Effects of source-drain underlaps on the performance of silicon nanowire on insulator transistors
Corresponding Author: Khairul Alam
Nano-Micro Letters,
Vol. 2 No. 2 (2010), Article Number: 83-88
Abstract
The effects of source-drain underlaps on the performance of a top gate silicon nanowire on insulator transistor are studied using a three dimensional (3D) self-consistent Poisson-Schrodinger quantum simulation. Voltage-controlled tunnel barrier is the device transport physics. The off current, the on/off current ratio, and the inverse subthreshold slope are improved while the on current is degraded with underlap. The physics behind this behavior is the modulation of a tunnel barrier with underlap. The underlap primarily affects the tunneling component of drain current. About 50% contribution to the gate capacitance comes from the fringing electric fields emanating from the gate metal to the source and drain. The gate capacitance reduces with underlap, which should reduce the intrinsic switching delay and increase the intrinsic cut-off frequency. However, both the on current and the transconductance reduce with underlap, and the consequence is the increase of delay and the reduction of cut-off frequency.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell and C. M. Lieber, Nano Lett. 4, 433 (2004). doi:10.1021/nl035162i
- Y. Cui, Z. Zhong, D. Wang, W. U. Wang and C. M. Lieber, Nano Lett. 3, 149 (2003). doi:10.1021/nl025875l
- H. C. Lin and C. J. Su, IEEE Trans. Nanotechnol. 6, 206 (2007). doi:10.1109/TNANO.2007.891828
- S. M. Koo, M. D. Edelstein, Q. Li, C. A. Richter and E. M. Vogel, Nanotechnology 16, 1482 (2005). doi:10.1088/0957-4484/16/9/011
- J. Wang, A. Rahman, A. Ghosh, G. Klimeck and M. Lundstrom, Appl. Phys. Lett. 86, 093113 (2005). doi:10.1063/1.1873055
- Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim and C. M. Lieber, Science 294, 1313 (2001). doi:10.1126/science.1066192
- Y. Cui, Q. Wei, H. Park and C. M. Lieber, Science 293, 1289 (2001). doi:10.1126/science.1062711
- F. Boeuf, T. Skotnicki, S. Monfray, C. Julien, D. Dutartre, J. Martins, P. Mazoyer, R. Palla, B. Tavel, P. Ribot, E. Sondergard and M. Sanquer, Tech. Dig. Int. Electron Devices Meet. 1, 637 (2001).
- R. Gusmeroli, A. S. Spinelli, A. Pirovano, A. L. Lacajta, F. Boeuf and T. Skotnicki, Tech. Dig. Int. Electron Devices Meet. 3, 225 (2003).
- J. G. Fossum, M. M. Chowdhury, V. P. Trivedi, T. J. King, Y. K. Choi, J. An and B. Yu, Tech. Dig. Int. Electron Devices Meet. 3, 679 (2003).
- V. P. Trivedi, J. G. Fossum and M. M. Chowdhury, IEEE Trans. Electron Devices 52, 56 (2005). doi:10.1109/TED.2004.841333
- K. Alam and R. Lake, Appl. Phys. Lett. 87, 073104 (2005). doi:10.1063/1.2011788
- K. Alam and R. K. Lake, J. Appl. Phys. 98, 064307 (2005). doi:10.1063/1.2060962
- M. Shin, IEEE Trans. Nanotechnol. 6, 230 (2007). doi:10.1109/TNANO.2007.891819
- R. Lake, G. Klimeck, R. C. Bowen and D. Jovanovic, J. Appl. Phys. 81, 7845 (1997). doi:10.1063/1.365394
- M. P. L. Sancho, J. M. L. Sancho and J. Rubio, J. Phys. F 15, 851 (1985).
- V. Eyert, J. Comput. Phys. 124, 271 (1996). doi:10.1006/jcph.1996.0059
- J. Wang, A. Rahman, A. Ghosh, G. Klimeck and M. Lundstrom, IEEE Trans. Electron Dev. 52, 1589 (2005). doi:10.1109/TED.2005.850945
- Y. Zheng, C. Rivas, R. Lake, K. Alam, T. B. Boykin and G. Klimeck, IEEE Trans. Electron Dev. 52, 1097 (2005). doi:10.1109/TED.2005.848077
- M. Shin, IEEE Trans. Electron Dev. 55, 737 (2008). doi:10.1109/TED.2008.916149
References
Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell and C. M. Lieber, Nano Lett. 4, 433 (2004). doi:10.1021/nl035162i
Y. Cui, Z. Zhong, D. Wang, W. U. Wang and C. M. Lieber, Nano Lett. 3, 149 (2003). doi:10.1021/nl025875l
H. C. Lin and C. J. Su, IEEE Trans. Nanotechnol. 6, 206 (2007). doi:10.1109/TNANO.2007.891828
S. M. Koo, M. D. Edelstein, Q. Li, C. A. Richter and E. M. Vogel, Nanotechnology 16, 1482 (2005). doi:10.1088/0957-4484/16/9/011
J. Wang, A. Rahman, A. Ghosh, G. Klimeck and M. Lundstrom, Appl. Phys. Lett. 86, 093113 (2005). doi:10.1063/1.1873055
Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim and C. M. Lieber, Science 294, 1313 (2001). doi:10.1126/science.1066192
Y. Cui, Q. Wei, H. Park and C. M. Lieber, Science 293, 1289 (2001). doi:10.1126/science.1062711
F. Boeuf, T. Skotnicki, S. Monfray, C. Julien, D. Dutartre, J. Martins, P. Mazoyer, R. Palla, B. Tavel, P. Ribot, E. Sondergard and M. Sanquer, Tech. Dig. Int. Electron Devices Meet. 1, 637 (2001).
R. Gusmeroli, A. S. Spinelli, A. Pirovano, A. L. Lacajta, F. Boeuf and T. Skotnicki, Tech. Dig. Int. Electron Devices Meet. 3, 225 (2003).
J. G. Fossum, M. M. Chowdhury, V. P. Trivedi, T. J. King, Y. K. Choi, J. An and B. Yu, Tech. Dig. Int. Electron Devices Meet. 3, 679 (2003).
V. P. Trivedi, J. G. Fossum and M. M. Chowdhury, IEEE Trans. Electron Devices 52, 56 (2005). doi:10.1109/TED.2004.841333
K. Alam and R. Lake, Appl. Phys. Lett. 87, 073104 (2005). doi:10.1063/1.2011788
K. Alam and R. K. Lake, J. Appl. Phys. 98, 064307 (2005). doi:10.1063/1.2060962
M. Shin, IEEE Trans. Nanotechnol. 6, 230 (2007). doi:10.1109/TNANO.2007.891819
R. Lake, G. Klimeck, R. C. Bowen and D. Jovanovic, J. Appl. Phys. 81, 7845 (1997). doi:10.1063/1.365394
M. P. L. Sancho, J. M. L. Sancho and J. Rubio, J. Phys. F 15, 851 (1985).
V. Eyert, J. Comput. Phys. 124, 271 (1996). doi:10.1006/jcph.1996.0059
J. Wang, A. Rahman, A. Ghosh, G. Klimeck and M. Lundstrom, IEEE Trans. Electron Dev. 52, 1589 (2005). doi:10.1109/TED.2005.850945
Y. Zheng, C. Rivas, R. Lake, K. Alam, T. B. Boykin and G. Klimeck, IEEE Trans. Electron Dev. 52, 1097 (2005). doi:10.1109/TED.2005.848077
M. Shin, IEEE Trans. Electron Dev. 55, 737 (2008). doi:10.1109/TED.2008.916149