 (2020). https://doi.org/10.1016/j.jconrel.2019.11.037
Y. Cheng, R.A. Morshed, B. Auffinger, A.L. Tobias, M.S. Lesniak, Multifunctional nanops for brain tumor imaging and therapy. Adv. Drug Deliv. Rev. 66, 42–57 (2014). https://doi.org/10.1016/j.addr.2013.09.006
R. Pandit, L. Chen, J. Gotz, The blood-brain barrier: physiology and strategies for drug delivery. Adv. Drug Deliv. Rev. 165–166, 1–14 (2019). https://doi.org/10.1016/j.addr.2019.11.009
W. Fu, W. Zhou, P.K. Chu, X.F. Yu, Inherent chemotherapeutic anti-cancer effects of low-dimensional nanomaterials. Chemistry 25(47), 10995–11006 (2019). https://doi.org/10.1002/chem.201901841
C. Cheng, S. Li, A. Thomas, N.A. Kotov, R. Haag, Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem. Rev. 117(3), 1826–1914 (2017). https://doi.org/10.1021/acs.chemrev.6b00520
W. Chen, J. Ouyang, X. Yi, Y. Xu, C. Niu et al., Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater. 30(3), 1703458 (2018). https://doi.org/10.1002/adma.201703458
L.L. Dugan, L. Tian, K.L. Quick, J.I. Hardt, M. Karimi et al., Carboxyfullerene neuroprotection postinjury in Parkinsonian nonhuman primates. Ann. Neurol. 76(3), 393–402 (2014). https://doi.org/10.1002/ana.24220
C. Hao, A. Qu, L. Xu, M. Sun, H. Zhang et al., Chiral molecule-mediated porous CuxO nanop clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 141(2), 1091–1099 (2019). https://doi.org/10.1021/jacs.8b11856
C.D. Arvanitis, G.B. Ferraro, R.K. Jain, The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020). https://doi.org/10.1038/s41568-019-0205-x
A. Oddo, B. Peng, Z. Tong, Y. Wei, W.Y. Tong et al., Advances in microfluidic blood-brain barrier (BBB) models. Trends Biotechnol. 37(12), 1295–1314 (2019). https://doi.org/10.1016/j.tibtech.2019.04.006
L. Xu, A. Nirwane, Y. Yao, Basement membrane and blood-brain barrier. Stroke Vasc. Neurol. 4(2), 78–82 (2019). https://doi.org/10.1136/svn-2018-000198
Z. Zhao, A.R. Nelson, C. Betsholtz, B.V. Zlokovic, Establishment and dysfunction of the blood-brain barrier. Cell 163(5), 1064–1078 (2015). https://doi.org/10.1016/j.cell.2015.10.067
S. Liebner, R.M. Dijkhuizen, Y. Reiss, K.H. Plate, D. Agalliu et al., Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol. 135, 311–336 (2018). https://doi.org/10.1007/s00401-018-1815-1
N. Bengoa-Vergniory, R.F. Roberts, W. Rade-Martins, J. Alegre-Abarrategui, Alpha-synuclein oligomers: a new hope. Acta Neuropathol. 134, 819–838 (2017). https://doi.org/10.1007/s00401-017-1755-1
L.H. Morais, H.L. Schreiber, S.K. Mazmanian, The gut microbiota-brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 19, 241–255 (2021). https://doi.org/10.1038/s41579-020-00460-0
R.A. Travagli, K.N. Browning, M. Camilleri, Parkinson disease and the gut: new insights into pathogenesis and clinical relevance. Nat. Rev. Gastroenterol. Hepatol. 17, 673–685 (2020). https://doi.org/10.1038/s41575-020-0339-z
I. Javed, X. Cui, X. Wang, M. Mortimer, N. Andrikopoulos et al., Implications of the human gut-brain and gut-cancer axes for future nanomedicine. ACS Nano 14(11), 14391–14416 (2020). https://doi.org/10.1021/acsnano.0c07258
S. Kim, S.H. Kwon, T.I. Kam, N. Panicker, S.S. Karuppagounder et al., Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103(4), 627–641 (2019). https://doi.org/10.1016/j.neuron.2019.05.035
T.R. Sampson, J.W. Debelius, T. Thron, S. Janssen, G.G. Shastri et al., Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6), 1469–1480 (2016). https://doi.org/10.1016/j.cell.2016.11.018
J. Samal, A.L. Rebelo, A. Pandit, A window into the brain: tools to assess pre-clinical efficacy of biomaterials-based therapies on central nervous system disorders. Adv. Drug Deliv. Rev. 148, 68–145 (2019). https://doi.org/10.1016/j.addr.2019.01.012
Y.H. Tsou, X.Q. Zhang, H. Zhu, S. Syed, X. Xu, Drug delivery to the brain across the blood-brain barrier using nanomaterials. Small 13(43), 170192 (2018). https://doi.org/10.1002/smll.201701921
S. Shen, Y. Wu, Y. Liu, D. Wu, High drug-loading nanomedicines: progress, current status, and prospects. Int. J. Nanomed. 12, 4085–4109 (2017). https://doi.org/10.2147/IJN.S132780
Y. Liu, Y.G. Ang, S. Jin, L. Xu, C.X. Zhao, Development of high-drug-loading nanops. ChemPlusChem 85(9), 2143–2157 (2020). https://doi.org/10.1002/cplu.202000496
W. Chen, J. Ouyang, H. Liu, M. Chen, K. Zeng et al., Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 29(5), 1603864 (2017). https://doi.org/10.1002/adma.201603864
J. Mosquera, I. Garcia, L.M. Liz-Marzan, Cellular uptake of nanops versus small molecules: a matter of size. Acc. Chem. Res. 51(9), 2305–2313 (2018). https://doi.org/10.1021/acs.accounts.8b00292
O. Betzer, M. Shilo, R. Opochinsky, E. Barnoy, M. Motiei et al., The effect of nanop size on the ability to cross the blood-brain barrier: an in vivo study. Nanomedicine 12(13), 1533–1546 (2017). https://doi.org/10.2217/nnm-2017-0022
G. Wen, X. Li, Y. Zhang, X. Han, X. Xu et al., Effective phototheranostics of brain tumor assisted by near-infrared-II light-responsive semiconducting polymer nanops. ACS Appl. Mater. Interfaces 12(30), 33492–33499 (2020). https://doi.org/10.1021/acsami.0c08562
Y.H. Tsou, X.Q. Zhang, H. Zhu, S. Syed, X. Xu, Drug delivery to the brain across the blood-brain barrier using nanomaterials. Small 14(25), 1801588 (2018). https://doi.org/10.1002/smll.201801588
W. Xie, Z. Guo, F. Gao, Q. Gao, D. Wang et al., Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanops for magnetic theranostics. Theranostics 8(12), 3284–3307 (2018). https://doi.org/10.7150/thno.25220
Z. Shen, H. Ye, X. Yi, Y. Li, Membrane wrapping efficiency of elastic nanops during endocytosis: size and shape matter. ACS Nano 13(1), 215–228 (2018). https://doi.org/10.1021/acsnano.8b05340
P. Kolhar, A.C. Anselmo, V. Gupta, K. Pant, B. Prabhakarpandian et al., Using shape effects to target antibody-coated nanops to lung and brain endothelium. PNAS 110(26), 10753–10758 (2013). https://doi.org/10.1073/pnas.1308345110
H.J. Byeon, Q. Thao, S. Lee, S.Y. Min, E.S. Lee et al., Doxorubicin-loaded nanops consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors. J. Control. Release 225, 301–313 (2016). https://doi.org/10.1016/j.jconrel.2016.01.046
J.S. Suk, Q. Xu, N. Kim, J. Hanes, L.M. Ensign, PEGylation as a strategy for improving nanop-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016). https://doi.org/10.1016/j.addr.2015.09.012
G.T. Kozma, T. Shimizu, T. Ishida, J. Szebeni, Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug Deliv. Rev. 154–155, 163–175 (2020). https://doi.org/10.1016/j.addr.2020.07.024
K.Y. Choi, H.S. Han, E.S. Lee, J.M. Shin, B.D. Almquist et al., Hyaluronic acid-based activatable nanomaterials for stimuli-responsive imaging and therapeutics: beyond CD44-mediated drug delivery. Adv. Mater. 31(34), 1803549 (2019). https://doi.org/10.1002/adma.201803549
L. Ye, Y. Zhang, B. Yang, X. Zhou, J. Li et al., Zwitterionic-modified starch-based stealth micelles for prolonging circulation time and reducing macrophage response. ACS Appl. Mater. Interfaces 8(7), 4385–4398 (2016). https://doi.org/10.1021/acsami.5b10811
A.R. Khan, X. Yang, M. Fu, G. Zhai, Recent progress of drug nanoformulations targeting to brain. J. Control. Release 291, 37–64 (2018). https://doi.org/10.1016/j.jconrel.2018.10.004
D. Furtado, M. Bjornmalm, S. Ayton, A.I. Bush, K. Kempe et al., Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases. Adv. Mater. 30, 1801362 (2018). https://doi.org/10.1002/adma.201801362
V. Agrahari, P.A. Burnouf, T. Burnouf, V. Agrahari, Nanoformulation properties, characterization, and behavior in complex biological matrices: challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv. Drug Deliv. Rev. 148, 146–180 (2019). https://doi.org/10.1016/j.addr.2019.02.008
M.J. Fowler, J.D. Cotter, B.E. Knight, E.M. Sevick-Muraca, D.I. Sandberg et al., Intrathecal drug delivery in the era of nanomedicine. Adv. Drug Deliv. Rev. 165–166, 77–95 (2020). https://doi.org/10.1016/j.addr.2020.02.006
N. Tambasco, M. Romoli, P. Calabresi, Levodopa in Parkinson’s disease: current status and future developments. Curr. Neuropharmacol. 16(8), 1239–1252 (2018). https://doi.org/10.2174/1570159X15666170510143821
X. Li, Q. Liu, D. Zhu, Y. Che, X. Feng, Preparation of levodopa-loaded crystalsomes through thermally induced crystallization reverses functional deficits in Parkinsonian mice. Biomater. Sci. 7(4), 1623–1631 (2019). https://doi.org/10.1039/c8bm01098f
V. Sánchez-Giraldo, Y. Monsalve, J. Palacio, M. Mendivil-Perez, L. Sierra et al., Role of a novel (−)-epigallocatechin-3-gallate delivery system on the prevention against oxidative stress damage in vitro and in vivo model of Parkinson’s disease. J. Drug Deliv. Sci. Technol. 55, 101466 (2020). https://doi.org/10.1016/j.jddst.2019.101466
S. Xiong, W. Liu, Y. Zhou, Y. Mo, Y. Liu et al., Enhancement of oral bioavailability and anti-Parkinsonian efficacy of resveratrol through a nanocrystal formulation. Asian J. Pharm. Sci. 15(4), 518–528 (2019). https://doi.org/10.1016/j.ajps.2019.04.003
Y. Liu, W. Liu, S. Xiong, J. Luo, Y. Li et al., Highly stabilized nanocrystals delivering Ginkgolide B in protecting against the Parkinson’s disease. Int. J. Pharm. 577, 119053 (2020). https://doi.org/10.1016/j.ijpharm.2020.119053
T. Chen, C. Li, Y. Li, X. Yi, S.M. Lee et al., Oral delivery of a nanocrystal formulation of Schisantherin A with improved bioavailability and brain delivery for the treatment of Parkinson’s disease. Mol. Pharm. 13(11), 3864–3875 (2016). https://doi.org/10.1021/acs.molpharmaceut.6b00644
S. Xiong, W. Liu, D. Li, X. Chen, F. Liu et al., Oral delivery of puerarin nanocrystals to improve brain accumulation and anti-Parkinsonian efficacy. Mol. Pharm. 16(4), 1444–1455 (2019). https://doi.org/10.1021/acs.molpharmaceut.8b01012
T. Chen, Y. Li, C. Li, X. Yi, R. Wang et al., Pluronic P85/F68 micelles of baicalein could interfere with mitochondria to overcome MRP2-mediated efflux and offer improved anti-Parkinsonian activity. Mol. Pharm. 14(10), 3331–3342 (2017). https://doi.org/10.1021/acs.molpharmaceut.7b00374
N. Dudhipala, T. Gorre, Neuroprotective effect of ropinirole lipid nanops enriched hydrogel for Parkinson’s disease: in vitro, ex vivo, pharmacokinetic and pharmacodynamic evaluation. Pharmaceutics 12(5), 448 (2020). https://doi.org/10.3390/pharmaceutics12050448
P. Kundu, M. Das, K. Tripathy, S.K. Sahoo, Delivery of dual drug loaded lipid based nanops across the blood-brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson’s disease. ACS Chem. Neurosci. 7(12), 1658–1670 (2016). https://doi.org/10.1021/acschemneuro.6b00207
T. Chen, W. Liu, S. Xiong, D. Li, S. Fang et al., Nanops mediating the sustained puerarin release facilitate improved brain delivery to treat Parkinson’s disease. ACS Appl. Mater. Interfaces 11(48), 45276–45289 (2019). https://doi.org/10.1021/acsami.9b16047
E. Barcia, L. Boeva, L. Garcia-Garcia, K. Slowing, A. Fernandez-Carballido et al., Nanotechnology-based drug delivery of ropinirole for Parkinson’s disease. Drug Deliv. 24(1), 1112–1123 (2017). https://doi.org/10.1080/10717544.2017.1359862
K. Hu, X. Chen, W. Chen, L. Zhang, J. Li et al., Neuroprotective effect of gold nanops composites in Parkinson’s disease model. Nanomed. Nanotechnol. Bio. Med. 14(4), 1123–1136 (2018). https://doi.org/10.1016/j.nano.2018.01.020
A.K. Srivastava, S.R. Choudhury, S. Karmakar, Melatonin/polydopamine nanostructures for collective neuroprotection-based Parkinson’s disease therapy. Biomater. Sci. 8(5), 1345–1363 (2020). https://doi.org/10.1039/c9bm01602c
M.N. Sardoiwala, A.K. Srivastava, B. Kaundal, S. Karmakar, S.R. Choudhury, Recuperative effect of metformin loaded polydopamine nanoformulation promoting EZH2 mediated proteasomal degradation of phospho-alpha-synuclein in Parkinson’s disease model. Nanomedicine 24, 102088 (2020). https://doi.org/10.1016/j.nano.2019.102088
N.R. Bali, P.S. Salve, Selegiline nanop embedded transdermal film: an alternative approach for brain targeting in Parkinson’s disease. J. Drug Deliv. Sci. Technol. 54, 101299 (2019). https://doi.org/10.1016/j.jddst.2019.101299
T. Chen, C. Li, Y. Li, X. Yi, R. Wang et al., Small-sized mPEG–PLGA nanops of Schisantherin A with sustained release for enhanced brain uptake and anti-Parkinsonian activity. ACS Appl. Mater. Interfaces 9(11), 9516–9527 (2017). https://doi.org/10.1021/acsami.7b01171
L.B. Vong, Y. Sato, P. Chonpathompikunlert, S. Tanasawet, P. Hutamekalin et al., Self-assembled polydopamine nanops improve treatment in Parkinson’s disease model mice and suppress dopamine-induced dyskinesia. Acta Biomater. 109, 220–228 (2020). https://doi.org/10.1016/j.actbio.2020.03.021
X.Y. Meng, A.Q. Huang, A. Khan, L. Zhang, X.Q. Sun et al., Vascular endothelial growth factor-loaded poly-lactic-co-glycolic acid nanops with controlled release protect the dopaminergic neurons in Parkinson’s rats. Chem. Biol. Drug Des. 95(6), 631–639 (2020). https://doi.org/10.1111/cbdd.13681
S. Sharma, S.A. Rabbani, J.K. Narang, F.H. Pottoo, J. Ali et al., Role of rutin nanoemulsion in ameliorating oxidative stress: pharmacokinetic and pharmacodynamics studies. Chem. Phys. Lipids 228, 104890 (2020). https://doi.org/10.1016/j.chemphyslip.2020.104890
B.K. Gupta, S. Kumar, H. Kaur, J. Ali, S. Baboota, Attenuation of oxidative damage by coenzyme Q10 loaded nanoemulsion through oral route for the management of Parkinson’s disease. Rejuv. Res. 21(3), 232–248 (2018). https://doi.org/10.1089/rej.2017.1959
S. Setya, T. Madaan, M. Tariq, B.K. Razdan, S. Talegaonkar, Appraisal of transdermal water-in-oil nanoemulgel of selegiline HCl for the effective management of Parkinson’s disease: pharmacodynamic, pharmacokinetic, and biochemical investigations. AAPS PharmSciTech 19, 573–589 (2018). https://doi.org/10.1208/s12249-017-0868-0
L. Liu, M. Li, M. Xu, Z. Wang, Z. Zeng et al., Actively targeted gold nanop composites improve behavior and cognitive impairment in Parkinson’s disease mice. Mater. Sci. Eng. C 114, 111028 (2020). https://doi.org/10.1016/j.msec.2020.111028
S. Niu, L.K. Zhang, L. Zhang, S. Zhuang, X. Zhan et al., Inhibition by multifunctional magnetic nanops loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease model. Theranostics 7(2), 344–356 (2017). https://doi.org/10.7150/thno.16562
L. Gan, Z. Li, Q. Lv, W. Huang, Rabies virus glycoprotein (RVG29)-linked microRNA-124-loaded polymeric nanops inhibit neuroinflammation in a Parkinson’s disease model. Int. J. Pharm. 567, 118449 (2019). https://doi.org/10.1016/j.ijpharm.2019.118449
L. You, J. Wang, T. Liu, Y. Zhang, X. Han et al., Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanops reverses functional deficits in Parkinsonian mice. ACS Nano 12(5), 4123–4139 (2018). https://doi.org/10.1021/acsnano.7b08172
M. Qu, Q. Lin, S. He, L. Wang, Y. Fu et al., A brain targeting functionalized liposomes of the dopamine derivative N-3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson’s disease. J. Control. Release 277, 173–182 (2018). https://doi.org/10.1016/j.jconrel.2018.03.019
M. Kahana, A. Weizman, M. Gabay, Y. Loboda, H. Segal-Gavish et al., Liposome-based targeting of dopamine to the brain: a novel approach for the treatment of Parkinson’s disease. Mol. Psychiatry. 26, 2626–2632 (2020). https://doi.org/10.1038/s41380-020-0742-4
W. Zhang, H. Chen, L. Ding, J. Gong, M. Zhang et al., Trojan horse delivery of 4,4’-dimethoxychalcone for Parkinsonian neuroprotection. Adv. Sci. 8, 2004555 (2021). https://doi.org/10.1002/advs.202004555
Y. Li, Z. Chen, Z. Lu, Q. Yang, L. Liu et al., “Cell-addictive” dual-target traceable nanodrug for Parkinson’s disease treatment via flotillins pathway. Theranostics 8(9), 5469–5481 (2018). https://doi.org/10.7150/thno.28295
H. Javed, S.A. Menon, K.M. Al-Mansoori, A. Al-Wandi, N.K. Majbour et al., Development of nonviral vectors targeting the brain as a therapeutic approach for Parkinson’s disease and other brain disorders. Mol. Ther. 24(4), 746–758 (2016). https://doi.org/10.1038/mt.2015.232
Q. Guo, H. You, X. Yang, B. Lin, Z. Zhu et al., Functional single-walled carbon nanotubes ‘CAR’ for targeting dopamine delivery into the brain of parkinsonian mice. Nanoscale 9(30), 10832–10845 (2017). https://doi.org/10.1039/c7nr02682j
V. Sridhar, R. Gaud, A. Bajaj, S. Wairkar, Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanops with improved brain delivery in Parkinson’s disease. Nanomedicine 14(8), 2609–2618 (2018). https://doi.org/10.1016/j.nano.2018.08.004
C. Bi, A. Wang, Y. Chu, S. Liu, H. Mu et al., Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanops for Parkinson’s disease treatment. Int. J. Nanomed. 11, 6547–6559 (2016). https://doi.org/10.2147/IJN.S120939
C. Wu, B. Li, Y. Zhang, T. Chen, C. Chen et al., Intranasal delivery of paeoniflorin nanocrystals for brain targeting. Asian J. Pharm. Sci. 15(3), 326–335 (2020). https://doi.org/10.1016/j.ajps.2019.11.002
S.K. Bhattamisra, A.T. Shak, L.W. Xi, N.H. Safian, H. Choudhury et al., Nose to brain delivery of rotigotine loaded chitosan nanops in human SH-SY5Y neuroblastoma cells and animal model of Parkinson’s disease. Int. J. Pharm. 579, 119148 (2020). https://doi.org/10.1016/j.ijpharm.2020.119148
S. Kumar, S. Dang, K. Nigam, J. Ali, S. Baboota, Selegiline nanoformulation in attenuation of oxidative stress and upregulation of dopamine in the brain for the treatment of Parkinson’s disease. Rejuv. Res. 21(5), 464–476 (2018). https://doi.org/10.1089/rej.2017.2035
B. Gaba, T. Khan, M.F. Haider, T. Alam, S. Baboota et al., Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model. Biomed. Res. Int. 2019, 2382563 (2019). https://doi.org/10.1155/2019/2382563
S. Arisoy, O. Sayiner, T. Comoglu, D. Onal, O. Atalay et al., In vitro and in vivo evaluation of levodopa-loaded nanops for nose to brain delivery. Pharm. Dev. Technol. 25(6), 735–747 (2020). https://doi.org/10.1080/10837450.2020.1740257
S. Hernando, E. Herran, J. Figueiro-Silva, J.L. Pedraz, M. Igartua et al., Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson’s disease. Mol. Neurobiol. 55, 145–155 (2018). https://doi.org/10.1007/s12035-017-0728-7
E.R.O. Junior, E. Truzzi, L. Ferraro, M. Fogagnolo, B. Pavan et al., Nasal administration of nanoencapsulated geraniol/ursodeoxycholic acid conjugate: towards a new approach for the management of Parkinson’s disease. J. Control. Release 321, 540–552 (2020). https://doi.org/10.1016/j.jconrel.2020.02.033
F. Rinaldi, L. Seguella, S. Gigli, P.N. Hanieh, E.D. Favero et al., inPentasomes: an innovative nose-to-brain pentamidine delivery blunts MPTP Parkinsonism in mice. J. Control. Release 294, 17–26 (2019). https://doi.org/10.1016/j.jconrel.2018.12.007
O. Gartziandia, E. Herran, J.A. Ruiz-Ortega, C. Miguelez, M. Igartua et al., Intranasal administration of chitosan-coated nanostructured lipid carriers loaded with GDNF improves behavioral and histological recovery in a partial lesion model of Parkinson’s disease. J. Biomed. Nanotechnol. 12(12), 2220–2230 (2016). https://doi.org/10.1166/jbn.2016.2313
J. Liu, C. Liu, J. Zhang, Y. Zhang, K. Liu et al., A self-assembled alpha-synuclein nanoscavenger for Parkinson’s disease. ACS Nano 14(2), 1533–1549 (2020). https://doi.org/10.1021/acsnano.9b06453
S. Tang, A. Wang, X. Yan, L. Chu, X. Yang et al., Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanops for treating Parkinson’s disease. Drug Deliv. 26(1), 700–707 (2019). https://doi.org/10.1080/10717544.2019.1636420
M. Rao, D.K. Agrawal, C. Shirsath, Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson’s disease. Drug Dev. Ind. Pharm. 43(1), 142–150 (2017). https://doi.org/10.1080/03639045.2016.1225754
Y. Tan, Y. Liu, Y. Liu, R. Ma, J. Luo et al., Rational design of thermosensitive hydrogel to deliver nanocrystals with intranasal administration for brain targeting in Parkinson’s disease. Research (2021). https://doi.org/10.34133/2021/9812523
J. Garcia-Pardo, F. Novio, F. Nador, I. Cavaliere, S. Suarez-Garcia et al., Bioinspired theranostic coordination polymer nanops for intranasal dopamine replacement in Parkinson’s disease. ACS Nano 15(5), 8592–8609 (2021). https://doi.org/10.1021/acsnano.1c00453
H. Peng, Y. Li, W. Ji, R. Zhao, Z. Lu et al., Intranasal administration of self-oriented nanocarriers based on therapeutic exosomes for synergistic treatment of Parkinson’s disease. ACS Nano 16(1), 869–884 (2022). https://doi.org/10.1021/acsnano.1c08473
X. Ren, Y. Zhao, F. Xue, Y. Zheng, H. Huang et al., Exosomal DNA aptamer targeting alpha-synuclein aggregates reduced neuropathological deficits in a mouse Parkinson’s disease model. Mol. Ther. Nucleic Acids 17, 726–740 (2019). https://doi.org/10.1016/j.omtn.2019.07.008
M. Qu, Q. Lin, L. Huang, Y. Fu, L. Wang et al., Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J. Control. Release 287, 156–166 (2018). https://doi.org/10.1016/j.jconrel.2018.08.035
C.Y. Lin, Y.C. Lin, C.Y. Huang, S.R. Wu, C.M. Chen et al., Ultrasound-responsive neurotrophic factor-loaded microbubble- liposome complex: preclinical investigation for Parkinson’s disease treatment. J. Control. Release 321, 519–528 (2020). https://doi.org/10.1016/j.jconrel.2020.02.044
B. Ji, M. Wang, D. Gao, S. Xing, L. Li et al., Combining nanoscale magnetic nimodipine liposomes with magnetic resonance image for Parkinson’s disease targeting therapy. Nanomedicine 12(3), 237–253 (2017). https://doi.org/10.2217/nnm-2016-0267
M. Wang, L. Li, X. Zhang, Y. Liu, R. Zhu et al., Magnetic resveratrol liposomes as a new theranostic platform for magnetic resonance imaging guided Parkinson’s disease targeting therapy. ACS Sustain. Chem. Eng. 6(12), 17124–17133 (2018). https://doi.org/10.1021/acssuschemeng.8b04507
S. Xiong, Z. Li, Y. Liu, Q. Wang, J. Luo et al., Brain-targeted delivery shuttled by black phosphorus nanostructure to treat Parkinson’s disease. Biomaterials 260, 120339 (2020). https://doi.org/10.1016/j.biomaterials.2020.120339
Y. Liu, D. Zhu, J. Luo, X. Chen, L. Gao et al., NIR-II-activated yolk–shell nanostructures as an intelligent platform for Parkinsonian therapy. ACS Appl. Bio Mater. 3(10), 6876–6887 (2020). https://doi.org/10.1021/acsabm.0c00794
Y. Liu, H. Hong, J. Xue, J. Luo, Q. Liu et al., Near-infrared radiation-assisted drug delivery nanoplatform to realize blood-brain barrier crossing and protection for Parkinsonian therapy. ACS Appl. Mater. Interfaces 13(31), 37746–37760 (2021). https://doi.org/10.1021/acsami.1c12675
J. Niu, J. Xie, K. Guo, X. Zhang, F. Xia et al., Efficient treatment of Parkinson’s disease using ultrasonography-guided rhFGF20 proteoliposomes. Drug Deliv. 25(1), 1560–1569 (2018). https://doi.org/10.1080/10717544.2018.1482972
B.P. Mead, N. Kim, G.W. Miller, D. Hodges, P. Mastorakos et al., Novel focused ultrasound gene therapy approach noninvasively restores dopaminergic neuron function in a rat Parkinson’s disease model. Nano Lett. 17(6), 3533–3542 (2017). https://doi.org/10.1021/acs.nanolett.7b00616
N. Zhang, F. Yan, X. Liang, M. Wu, Y. Shen et al., Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson’s disease therapy. Theranostics 8(8), 2264–2277 (2018). https://doi.org/10.7150/thno.23734
C.Y. Lin, H.Y. Hsieh, C.M. Chen, S.R. Wu, C.H. Tsai et al., Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson’s disease mouse model. J. Control. Release 235, 72–81 (2016). https://doi.org/10.1016/j.jconrel.2016.05.052
L. Long, X. Cai, R. Guo, P. Wang, L. Wu et al., Treatment of Parkinson’s disease in rats by Nrf2 transfection using MRI-guided focused ultrasound delivery of nanomicrobubbles. Biochem. Biophys. Res. Commun. 482(1), 75–80 (2017). https://doi.org/10.1016/j.bbrc.2016.10.141
H. Liu, Y. Han, T. Wang, H. Zhang, Q. Xu et al., Targeting microglia for therapy of Parkinson’s disease by using biomimetic ultrasmall nanops. J. Am. Chem. Soc. 142(52), 21730–21742 (2020). https://doi.org/10.1021/jacs.0c09390
S.G. Antimisiaris, A. Marazioti, M. Kannavou, E. Natsaridis, F. Gkartziou et al., Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev. 174, 53–86 (2021). https://doi.org/10.1016/j.addr.2021.01.019
A. Singh, W. Kim, Y. Kim, K. Jeong, C.S. Kang et al., Multifunctional photonics nanops for crossing the blood-brain barrier and effecting optically trackable brain theranostics. Adv. Funct. Mater. 26(39), 7057–7066 (2016). https://doi.org/10.1002/adfm.201602808
R. Pandit, L. Chen, J. Götz, The blood-brain barrier: physiology and strategies for drug delivery. Adv. Drug Deliv. Rev. 165–166, 1–14 (2020). https://doi.org/10.1016/j.addr.2019.11.009
D. Wu, M. Qin, D. Xu, L. Wang, C. Liu et al., A bioinspired platform for effective delivery of protein therapeutics to the central nervous system. Adv. Mater. 31(18), 1807557 (2019). https://doi.org/10.1002/adma.201807557
L.N. Nguyen, D. Ma, G. Shui, P. Wong, A. Cazenave-Gassiot et al., Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509, 503–506 (2014). https://doi.org/10.1038/nature13241
G.C. Terstappen, A.H. Meyer, R.D. Bell, W. Zhang, Strategies for delivering therapeutics across the blood-brain barrier. Nat. Rev. Drug Discov. 20, 362–383 (2021). https://doi.org/10.1038/s41573-021-00139-y
E.D. Hood, C.F. Greineder, C. Dodia, J. Han, C. Mesaros et al., Antioxidant protection by PECAM-targeted delivery of a novel NADPH-oxidase inhibitor to the endothelium in vitro and in vivo. J. Control. Release 163(2), 161–169 (2012). https://doi.org/10.1016/j.jconrel.2012.08.031
V.V. Shuvaev, S. Muro, E. Arguiri, M. Khoshnejad, S. Tliba et al., Size and targeting to PECAM vs ICAM control endothelial delivery, internalization and protective effect of multimolecular SOD conjugates. J. Control. Release 234, 115–123 (2016). https://doi.org/10.1016/j.jconrel.2016.05.040
O.A. Marcos-Contreras, J.S. Brenner, R.Y. Kiseleva, V. Zuluaga-Ramirez, C.F. Greineder et al., Combining vascular targeting and the local first pass provides 100-fold higher uptake of ICAM-1-targeted vs untargeted nanocarriers in the inflamed brain. J. Control. Release 301, 54–61 (2019). https://doi.org/10.1016/j.jconrel.2019.03.008
O.A. Marcos-Contreras, C.F. Greineder, R.Y. Kiseleva, H. Parhiz, L.R. Walsh et al., Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood-brain barrier. PNAS 117(7), 3405–3414 (2020). https://doi.org/10.1073/pnas.1912012117
C.C. Yu, H.L. Chen, M.H. Chen, C.H. Lu, N.W. Tsai et al., Vascular inflammation is a risk factor associated with brain atrophy and disease severity in Parkinson’s disease: a case-control study. Oxid. Med. Cell. Longev. 2020, 2591248 (2020). https://doi.org/10.1155/2020/2591248
T.P. Crowe, M.H.W. Greenlee, A.G. Kanthasamy, W.H. Hsu, Mechanism of intranasal drug delivery directly to the brain. Life Sci. 195, 44–52 (2018). https://doi.org/10.1016/j.lfs.2017.12.025
M. Agrawal, S. Saraf, S. Saraf, S.G. Antimisiaris, M.B. Chougule et al., Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Release 281, 139–177 (2018). https://doi.org/10.1016/j.jconrel.2018.05.011
U.K. Sukumar, R.J.C. Bose, M. Malhotra, H.A. Babikir, R. Afjei et al., Intranasal delivery of targeted polyfunctional gold-iron oxide nanops loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials 218, 119342 (2019). https://doi.org/10.1016/j.biomaterials.2019.119342
E. Samaridou, H. Walgrave, E. Salta, D.M. Alvarez, V. Castro-Lopez et al., Nose-to-brain delivery of enveloped RNA - cell permeating peptide nanocomplexes for the treatment of neurodegenerative diseases. Biomaterials 230, 119657 (2020). https://doi.org/10.1016/j.biomaterials.2019.119657
P. Balakrishnan, E.K. Park, C.K. Song, H.J. Ko, T.W. Hahn et al., Carbopol-incorporated thermoreversible gel for intranasal drug delivery. Molecules 20, 4124–4135 (2015). https://doi.org/10.3390/molecules20034124
C.M.J. Hu, L. Zhang, S. Aryal, C. Cheung, R.H. Fang et al., Erythrocyte membrane-camouflaged polymeric nanops as a biomimetic delivery platform. PNAS 108(27), 10980–10985 (2011). https://doi.org/10.1073/pnas.1106634108
X. Dong, J. Gao, C.Y. Zhang, C. Hayworth, M. Frank et al., Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke. ACS Nano 13(2), 1272–1283 (2019). https://doi.org/10.1021/acsnano.8b06572
J. Ma, S. Zhang, J. Liu, F. Liu, F. Du et al., Targeted drug delivery to stroke via chemotactic recruitment of nanops coated with membrane of engineered neural stem cells. Small 15(35), e1902011 (2019). https://doi.org/10.1002/smll.201902011
H. Ye, K. Wang, M. Wang, R. Liu, H. Song et al., Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition. Biomaterials 206, 1–12 (2019). https://doi.org/10.1016/j.biomaterials.2019.03.024
Y. Zou, Y. Liu, Z. Yang, D. Zhang, Y. Lu et al., Effective and targeted human orthotopic glioblastoma xenograft therapy via a multifunctional biomimetic nanomedicine. Adv. Mater. 30(51), 1803717 (2018). https://doi.org/10.1002/adma.201803717
S. Fu, M. Liang, Y. Wang, L. Cui, C. Gao et al., Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma. ACS Appl. Mater. Interfaces 11(2), 1841–1854 (2019). https://doi.org/10.1021/acsami.8b18664
N. Perets, O. Betzer, R. Shapira, S. Brenstein, A. Angel et al., Golden exosomes selectively target brain pathologies in neurodegenerative and neurodevelopmental disorders. Nano Lett. 19(6), 3422–3431 (2019). https://doi.org/10.1021/acs.nanolett.8b04148
E.V. Batrakova, S. Li, A.D. Reynolds, R.L. Mosley, T.K. Bronich et al., A macrophage-nanozyme delivery system for Parkinson’s disease. Bioconjugate Chem. 18(5), 1498–1506 (2007). https://doi.org/10.1021/bc700184b
A.M. Brynskikh, Y. Zhao, R.L. Mosley, S. Li, M.D. Boska et al., Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson’s disease. Nanomedicine 5(3), 379–396 (2010). https://doi.org/10.2217/nnm.10.7
K. Biju, Q. Zhou, G. Li, S.Z. Imam, J.L. Roberts, W.W. Morgan et al., Macrophage-mediated GDNF delivery protects against dopaminergic neurodegeneration: a therapeutic strategy for Parkinson’s disease. Mol. Ther. 18(8), 1536–1544 (2010). https://doi.org/10.1038/mt.2010.107
Y. Zhao, M.J. Haney, V. Mahajan, B.C. Reiner, A. Dunaevsky et al., Active targeted macrophage-mediated delivery of catalase to affected brain regions in models of Parkinson’s disease. J. Nanomed. Nanotechnol. S4, 003 (2011). https://doi.org/10.4172/2157-7439.S4-003
Y. Zhao, M.J. Haney, Y.S. Jin, O. Uvarov, N. Vinod et al., GDNF-expressing macrophages restore motor functions at a severe late-stage, and produce long-term neuroprotective effects at an early-stage of Parkinson’s disease in transgenic Parkin Q311X(A) mice. J. Control. Release 315, 139–149 (2019). https://doi.org/10.1016/j.jconrel.2019.10.027
K.C. Biju, R.A. Santacruz, C. Chen, Q. Zhou, J. Yao et al., Bone marrow-derived microglia-based neurturin delivery protects against dopaminergic neurodegeneration in a mouse model of Parkinson’s disease. Neurosci. Lett. 535, 24–29 (2013). https://doi.org/10.1016/j.neulet.2012.12.034
J. Xue, Z. Zhao, L. Zhang, L. Xue, S. Shen et al., Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 12, 692–700 (2017). https://doi.org/10.1038/nnano.2017.54
D. Dehaini, X. Wei, R.H. Fang, S. Masson, P. Angsantikul et al., Erythrocyte-platelet hybrid membrane coating for enhanced nanop functionalization. Adv. Mater. 29(16), 1606209 (2017). https://doi.org/10.1002/adma.201606209
L.L. Israel, A. Galstyan, E. Holler, J.Y. Ljubimova, Magnetic iron oxide nanops for imaging, targeting and treatment of primary and metastatic tumors of the brain. J. Control. Release 320, 45–62 (2020). https://doi.org/10.1016/j.jconrel.2020.01.009
G. Liu, J. Gao, H. Ai, X. Chen, Applications and potential toxicity of magnetic iron oxide nanops. Small 9(9–10), 1533–1545 (2013). https://doi.org/10.1002/smll.201201531
Y. Huang, B. Zhang, S. Xie, B. Yang, Q. Xu et al., Superparamagnetic iron oxide nanops modified with tween 80 pass through the intact blood-brain barrier in rats under magnetic field. ACS Appl. Mater. Interfaces 8(18), 11336–11341 (2016). https://doi.org/10.1021/acsami.6b02838
H.Y. Kim, T.J. Kim, L. Kang, Y.J. Kim, M.K. Kang et al., Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke. Biomaterials 243, 119942 (2020). https://doi.org/10.1016/j.biomaterials.2020.119942
Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48(7), 2053–2108 (2019). https://doi.org/10.1039/c8cs00618k
S. Liu, X. Pan, H. Liu, Two-dimensional nanomaterials for photothermal therapy. Angew. Chem. Int. Ed. 59(15), 5890–5900 (2020). https://doi.org/10.1002/anie.201911477
X. Li, J.F. Lovell, J. Yoon, X. Chen, Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin Oncol. 17, 657–674 (2020). https://doi.org/10.1038/s41571-020-0410-2
H. Zhou, Y. Gong, Y. Liu, A. Huang, X. Zhu et al., Intelligently thermoresponsive flower-like hollow nano-ruthenium system for sustained release of nerve growth factor to inhibit hyperphosphorylation of tau and neuronal damage for the treatment of Alzheimer’s disease. Biomaterials 237, 119822 (2020). https://doi.org/10.1016/j.biomaterials.2020.119822
M. Aryal, C.D. Arvanitis, P.M. Alexander, N. McDannold, Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Adv. Drug Deliv. Rev. 72, 94–109 (2014). https://doi.org/10.1016/j.addr.2014.01.008
K. Hynynen, N. McDannold, N. Vykhodtseva, F.A. Jolesz, Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220(30), 640–646 (2001). https://doi.org/10.1148/radiol.2202001804
H. Zhang, T. Wang, W. Qiu, Y. Han, Q. Sun et al., Monitoring the opening and recovery of the blood–brain barrier with noninvasive molecular imaging by biodegradable ultrasmall Cu2–xSe nanops. Nano Lett. 18(8), 4985–4992 (2018). https://doi.org/10.1021/acs.nanolett.8b01818
J.O. Szablowski, A. Lee-Gosselin, B. Lue, D. Malounda, M.G. Shapiro, Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat. Biomed. Eng. 2, 475–484 (2018). https://doi.org/10.1038/s41551-018-0258-2
Y. Jiang, J.M. Fay, C.D. Poon, N. Vinod, Y. Zhao et al., Nanoformulation of brain-derived neurotrophic factor with target receptor-triggered-release in the central nervous system. Adv. Funct. Mater. 28(6), 1703982 (2018). https://doi.org/10.1002/adfm.201703982
K. Xhima, K. Markham-Coultes, H. Nedev, S. Heinen, H.U. Saragovi et al., Focused ultrasound delivery of a selective TrkA agonist rescues cholinergic function in a mouse model of Alzheimer's disease. Sci. Adv. 6(4), eaax6646 (2020). https://doi.org/10.1126/sciadv.aax6646
N. Lipsman, Y. Meng, A.J. Bethune, Y. Huang, B. Lam et al., Blood-brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat. Commun. 9, 2336 (2018). https://doi.org/10.1038/s41467-018-04529-6
C. Gasca-Salas, B. Fernandez-Rodriguez, J.A. Pineda-Pardo, R. Rodriguez-Rojas, I. Obeso et al., Blood-brain barrier opening with focused ultrasound in Parkinson’s disease dementia. Nat. Commun. 12, 779 (2021). https://doi.org/10.1038/s41467-021-21022-9
G. Foffani, I. Trigo-Damas, J.A. Pineda-Pardo, J. Blesa, R. Rodríguez-Rojas et al., Focused ultrasound in Parkinson’s disease: a twofold path toward disease modification. Mov. Disord. 34(9), 1262–1273 (2019). https://doi.org/10.1002/mds.27805
G. Leinenga, C. Langton, R. Nisbet, J. Gotz, Ultrasound treatment of neurological diseases–current and emerging applications. Nat. Rev. Neurol. 12, 161–174 (2016). https://doi.org/10.1038/nrneurol.2016.13
A. Joseph, C. Contini, D. Cecchin, S. Nyberg, L. Ruiz-Perez et al., Chemotactic synthetic vesicles: design and applications in blood-brain barrier crossing. Sci. Adv. 3(8), e1700362 (2017). https://doi.org/10.1126/sciadv.1700362
C.P. Foley, D.G. Rubin, A. Santillan, D. Sondhi, J.P. Dyke et al., Intra-arterial delivery of AAV vectors to the mouse brain after mannitol mediated blood brain barrier disruption. J. Control. Release 196, 71–78 (2014). https://doi.org/10.1016/j.jconrel.2014.09.018
S.I. Rapoport, Advances in osmotic opening of the blood-brain barrier to enhance CNS chemotherapy. Expert Opin. Investig. Drugs. 10(10), 1809–1818 (2001). https://doi.org/10.1517/13543784.10.10.1809
R. Shaltiel-Karyo, M. Frenkel-Pinter, E. Rockenstein, C. Patrick, M. Levy-Sakin et al., A blood-brain barrier (BBB) disrupter is also a potent alpha-synuclein (alpha-syn) aggregation inhibitor: a novel dual mechanism of mannitol for the treatment of Parkinson disease (PD). J. Biol. Chem. 288(24), 17579–17588 (2013). https://doi.org/10.1074/jbc.M112.434787
X. Zhang, G. Chen, L. Wen, F. Yang, A.L. Shao et al., Novel multiple agents loaded PLGA nanops for brain delivery via inner ear administration: in vitro and in vivo evaluation. Eur. J. Pharm. Sci. 48, 595–603 (2013). https://doi.org/10.1016/j.ejps.2013.01.007
N. Singh, M.A. Savanur, S. Srivastava, P. D’Silva, G. Mugesh, A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew. Chem. Int. Ed. 56(45), 14267–14271 (2017). https://doi.org/10.1002/anie.201708573
H.J. Kwon, D. Kim, K. Seo, Y.G. Kim, S.I. Han et al., Ceria nanop systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson’s disease. Angew. Chem. Int. Ed. 57(30), 9408–9412 (2018). https://doi.org/10.1002/anie.201805052
C. Ren, X. Hu, Q. Zhou, Graphene oxide quantum dots reduce oxidative stress and inhibit neurotoxicity in vitro and in vivo through catalase-like activity and metabolic regulation. Adv. Sci. 5(5), 1700595 (2018). https://doi.org/10.1002/advs.201700595
M.A. Hegazy, H.M. Maklad, D.M. Samy, D.A. Abdelmonsif, B.M.E. Sabaa et al., Cerium oxide nanops could ameliorate behavioral and neurochemical impairments in 6-hydroxydopamine induced Parkinson’s disease in rats. Neurochem. Int. 108, 361–371 (2017). https://doi.org/10.1016/j.neuint.2017.05.011
Y.Q. Liu, Y. Mao, E. Xu, H. Jia, S. Zhang et al., Nanozyme scavenging ROS for prevention of pathologic α-synuclein transmission in Parkinson’s disease. Nano Today 36, 101027 (2021). https://doi.org/10.1016/j.nantod.2020.101027
Y. Li, Y. Li, H. Wang, R. Liu, Yb3+, Er3+ codoped cerium oxide upconversion nanops enhanced the enzymelike catalytic activity and antioxidative activity for Parkinson’s disease treatment. ACS Appl. Mater. Interfaces 13(12), 13968–13977 (2021). https://doi.org/10.1021/acsami.1c00157
W. Feng, X. Han, H. Hu, M. Chang, L. Ding et al., 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 12, 2203 (2021). https://doi.org/10.1038/s41467-021-22278-x
D. Kim, J.M. Yoo, H. Wang, J. Lee, S.H. Lee et al., Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease. Nat. Nanotechnol. 13, 812–818 (2018). https://doi.org/10.1038/s41565-018-0179-y
G. Gao, R. Chen, M. He, J. Li, J. Li et al., Gold nanoclusters for Parkinson’s disease treatment. Biomaterials 194, 36–46 (2019). https://doi.org/10.1016/j.biomaterials.2018.12.013
L. Wang, X. Li, Y. Han, T. Wang, Y. Zhao et al., Quantum dots protect against MPP+-induced neurotoxicity in a cell model of Parkinson’s disease through autophagy induction. Sci. China Chem. 59, 1486–1491 (2016). https://doi.org/10.1007/s11426-016-0103-7
H. Mohammad-Beigi, A. Hosseini, M. Adeli, M.R. Ejtehadi, G. Christiansen et al., Mechanistic understanding of the interactions between nano-objects with different surface properties and alpha-synuclein. ACS Nano 13(3), 3243–3256 (2019). https://doi.org/10.1021/acsnano.8b08983
N. Joshi, S. Basak, S. Kundu, G. De, A. Mukhopadhyay et al., Attenuation of the early events of alpha-synuclein aggregation: a fluorescence correlation spectroscopy and laser scanning microscopy study in the presence of surface-coated Fe3O4 nanops. Langmuir 31(4), 1469–1478 (2015). https://doi.org/10.1021/la503749e
J. Yoo, E. Lee, H.Y. Kim, D.H. Youn, J. Jung et al., Electromagnetized gold nanops mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson’s disease therapy. Nat. Nanotechnol. 12, 1006–1014 (2017). https://doi.org/10.1038/nnano.2017.133
S. Zhang, P. Sun, K. Lin, F.H.L. Chan, Q. Gao et al., Extracellular nanomatrix-induced self-organization of neural stem cells into miniature substantia nigra-like structures with therapeutic effects on Parkinsonian rats. Adv. Sci. 6(24), 1901822 (2019). https://doi.org/10.1002/advs.201901822
T.H. Chung, S.C. Hsu, S.H. Wu, J.K. Hsiao, C.P. Lin et al., Dextran-coated iron oxide nanop-improved therapeutic effects of human mesenchymal stem cells in a mouse model of Parkinson’s disease. Nanoscale 10(6), 2998–3007 (2018). https://doi.org/10.1039/c7nr06976f
B. Yang, Y. Chen, J. Shi, Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 119(8), 4881–4985 (2019). https://doi.org/10.1021/acs.chemrev.8b00626
S. Manoharan, G.J. Guillemin, R.S. Abiramasundari, M.M. Essa, M. Akbar et al., The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: a mini review. Oxid. Med. Cell. Longev. 2016, 8590578 (2016). https://doi.org/10.1155/2016/8590578
M.D. Howard, E.D. Hood, C.F. Greineder, I.S. Alferiev, M. Chorny et al., Targeting to endothelial cells augments the protective effect of novel dual bioactive antioxidant/anti-inflammatory nanops. Mol. Pharm. 11(7), 2262–2270 (2014). https://doi.org/10.1021/mp400677y
V.V. Shuvaev, J. Han, K.J. Yu, S. Huang, B.J. Hawkins et al., PECAM-targeted delivery of SOD inhibits endothelial inflammatory response. FASEB J. 25(1), 348–357 (2011). https://doi.org/10.1096/fj.10-169789
N. Feliu, D. Docter, M. Heine, P.D. Pino, S. Ashraf et al., In vivo degeneration and the fate of inorganic nanops. Chem. Soc. Rev. 45, 2440–2457 (2016). https://doi.org/10.1039/c5cs00699f
A. Bencsik, P. Lestaevel, I.G. Canu, Nano- and neurotoxicology: an emerging discipline. Prog. Neurobiol. 160, 45–63 (2018). https://doi.org/10.1016/j.pneurobio.2017.10.003
L. Maroteaux, J.T. Campanelli, R.H. Scheller, Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 8(8), 2804–2815 (1988). https://doi.org/10.1523/JNEUROSCI.08-08-02804.1988
A.D. Stephens, M. Zacharopoulou, G.S.K. Schierle, The cellular environment affects monomeric α-synuclein structure. Trends Biochem. Sci. 44(5), 453–466 (2019). https://doi.org/10.1016/j.tibs.2018.11.005
S. Ghio, F. Kamp, R. Cauchi, A. Giese, N. Vassallo, Interaction of alpha-synuclein with biomembranes in Parkinson’s disease–role of cardiolipin. Prog. Lipid Res. 61, 73–82 (2016). https://doi.org/10.1016/j.plipres.2015.10.005
Z.A. Sorrentino, B.I. Giasson, P. Chakrabarty, α-Synuclein and astrocytes: tracing the pathways from homeostasis to neurodegeneration in Lewy body disease. Acta Neuropathol. 138, 1–21 (2019). https://doi.org/10.1007/s00401-019-01977-2
M.J. Hajipour, M.R. Santoso, F. Rezaee, H. Aghaverdi, M. Mahmoudi et al., Advances in Alzheimer’s diagnosis and therapy: the implications of nanotechnology. Trends Biotechnol. 35(10), 937–953 (2017). https://doi.org/10.1016/j.tibtech.2017.06.002
A. Villar-Piqué, T.L. Fonseca, T.F. Outeiro, Structure, function and toxicity of alpha-synuclein: the Bermuda triangle in synucleinopathies. J. Neurochem. 139(S1), 240–255 (2016). https://doi.org/10.1111/jnc.13249
R.A. Barker, M. Götz, M. Parmar, New approaches for brain repair—from rescue to reprogramming. Nature 557, 329–334 (2018). https://doi.org/10.1038/s41586-018-0087-1
C. Vissers, G.L. Ming, H. Song, Nanop technology and stem cell therapy team up against neurodegenerative disorders. Adv. Drug Deliv. Rev. 148, 239–251 (2019). https://doi.org/10.1016/j.addr.2019.02.007
N. Daviaud, R.H. Friedel, H. Zou, Vascularization and engraftment of transplanted human cerebral organoids in mouse cortex. eNeuro 5(6), 219–18 (2018). https://doi.org/10.1523/ENEURO.0219-18.2018
H. Qian, X. Kang, J. Hu, D. Zhang, Z. Liang et al., Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 582, 550–556 (2020). https://doi.org/10.1038/s41586-020-2388-4