Next-Generation Intelligent MXene-Based Electrochemical Aptasensors for Point-of-Care Cancer Diagnostics
Corresponding Author: Raju Khan
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 100
Abstract
Delayed diagnosis of cancer using conventional diagnostic modalities needs to be addressed to reduce the mortality rate of cancer. Recently, 2D nanomaterial-enabled advanced biosensors have shown potential towards the early diagnosis of cancer. The high surface area, surface functional groups availability, and excellent electrical conductivity of MXene make it the 2D material of choice for the fabrication of advanced electrochemical biosensors for disease diagnostics. MXene-enabled electrochemical aptasensors have shown great promise for the detection of cancer biomarkers with a femtomolar limit of detection. Additionally, the stability, ease of synthesis, good reproducibility, and high specificity offered by MXene-enabled aptasensors hold promise to be the mainstream diagnostic approach. In this review, the design and fabrication of MXene-based electrochemical aptasensors for the detection of cancer biomarkers have been discussed. Besides, various synthetic processes and useful properties of MXenes which can be tuned and optimized easily and efficiently to fabricate sensitive biosensors have been elucidated. Further, futuristic sensing applications along with challenges will be deliberated herein.
Highlights:
1 Shed light on MXene-based electrochemical aptasensors for the detection of cancer biomarkers.
2 Strategies for the design and synthesis of biomarker-specific aptamer are presented.
3 The properties such as electrical conductivity, chemical stability, mechanical properties, and the hydrophilic–hydrophobic nature of MXenes are discussed.
4 Brief insight on futuristic sensing applications along with challenges are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/CAAC.21660
- GLOBOCAN 2020: new global cancer data. (UICC, 2020). https://www.uicc.org/news/globocan-2020-new-global-cancer-data (Accessed Mar 9, 2022)
- J. Brodersen, L.M. Schwartz, S. Woloshin, Overdiagnosis: how cancer screening can turn indolent pathology into illness. APMIS 122(8), 683–689 (2014). https://doi.org/10.1111/APM.12278
- N. Goossens, S. Nakagawa, X. Sun, Y. Hoshida, Cancer biomarker discovery and validation. Transl. Cancer Res. 4(3), 256 (2015). https://doi.org/10.3978/J.ISSN.2218-676X.2015.06.04
- P.R. Srinivas, B.S. Kramer, S. Srivastava, Trends in biomarker research for cancer detection. Lancet Oncol. 2(11), 698–704 (2001). https://doi.org/10.1016/S1470-2045(01)00560-5
- R. Khan, A. Parihar, S.K. Sanghi, Biosensor Based Advanced Cancer Diagnostics: From Lab to Clinics (ScienceDirect, 2021). https://doi.org/10.1016/C2020-0-00363-4
- R. Etzioni, N. Urban, S. Ramsey, M. McIntosh, S. Schwartz et al., The case for early detection. Nat. Rev. Cancer. 3(4), 243–252 (2003). https://doi.org/10.1038/nrc1041
- G.P. Hemstreet, S. Yin, Z. Ma, R.B. Bonner, W. Bi et al., Biomarker risk assessment and bladder cancer detection in a cohort exposed to benzidine. J. Natl. Cancer Inst. 93(6), 427–436 (2001). https://doi.org/10.1093/JNCI/93.6.427
- H. Kobayashi, H. Sugimoto, S. Onishi, K. Nakano, Novel biomarker candidates for the diagnosis of ovarian clear cell carcinoma (review). Oncol. Lett. 10(2), 612–618 (2015). https://doi.org/10.3892/ol.2015.3367
- R. Liu, X. Chen, Y. Du, W. Yao, L. Shen et al., Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin. Chem. 58(3), 610–618 (2012). https://doi.org/10.1373/CLINCHEM.2011.172767
- D. Sin, C.M. Tammemagi, S. Lam, M.J. Barnett, X. Duan et al., Pro–surfactant protein B as a biomarker for lung cancer prediction. J. Clin. Oncol. 31(36), 4536 (2013). https://doi.org/10.1200/JCO.2013.50.6105
- R.M. Witteles, Biomarkers as predictors of cardiac toxicity from targeted cancer therapies. J. Card. Fail. 22(6), 459–464 (2016). https://doi.org/10.1016/J.CARDFAIL.2016.03.016
- Y. Chen, K. Li, D. Gong, J. Zhang, Q. Li et al., ACLY: a biomarker of recurrence in breast cancer. Pathol. Res. Pract. 216(9), 153076 (2020). https://doi.org/10.1016/J.PRP.2020.153076
- A. Parihar, S. Jain, D.S. Parihar, P. Ranjan, R. Khan, Biomarkers associated with different types of cancer as a potential candidate for early diagnosis of oncological disorders. Biosensor Based Advanced Cancer Diagnostics: From Lab to Clinics 47–57 (2022). https://doi.org/10.1016/b978-0-12-823424-2.00007-7
- A. Parihar, S. Malviya, R. Khan, Identification of biomarkers associated with cancer using integrated bioinformatic analysis. Cancer Bioinformatics (2021). https://doi.org/10.5772/INTECHOPEN.101432
- A. Parihar, P. Ranjan, S.K. Sanghi, A.K. Srivastava, R. Khan, Point-of-care biosensor-based diagnosis of COVID-19 holds promise to combat current and future pandemics. ACS Appl. Bio Mater. 3(11), 7326–7343 (2020). https://doi.org/10.1021/acsabm.0c01083
- M. Blanco-Formoso, R.A. Alvarez-Puebla, Cancer diagnosis through SERS and other related techniques. Int. J. Mol. Sci. 21(6), 2253 (2020). https://doi.org/10.3390/IJMS21062253
- P.S. Bernard, C.T. Wittwer, Real-time PCR technology for cancer diagnostics. Clin. Chem. 48(8), 1178–1185 (2002). https://doi.org/10.1093/CLINCHEM/48.8.1178
- S. Yadav, M.A. Sadique, P. Ranjan, N. Kumar, A. Singhal et al., SERS based lateral flow immunoassay for point-of-care detection of Sars-Cov-2 in clinical samples. ACS Appl. Bio Mater. 4(4), 2974–2995 (2021). https://doi.org/10.1021/acsabm.1c00102
- N. Kumar, V.S. Gowri, R. Khan, P. Ranjan, M.A. Sadique et al., Efficiency of nanomaterials for electrochemical diagnostics based point-of-care detection of non-Invasive oral cancer biomarkers. Adv. Mater. Lett. 12(8), 1–20 (2021). https://doi.org/10.5185/amlett.2021.081651
- P. Ranjan, A. Singhal, S. Yadav, N. Kumar, S. Murali et al., Diagnosis of SARS-CoV-2 using potential point-of-care electrochemical immunosensor: toward the future prospects. Int. Rev. Immunol. 40(1–2), 126–142 (2021). https://doi.org/10.1080/08830185.2021.1872566
- L.K. Kiio, D.N. Mbui, P.M. Ndangili, O.J. Onam, F. Oloo, Current biosensors used for early detection of lung cancer biomarkers. J. Cancer Res. Rev. Rep. (2021). https://doi.org/10.47363/JCRR/2021(3)148
- P. Ranjan, A. Parihar, S. Jain, N. Kumar, C. Dhand et al., Biosensor-based diagnostic approaches for various cellular biomarkers of breast cancer: a comprehensive review. Anal. Biochem. 610, 113996 (2020). https://doi.org/10.1016/j.ab.2020.113996
- M. Lakshmanakumar, N. Nesakumar, A.J. Jbb, J.B.B. Rayappan, Electrochemical DNA biosensors for cervical cancers. biomarkers biosens. In Biomarkers and biosensors for cervical cancer diagnosis: from lab to clinics, (Springer, Singapore, 2021), pp 57–69. https://doi.org/10.1007/978-981-16-2586-2_5
- R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3(1), 20–30 (2011). https://doi.org/10.1039/C0NR00323A
- B. Mortazavi, G. Cuniberti, T. Rabczuk, Mechanical properties and thermal conductivity of graphitic carbon nitride: a molecular dynamics study. Comput. Mater. Sci. 99, 285–289 (2015). https://doi.org/10.1016/J.COMMATSCI.2014.12.036
- F.A. Rasmussen, K.S. Thygesen, Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119(23), 13169–13183 (2015). https://doi.org/10.1021/acs.jpcc.5b02950
- P. Chen, N. Li, X. Chen, W.J. Ong, X. Zhao, The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater. 5(1), 014002 (2017). https://doi.org/10.1088/2053-1583/AA8D37
- S. Yadav, M.A. Sadique, A. Kaushik, P. Ranjan, R. Khan et al., Borophene as an emerging 2D flatland for biomedical applications: current challenges and future prospects. J. Mater. Chem. B 10(8), 1146–1175 (2022). https://doi.org/10.1039/D1TB02277F
- N. Kumar, M.A. Sadique, R. Khan, Electrochemical exfoliation of graphene quantum dots from waste dry cell battery for biosensor applications. Mater. Lett. 305, 130829 (2021). https://doi.org/10.1016/j.matlet.2021.130829
- C. Huo, B. Cai, Z. Yuan, B. Ma, H. Zeng et al., Two-dimensional metal halide perovskites: theory, synthesis, and optoelectronics. Small Methods 1(3), 1600018 (2017). https://doi.org/10.1002/SMTD.201600018
- S. Barua, H.S. Dutta, S. Gogoi, R. Devi, R. Khan, Nanostructured MoS2-based advanced biosensors: a review. ACS Appl. Nano Mater. 1(1), 2–25 (2017). https://doi.org/10.1021/ACSANM.7B00157
- A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, A. Dhakshinamoorthy, A.M. Asiri et al., 2D metal–organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis. Adv. Mater. 31(41), 1900617 (2019). https://doi.org/10.1002/ADMA.201900617
- A. Singhal, A. Parihar, N. Kumar, R. Khan, High throughput molecularly imprinted polymers based electrochemical nanosensors for point-of-care diagnostics of COVID-19. Mater. Lett. 306, 130898 (2022). https://doi.org/10.1016/j.matlet.2021.130898
- J. Yi, J. Li, S. Huang, L. Hu, L. Miao et al., Ti2CTx MXene-based all-optical modulator. InfoMat 2(3), 601–609 (2020). https://doi.org/10.1002/inf2.12052
- W. Huang, L. Hu, Y. Tang, Z. Xie, H. Zhang et al., Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv. Funct. Mater. 30(49), 2005223 (2020). https://doi.org/10.1002/ADFM.202005223
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/ADMA.201102306
- X. Li, C. Wang, Y. Cao, G. Wang, Functional MXene materials: progress of their applications. Chem. An Asian J. 13(19), 2742–2757 (2018). https://doi.org/10.1002/ASIA.201800543
- X. Xu, Y. Chen, P. He, S. Wang, K. Ling et al., Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 14(8), 2875–2883 (2021). https://doi.org/10.1007/S12274-021-3536-3
- X. Han, J. Huang, H. Lin, Z. Wang, P. Li et al., 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 7(9), 1701394 (2018). https://doi.org/10.1002/adhm.201701394
- X. Yu, X. Cai, H. Cui, S.W. Lee, X.F. Yu et al., Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 9(45), 17859–17864 (2017). https://doi.org/10.1039/C7NR05997C
- C. Zhang, L. Cui, S. Abdolhosseinzadeh, J. Heier, Two-dimensional MXenes for lithium-sulfur batteries. InfoMat 2(4), 613–638 (2020). https://doi.org/10.1002/inf2.12080
- B. Cao, H. Liu, X. Zhang, P. Zhang, Q. Zhu et al., MOF-derived ZnS nanodots/Ti3C2Tx MXene hybrids boosting superior lithium storage performance. Nano-Micro Lett. 13, 202 (2021). https://doi.org/10.1007/S40820-021-00728-X
- J. Luo, E. Matios, H. Wang, X. Tao, W. Li, Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat 2(6), 1057–1076 (2020). https://doi.org/10.1002/inf2.12118
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Enhanced catalytic conversion of polysulfide using 1D CoTe and 2D MXene for heat-resistant and lean-electrolyte Li–S batteries. Chem. Eng. J. 430, 132734 (2022). https://doi.org/10.1016/J.CEJ.2021.132734
- A.S. Etman, J. Halim, J. Rosen, Fabrication of Mo1. 33CTz(MXene)-cellulose freestanding electrodes for supercapacitor applications. Mater. Adv. 2(2), 743–753 (2021). https://doi.org/10.1039/d0ma00922a
- J. Yin, S. Pan, X. Guo, Y. Gao, D. Zhu et al., Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
- M. Sajid, MXenes: are they emerging materials for analytical chemistry applications?–a review. Anal. Chim. Acta 1143, 267–280 (2021). https://doi.org/10.1016/J.ACA.2020.08.063
- O. Salim, K.A. Mahmoud, K.K. Pant, R.K. Joshi, Introduction to MXenes: synthesis and characteristics. Mater. Today Chem. 14, 100191 (2019). https://doi.org/10.1016/J.MTCHEM.2019.08.010
- K. Maleski, C.E. Ren, M.Q. Zhao, B. Anasori, Y. Gogotsi, Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Appl. Mater. Interfaces 10(29), 24491–24498 (2018). https://doi.org/10.1021/ACSAMI.8B04662
- J. Sun, H. Du, Z. Chen, L. Wang, G. Shen, MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. (2021). https://doi.org/10.1007/S12274-021-3967-X
- A. Sundaram, J.S. Ponraj, J.S. Ponraj, C. Wang, W.K. Peng et al., Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics. J. Mater. Chem. B 8(23), 4990–5013 (2020). https://doi.org/10.1039/D0TB00251H
- P. Röthlisberger, M. Hollenstein, Aptamer chemistry. Adv. Drug Deliv. Rev. 134, 3–21 (2018). https://doi.org/10.1016/J.ADDR.2018.04.007
- S. Song, L. Wang, J. Li, C. Fan, J. Zhao, Aptamer-based biosensors. TrAC. Trends Anal. Chem. 27(2), 108–117 (2008). https://doi.org/10.1016/J.TRAC.2007.12.004
- G. Zhou, G. Wilson, L. Hebbard, W. Duan, C. Liddle et al., Aptamers: a promising chemical antibody for cancer therapy. Oncotarget 7(12), 13446 (2016)
- M. Darmostuk, S. Rimpelova, H. Gbelcova, T. Ruml, Current approaches in SELEX: an update to aptamer selection technology. Biotechnol. Adv. 33(6), 1141–1161 (2015). https://doi.org/10.1016/J.BIOTECHADV.2015.02.008
- P.H.L. Tran, D. Xiang, T.N.G. Nguyen, T.T.D. Tran, Q. Chen et al., Aptamer-guided extracellular vesicle theranostics in oncology. Theranostics 10(9), 3849 (2020). https://doi.org/10.7150/THNO.39706
- B. Guan, X. Zhang, Aptamers as versatile ligands for biomedical and pharmaceutical applications. Int. J. Nanomed. 15, 1059 (2020). https://doi.org/10.2147/IJN.S237544
- R. Savla, O. Taratula, O. Garbuzenko, T. Minko, Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J. Control. Release 153(1), 16–22 (2011). https://doi.org/10.1016/J.JCONREL.2011.02.015
- M. Sun, S. Liu, X. Wei, S. Wan, M. Huang et al., Aptamer blocking strategy inhibits SARS-CoV-2 virus infection. Angew. Chem. Int. Ed. 133(18), 10354–10360 (2021). https://doi.org/10.1002/ANGE.202100225
- J. Nan, X. Guo, J. Xiao, X. Li, W. Chen et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2021). https://doi.org/10.1002/SMLL.201902085
- K. Chen, B. Liu, B. Yu, W. Zhong, Y. Lu et al., Advances in the development of aptamer drug conjugates for targeted drug delivery. WIREs Nanomed. Nanobiotechnol. 9(3), e1438 (2017). https://doi.org/10.1002/WNAN.1438
- J.D. Munzar, A. Ng, D. Juncker, Duplexed aptamers: history, design, theory, and application to biosensing. Chem. Soc. Rev. 48(5), 1390–1419 (2019). https://doi.org/10.1039/C8CS00880A
- N. Li, J. Peng, W.J. Ong, T. Ma, Arramel et al., MXenes: an emerging platform for wearable electronics and looking beyond. Matter 4(2), 377–407 (2021). https://doi.org/10.1016/j.matt.2020.10.024
- L. Zhou, F. Wu, J. Yu, Q. Deng, F. Zhang et al., Titanium carbide (Ti3C2Tx) MXene: a novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon 118, 50–57 (2017). https://doi.org/10.1016/J.CARBON.2017.03.023
- G.J. Soufi, P. Iravani, A. Hekmatnia, E. Mostafavi, M. Khatami et al., MXenes and MXene-based materials with cancer diagnostic applications: challenges and opportunities. Comments Inorg. Chem. (2021). https://doi.org/10.1080/02603594.2021.1990890
- K. Mao, H. Zhang, Z. Wang, H. Cao, K. Zhang et al., Nanomaterial-based aptamer sensors for arsenic detection. Biosens. Bioelectron. 148, 111785 (2020). https://doi.org/10.1016/J.BIOS.2019.111785
- Y.W. Cheung, R.M. Dirkzwager, W.C. Wong, J. Cardoso, J.D.N. Costa et al., Aptamer-mediated plasmodium-specific diagnosis of malaria. Biochimie 145, 131–136 (2018). https://doi.org/10.1016/J.BIOCHI.2017.10.017
- C.E. Sunday, M. Chowdhury, Review—aptamer-based electrochemical sensing strategies for breast cancer. J. Electrochem. Soc. 168(2), 027511 (2021). https://doi.org/10.1149/1945-7111/ABE34D
- Q. Wu, G. Chen, S. Qiu, S. Feng, D. Lin, Target-triggered and self-calibration aptasensor based on SERS for precise detection of a prostate cancer biomarker in human blood. Nanoscale 13(16), 7574–7582 (2021). https://doi.org/10.1039/d1nr00480h
- NCI dictionary of cancer terms. https://www.cancer.gov/publications/dictionaries/cancer-terms (Accessed Feb 19, 2022)
- R.M. Califf, Biomarker definitions and their applications. Exp. Biol. Med. 243(3), 213 (2018). https://doi.org/10.1177/1535370217750088
- Diagnostic biomarker. https://me-pedia.org/wiki/Diagnostic_biomarker (Accessed March 03, 2022)
- I. Martins, I.P. Ribeiro, J. Jorge, A.C. Gonçalves, A.B. Sarmento-Ribeiro, Liquid biopsies: applications for cancer diagnosis and monitoring. Genes 12(3), 349 (2021). https://doi.org/10.3390/GENES12030349
- BEST (biomarkers, endpoints, and other tools) resource. (NCBI Bookshelf, 2016). https://www.ncbi.nlm.nih.gov/books/NBK326791 (Accessed Mar 9, 2022)
- M. Adamaki, V. Zoumpourlis, Prostate cancer biomarkers: from diagnosis to prognosis and precision-guided therapeutics. Pharmacol. Ther. 228, 107932 (2021). https://doi.org/10.1016/J.PHARMTHERA.2021.107932
- H.M. Meng, H. Liu, H. Kuai, R. Peng, L. Mo et al., Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem. Soc. Rev. 45(9), 2583–2602 (2019). https://doi.org/10.1039/C5CS00645G
- M. Jamal-Hanjani, S.A. Quezada, J. Larkin, C. Swanton, Translational implications of tumor heterogeneity. Clin. Cancer Res. 21(6), 1258–1266 (2015). https://doi.org/10.1158/1078-0432.CCR-14-1429
- T. Katsuda, N. Kosaka, T. Ochiya, The roles of extracellular vesicles in cancer biology: toward the development of novel cancer biomarkers. Proteomics 14(4–5), 412–425 (2014). https://doi.org/10.1002/PMIC.201300389
- B. Dai, C. Yin, J. Wu, W. Li, L. Zheng et al., Lab chip a flux-adaptable pump-free microfluidics-based self-contained platform for multiplex cancer biomarker detection. Lab Chip 21(1), 143–153 (2021). https://doi.org/10.1039/d0lc00944j
- L. Wu, X. Qu, Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev. 44(10), 2963–2997 (2015). https://doi.org/10.1039/C4CS00370E
- V.S.P.K.S.A. Jayanthi, A.B. Das, U. Saxena, Recent advances in biosensor development for the detection of cancer biomarkers. Biosens. Bioelectron. 91, 15–23 (2017). https://doi.org/10.1016/j.bios.2016.12.014
- J. Zhou, J. Rossi, Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16(3), 181 (2017). https://doi.org/10.1038/NRD.2016.199
- Y. Morita, M. Leslie, H. Kameyama, D.E. Volk, T. Tanaka, Aptamer therapeutics in cancer: current and future. Cancers 10(3), 80 (2018). https://doi.org/10.3390/CANCERS10030080
- A. Qureshi, I. Roci, Y. Gurbuz, J.H. Niazi, VEGF cancer biomarker protein detection in real human serum using capacitive label-free aptasensor. Macromol. Symp. 357(1), 74–78 (2015). https://doi.org/10.1002/MASY.201400191
- X. Li, X. Ding, J. Fan, Nicking endonuclease-assisted signal amplification of a split molecular aptamer beacon for biomolecule detection using graphene oxide as a sensing platform. Analyst 140(23), 7918–7925 (2015). https://doi.org/10.1039/C5AN01759A
- A. Nabok, H. Abu-Ali, S. Takita, D.P. Smith, Electrochemical detection of prostate cancer biomarker PCA3 using specific RNA-based aptamer labelled with ferrocene. Chemosensors 9(4), 59 (2021). https://doi.org/10.3390/chemosensors9040059
- A. Díaz-Fernández, R. Miranda-Castro, N. de-los-Santos-Álvarez, M.J. Lobo-Castañón, P. Estrela, Impedimetric aptamer-based glycan PSA score for discrimination of prostate cancer from other prostate diseases. Biosens. Bioelectron. 175, 112872 (2021). https://doi.org/10.1016/j.bios.2020.112872
- H. Wan, X. Cao, M. Liu, F. Zhang, C. Sun et al., Aptamer and bifunctional enzyme co-functionalized MOF-derived porous carbon for low-background electrochemical aptasensing. Anal. Bioanal. Chem. 413(25), 6303–6312 (2021). https://doi.org/10.1007/s00216-021-03585-0
- S.R. Nxele, T. Nyokong, The effects of the composition and structure of quantum dots combined with cobalt phthalocyanine and an aptamer on the electrochemical detection of prostate specific antigen. Dyes Pigments 192, 109407 (2021). https://doi.org/10.1016/j.dyepig.2021.109407
- S.S.S. Toloun, L. Pishkar, Study of the prostate-specific antigen–aptamer stability in the PSA–aptamer-single wall carbon nanotube assembly by docking and molecular dynamics simulation. Mol. Simul. 47(12), 951–959 (2021). https://doi.org/10.1080/08927022.2021.1932874
- Y. Wang, X. Kan, Sensitive and selective “signal-off” electrochemiluminescence sensing for prostate-specific antigen based on aptamer and molecularly imprinted polymer. Analyst 146(24), 7693–7701 (2021). https://doi.org/10.1039/d1an01645h
- N. Ma, W. Jiang, T. Li, Z. Zhang, H. Qi et al., Fluorescence aggregation assay for the protein biomarker mucin 1 using carbon dot-labeled antibodies and aptamers. Microchim. Acta 182(1–2), 443–447 (2015). https://doi.org/10.1007/s00604-014-1386-3
- L. Zhao, M. Cheng, G. Liu, H. Lu, Y. Gao et al., A fluorescent biosensor based on molybdenum disulfide nanosheets and protein aptamer for sensitive detection of carcinoembryonic antigen. Sens. Actuators B Chem. 273, 185–190 (2018). https://doi.org/10.1016/j.snb.2018.06.004
- Y. Wang, L. Chen, T. Xuan, J. Wang, X. Wang, Label-free electrochemical impedance spectroscopy aptasensor for ultrasensitive detection of lung cancer biomarker carcinoembryonic antigen. Front. Chem. 9, 721008 (2021). https://doi.org/10.3389/fchem.2021.721008
- B. Bao, P. Su, J. Zhu, J. Chen, Y. Xu et al., Rapid aptasensor capable of simply detect tumor markers based on conjugated polyelectrolytes. Talanta 190, 204–209 (2018). https://doi.org/10.1016/j.talanta.2018.07.072
- J. Shi, J. Lyu, F. Tian, M. Yang, A fluorescence turn-on biosensor based on graphene quantum dots (GQDs) and molybdenum disulfide (MoS2) nanosheets for epithelial cell adhesion molecule (EpCAM) detection. Biosens. Bioelectron. 93, 182–188 (2017). https://doi.org/10.1016/j.bios.2016.09.012
- Y. Wang, S. Sun, J. Luo, Y. Xiong, T. Ming et al., Low sample volume origami-paper-based graphene-modified aptasensors for label-free electrochemical detection of cancer biomarker-EGFR. Microsyst. Nanoeng. 6(1), 32 (2020). https://doi.org/10.1038/s41378-020-0146-2
- Z. Hao, Y. Pan, W. Shao, Q. Lin, X. Zhao, Graphene-based fully integrated portable nanosensing system for on-line detection of cytokine biomarkers in saliva. Biosens. Bioelectron. 134, 16–23 (2019). https://doi.org/10.1016/j.bios.2019.03.053
- K. Zhang, M. Pei, Y. Cheng, Z. Zhang, C. Niu et al., A novel electrochemical aptamer biosensor based on tetrahedral DNA nanostructures and catalytic hairpin assembly for CEA detection. J. Electroanal. Chem. 898, 115635 (2021). https://doi.org/10.1016/j.jelechem.2021.115635
- H. Lee, D.H.M. Dam, J.W. Ha, J. Yue, T.W. Odom, Enhanced human epidermal growth factor receptor 2 degradation in breast cancer cells by lysosome-targeting gold nanoconstructs. ACS Nano 9(10), 9859–9867 (2015). https://doi.org/10.1021/acsnano.5b05138
- T. Harahsheh, Y.F. Makableh, I. Rawashdeh, M. Al-Fandi, Enhanced aptasensor performance for targeted HER2 breast cancer detection by using screen-printed electrodes modified with Au nanops. Biomed. Microdevices 23(4), 46 (2021). https://doi.org/10.1007/s10544-021-00586-9
- Z. Wang, J. Luo, M. Yang, X. Wang, Photoelectrochemical assay for the detection of circulating tumor cells based on aptamer-Ag2S nanocrystals for signal amplification. Anal. Bioanal. Chem. 413(21), 5259–5266 (2021). https://doi.org/10.1007/s00216-021-03502-5
- D.C. Ferreira, M.R. Batistuti, B. Bachour, M. Mulato, Aptasensor based on screen-printed electrode for breast cancer detection in undiluted human serum. Bioelectrochemistry 137, 107586 (2021). https://doi.org/10.1016/j.bioelechem.2020.107586
- M. Loyez, M. Lobry, E.M. Hassan, M.C. DeRosa, C. Caucheteur et al., HER2 breast cancer biomarker detection using a sandwich optical fiber assay. Talanta 221, 121452 (2021). https://doi.org/10.1016/j.talanta.2020.121452
- S. Rauf, A.A. Lahcen, A. Aljedaibi, T. Beduk, J.I.O. Filho et al., Gold nanostructured laser-scribed graphene: a new electrochemical biosensing platform for potential point-of-care testing of disease biomarkers. Biosens. Bioelectron. 180, 113116 (2021). https://doi.org/10.1016/j.bios.2021.113116
- R.M. Eaton, J.A. Shallcross, L.E. Mael, K.S. Mears, L. Minkoff et al., Selection of DNA aptamers for ovarian cancer biomarker HE4 using CE-SELEX and high-throughput sequencing. Anal. Bioanal. Chem. 407(23), 6965–6973 (2015). https://doi.org/10.1007/s00216-015-8665-7
- X. Zhang, Y. Wang, H. Deng, X. Xiong, H. Zhang et al., An aptamer biosensor for CA125 quantification in human serum based on upconversion luminescence resonance energy transfer. Microchem. J. 161, 105761 (2021). https://doi.org/10.1016/j.microc.2020.105761
- Z. Hu, X. Zhou, J. Duan, X. Wu, J. Wu et al., Aptamer-based novel Ag-coated magnetic recognition and SERS nanotags with interior nanogap biosensor for ultrasensitive detection of protein biomarker. Sens. Actuators B Chem. 334, 129640 (2021). https://doi.org/10.1016/j.snb.2021.129640
- S. Li, X. Liu, S. Liu, M. Guo, C. Liu et al., Fluorescence sensing strategy based on aptamer recognition and mismatched catalytic hairpin assembly for highly sensitive detection of alpha-fetoprotein. Anal. Chim. Acta 1141, 21 (2021). https://doi.org/10.1016/j.aca.2020.10.030
- R. Gao, C. Zhan, C. Wu, Y. Lu, B. Cao et al., Simultaneous single-cell phenotype analysis of hepatocellular carcinoma CTCs using a SERS-aptamer based microfluidic chip. Lab Chip 21(20), 3888–3898 (2021). https://doi.org/10.1039/d1lc00516b
- Y.C. Tsai, C.S. Lin, C.N. Lin, K.F. Hsu, G.B. Lee, Screening aptamers targeting the cell membranes of clinical cancer tissues on an integrated microfluidic system. Sens. Actuators B Chem. 330, 129334 (2021). https://doi.org/10.1016/j.snb.2020.129334
- M. Liu, L. Xi, T. Tan, L. Jin, Z. Wang et al., Chinese a novel aptamer-based histochemistry assay for specific diagnosis of clinical breast cancer tissues. Chinese Chem. Lett. 32(5), 1726–1730 (2021). https://doi.org/10.1016/j.cclet.2020.11.072
- C. Zhu, L. Li, S. Fang, Y. Zhao, L. Zhao et al., Selection and characterization of an ssDNA aptamer against thyroglobulin. Talanta 223(P1), 121690 (2021). https://doi.org/10.1016/j.talanta.2020.121690
- A. Miranda, T. Santos, J. Carvalho, D. Alexandre, A. Jardim et al., Aptamer-based approaches to detect nucleolin in prostate cancer. Talanta 226, 122037 (2020). https://doi.org/10.1016/j.talanta.2020.122037
- C.F. Shi, Z.Q. Li, C. Wang, J. Li, X.H. Xia, Ultrasensitive plasmon enhanced Raman scattering detection of nucleolin using nanochannels of 3D hybrid plasmonic metamaterial. Biosens. Bioelectron. 178, 113040 (2021). https://doi.org/10.1016/j.bios.2021.113040
- Z. Li, X. Miao, Z. Cheng, P. Wang, Hybridization chain reaction coupled with the fluorescence quenching of gold nanops for sensitive cancer protein detection. Sens. Actuators B Chem. 243, 731–737 (2017). https://doi.org/10.1016/J.SNB.2016.12.047
- M. Asgari, H. Khanahmad, H. Motaghi, A. Farzadniya, M.A. Mehrgardi et al., Aptamer modified nanoprobe for multimodal fluorescence/magnetic resonance imaging of human ovarian cancer cells. Appl. Phys. A Mater. Sci. Proc. 127(1), 47 (2021). https://doi.org/10.1007/s00339-020-04171-4
- S. Takita, A. Nabok, D. Smith, A. Lishchuk, Comparison of the performances of two RNA-based geno- sensing principles for the detection of LncPCA3 biomarker. Chem. Proc. 3, (2021). https://sciforum.net/manuscripts/10453/manuscript.pdf
- S. Forouzanfar, F. Alam, N. Pala, C. Wang, Highly sensitive label-free electrochemical aptasensors based on photoresist derived carbon for cancer biomarker detection. Biosens. Bioelectron. 170, 112598 (2020). https://doi.org/10.1016/j.bios.2020.112598
- S. Chung, J.K. Sicklick, P. Ray, D.A. Hall, Development of a soluble KIT electrochemical aptasensor for cancer theranostics. ACS Sens. 6(5), 1971–1979 (2021). https://doi.org/10.1021/acssensors.1c00535
- S. Lee, S. Hayati, S. Kim, H.J. Lee, Determination of protein tyrosine kinase-7 concentration using electrocatalytic reaction and an aptamer-antibody sandwich assay platform. Catal. Today 359, 76–82 (2021). https://doi.org/10.1016/j.cattod.2019.05.029
- H. Wang, X. Li, L.A. Lai, T.A. Brentnall, D.W. Dawson et al., X-aptamers targeting Thy-1 membrane glycoprotein in pancreatic ductal adenocarcinoma. Biochimie 181, 25–33 (2021). https://doi.org/10.1016/j.biochi.2020.11.018
- S. Gogoi, R. Khan, Fluorescence immunosensor for cardiac troponin T based on Förster resonance energy transfer (FRET) between carbon dot and MoS2 nano-couple. Phys. Chem. Chem. Phys. 20(24), 16501–16509 (2018). https://doi.org/10.1039/C8CP02433B
- F. Odeh, H. Nsairat, W. Alshaer, M.A. Ismail, E. Esawi et al., Aptamers chemistry: chemical modifications and conjugation strategies. Molecules 25(1), 3 (2019). https://doi.org/10.3390/MOLECULES25010003
- S. Cai, J. Yan, H. Xiong, Y. Liu, D. Peng et al., Investigations on the interface of nucleic acid aptamers and binding targets. Analyst 143(22), 5317–5338 (2018). https://doi.org/10.1039/C8AN01467A
- B. Chatterjee, N. Kalyani, A. Anand, E. Khan, S. Das et al., GOLD SELEX: a novel SELEX approach for the development of high-affinity aptamers against small molecules without residual activity. Microchim. Acta 187(11), 618 (2020). https://doi.org/10.1007/S00604-020-04577-0
- T. Adachi, Y. Nakamura, Aptamers: a review of their chemical properties and modifications for therapeutic application. Molecules 24(23), 4229 (2019). https://doi.org/10.3390/MOLECULES24234229
- M. Sola, A.P. Menon, B. Moreno, D. Meraviglia-Crivelli, M.M. Soldevilla et al., Aptamers against live targets: is in vivo SELEX finally coming to the edge? Mol. Ther. Nucleic Acids 21, 192–204 (2020). https://doi.org/10.1016/J.OMTN.2020.05.025
- A. Parashar, J. Clin, Aptamers in therapeutics. J. Clin. Diagn. Res. (2016). https://doi.org/10.7860/JCDR/2016/18712.7922
- A. Brady, H.W. Wang, M. Naguib, K. Liang, V.Q. Vuong et al., Pre-sodiated Ti3C2Tx MXene structure and behavior as electrode for sodium-ion capacitors. ACS Nano 15(2), 2994–3003 (2021). https://doi.org/10.1021/acsnano.0c09301
- Á. Morales-Garciá, F. Calle-Vallejo, F. Illas, MXenes: new horizons in catalysis. ACS Catal. 10(22), 13487–13503 (2020). https://doi.org/10.1021/ACSCATAL.0C03106
- K. Maleski, M. Alhabeb, Top-down MXene synthesis (selective etching). 2D Metal Carbides and Nitrides (MXenes) 69–87 (2019). https://doi.org/10.1007/978-3-030-19026-2_5
- K. Xiong, P. Wang, G. Yang, Z. Liu, H. Zhang et al., Functional group effects on the photoelectronic properties of MXene (Sc2CT2, T=O, F, OH) and their possible photocatalytic activities. Sci. Rep. 7(1), 15095 (2017). https://doi.org/10.1038/s41598-017-15233-8
- Y. Jia, Y. Pan, C. Wang, C. Liu, C. Shen et al., Flexible Ag microp/MXene-based film for energy harvesting. Nano-Micro Lett. 13, 201 (2021). https://doi.org/10.1007/S40820-021-00729-W
- I. Persson, L.A. Näslund, J. Halim, M.W. Barsoum, V. Darakchieva et al., On the organization and thermal behavior of functional groups on Ti3C2 surfaces in vacuum. 2D Mater 5(1), 015002 (2017). https://doi.org/10.1088/2053-1583/AA89CD
- N.R. Hemanth, B. Kandasubramanian, Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review. Chem. Eng. J. 392, 123678 (2020). https://doi.org/10.1016/J.CEJ.2019.123678
- R. Syamsai, J.R. Rodriguez, V.G. Pol, Q.V. Le, K.M. Batoo et al., Double transition metal MXene (TixTa4−xC3) 2D materials as anodes for Li-ion batteries. Sci. Rep. 11(1), 688 (2021). https://doi.org/10.1038/s41598-020-79991-8
- R.M. Ronchi, J.T. Arantes, S.F. Santos, Synthesis, structure, properties and applications of MXenes: current status and perspectives. Ceram. Int. 45(15), 18167–18188 (2019). https://doi.org/10.1016/J.CERAMINT.2019.06.114
- N. Xu, H. Li, Y. Gan, H. Chen, W. Li et al., Zero-dimensional MXene-based optical devices for ultrafast and ultranarrow photonics applications. Adv. Sci. 7(22), 2002209 (2020). https://doi.org/10.1002/advs.202002209
- F. Wu, Z. Liu, J. Wang, T. Shah, P. Liu et al., Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem. Eng. J. 422, 130591 (2021). https://doi.org/10.1016/j.cej.2021.130591
- X. Zhao, X.J. Zha, J.H. Pu, L. Bai, R.Y. Bao et al., Macroporous three-dimensional MXene architectures for highly efficient solar steam generation. J. Mater. Chem. A 7(17), 10446–10455 (2019). https://doi.org/10.1039/c9ta00176j
- Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/S40820-021-00673-9
- D. Wang, L. Wang, Z. Lou, Y. Zheng, K. Wang et al., Biocompatible and robust silk fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 78, 105252 (2020). https://doi.org/10.1016/J.NANOEN.2020.105252
- C.E. Shuck, K. Ventura-martinez, A. Goad, S. Uzun, M. Shekhirev et al., Safe synthesis of MAX and MXene: guidelines to reduce risk during synthesis. ACS Chem. Health Saf. 28(5), 326–338 (2021). https://doi.org/10.1021/acs.chas.1c00051
- M. Malaki, A. Maleki, R.S. Varma, MXenes and ultrasonication. J. Mater. Chem. A 7(18), 10843–10857 (2019). https://doi.org/10.1039/C9TA01850F
- Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. PNAS 111(47), 16676–16681 (2014). https://doi.org/10.1073/PNAS.1414215111
- R.A. Vaia, A. Jawaid, A. Hassan, G. Neher, D. Nepal et al., Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS Nano 15(2), 2771–2777 (2021). https://doi.org/10.1021/ACSNANO.0C08630
- T. Li, L. Yao, Q. Liu, J. Gu, R. Luo et al., Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew. Chem. Int. Ed. 130(21), 6223–6227 (2018). https://doi.org/10.1002/ANGE.201800887
- P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8(22), 11385–11391 (2016). https://doi.org/10.1039/C6NR02253G
- S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe et al., Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57(47), 15491–15495 (2018). https://doi.org/10.1002/ANIE.201809662
- C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29(11), 4848–4856 (2017). https://doi.org/10.1021/ACS.CHEMMATER.7B00745
- M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes.” Dalt. Trans. 44(20), 9353–9358 (2015). https://doi.org/10.1039/C5DT01247C
- H. Tang, H. Tang, Y. Yang, Y. Yang, R. Wang et al., Improving the properties of 2D titanium carbide films by thermal treatment. J. Mater. Chem. C 8(18), 6214–6220 (2020). https://doi.org/10.1039/C9TC07018D
- J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du et al., Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017). https://doi.org/10.1038/ncomms13907
- L. Wang, H. Qiu, P. Song, Y. Zhang, Y. Lu et al., 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. Part A Appl. Sci. Manuf. 123, 293–300 (2019). https://doi.org/10.1016/J.COMPOSITESA.2019.05.030
- Y. Fang, R. Hu, B. Liu, Y. Zhang, K. Zhu et al., MXene-derived TiO2 /reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J. Mater. Chem. A 7(10), 5363–5372 (2019). https://doi.org/10.1039/C8TA12069B
- A. Sinha, Dhanjai, H. Zhao, Y. Huang, X. Lu et al., MXene: an emerging material for sensing and biosensing. TrAC Trends Anal. Chem. 105, 424–435 (2018). https://doi.org/10.1016/J.TRAC.2018.05.021
- Z. Li, Y. Wu, Z. Li, Y. Wu, 2D early transition metal carbides (MXenes) for catalysis. Small 15(29), 1804736 (2019). https://doi.org/10.1002/SMLL.201804736
- T. Wang, T. Wang, C. Weng, L. Liu, J. Zhao et al., Engineering electrochemical actuators with large bending strain based on 3D-structure titanium carbide MXene composites. Nano Res. 14(7), 2277–2284 (2021). https://doi.org/10.1007/S12274-020-3222-X
- S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018). https://doi.org/10.1021/ACSNANO.7B07460
- B. Shen, H. Huang, H. Liu, Q. Jiang, H. He, Bottom-up construction of three-dimensional porous MXene/nitrogen-doped graphene architectures as efficient hydrogen evolution electrocatalysts. Int. J. Hydrogen Energy 46(58), 29984–29993 (2021). https://doi.org/10.1016/J.IJHYDENE.2021.06.157
- K. Li, X. Wang, S. Li, P. Urbankowski, J. Li et al., An ultrafast conducting polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors. Small 16(4), 1906851 (2020). https://doi.org/10.1002/smll.201906851
- A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2(12), 1600255 (2016). https://doi.org/10.1002/aelm.201600255
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- D. Fang, D. Zhao, S. Zhang, Y. Huang, H. Dai et al., Black phosphorus quantum dots functionalized MXenes as the enhanced dual-mode probe for exosomes sensing. Sens. Actuators B Chem. 305, 127544 (2020). https://doi.org/10.1016/J.SNB.2019.127544
- F. Duan, C. Guo, M. Hu, Y. Song, M. Wang et al., Construction of the 0D/2D heterojunction of Ti3C2Tx MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of microRNA-155. Sens. Actuators B Chem. 310, 127844 (2020). https://doi.org/10.1016/J.SNB.2020.127844
- B.C. Wyatt, A. Rosenkranz, B. Anasori, B.C. Wyatt, B. Anasori et al., 2D MXenes: tunable mechanical and tribological properties. Adv. Mater. 33(17), 2007973 (2021). https://doi.org/10.1002/ADMA.202007973
- I. Persson, A. Ghazaly, Q. Tao, J. Halim, S. Kota et al., Tailoring structure, composition, and energy storage properties of MXenes from selective etching of in-plane, chemically ordered MAX phases. Small 14(17), 1703676 (2018). https://doi.org/10.1002/SMLL.201703676
- V.N. Borysiuk, V.N. Mochalin, Y. Gogotsi, Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: a molecular dynamics study. Comput. Mater. Sci. 143, 418–424 (2018). https://doi.org/10.1016/J.COMMATSCI.2017.11.028
- S.M. Hatam-Lee, A. Esfandiar, A. Rajabpour, Mechanical behaviors of titanium nitride and carbide MXenes: a molecular dynamics study. Appl. Surf. Sci. 566, 150633 (2021). https://doi.org/10.1016/J.APSUSC.2021.150633
- G. Plummer, B. Anasori, Y. Gogotsi, G.J. Tucker, Nanoindentation of monolayer Tin+1CnTx MXenes via atomistic simulations: the role of composition and defects on strength. Comput. Mater. Sci. 157, 168–174 (2019). https://doi.org/10.1016/J.COMMATSCI.2018.10.033
- K. Ren, R. Zheng, P. Xu, D. Cheng, W. Huo et al., Electronic and optical properties of atomic-scale heterostructure based on MXene and MN (M = Al, Ga): a DFT investigation. Nanomaterials 11(9), 2236 (2021). https://doi.org/10.3390/NANO11092236
- K. Hantanasirisakul, M.Q. Zhao, P. Urbankowski, J. Halim, B. Anasori et al., Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2(6), 1600050 (2016). https://doi.org/10.1002/AELM.201600050
- Y. Xu, Y. Wang, J. An, A.C. Sedgwick, M. Li et al., 2D-ultrathin MXene/DOXjade platform for iron chelation chemo-photothermal therapy. Bioact. Mater. 14, 76–85 (2021). https://doi.org/10.1016/J.BIOACTMAT.2021.12.011
- C.J. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29(36), 1702678 (2017). https://doi.org/10.1002/ADMA.201702678
- C. Xing, S. Chen, X. Liang, Q. Liu, M. Qu et al., Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl. Mater. Interfaces 10(33), 27631–27643 (2018). https://doi.org/10.1021/ACSAMI.8B08314
- G. Ying, S. Kota, A.D. Dillon, A.T. Fafarman, M.W. Barsoum, Conductive transparent V2CTx (MXene) films. FlatChem 8, 25–30 (2018). https://doi.org/10.1016/J.FLATC.2018.03.001
- G.R. Berdiyorov, Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: first-principles calculations. AIP Adv. 6(5), 055105 (2016). https://doi.org/10.1063/1.4948799
- J. Wang, X. Zhou, M. Yang, D. Cao, X. Chen et al., Interface and polarization effects induced Schottky-barrier-free contacts in two-dimensional MXene/GaN heterojunctions. J. Mater. Chem. C 8(22), 7350–7357 (2020). https://doi.org/10.1039/D0TC01405B
- R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11(4), 3752–3759 (2017). https://doi.org/10.1021/ACSNANO.6B08415
- Z. Huang, X. Cui, S. Li, J. Wei, P. Li et al., Two-dimensional MXene-based materials for photothermal therapy. Nanophotonics 9(8), 2233–2249 (2020). https://doi.org/10.1515/nanoph-2019-0571
- A. Paściak, A. Pilch-Wróbel, Ł Marciniak, P.J. Schuck, A. Bednarkiewicz, Standardization of methodology of light-to-heat conversion efficiency determination for colloidal nanoheaters. ACS Appl. Mater. Interfaces 13(37), 44556–44567 (2021). https://doi.org/10.1021/ACSAMI.1C12409
- Z.L. Lei, B. Guo, 2D material-based optical biosensor: status and prospect. Adv. Sci. 9(4), 2102924 (2021). https://doi.org/10.1002/ADVS.202102924
- X. Chen, Y. Zhao, L. Li, Y. Wang, J. Wang et al., MXene/polymer nanocomposites: preparation, properties, and applications. Polym. Rev. 61(1), 80–115 (2020). https://doi.org/10.1080/15583724.2020.1729179
- M.R. Lukatskaya, S. Kota, Z. Lin, M.Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2(8), 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- X. Li, X. Yin, H. Xu, M. Han, M. Li et al., Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band. ACS Appl. Mater. Interfaces 10(40), 34524–34533 (2018). https://doi.org/10.1021/acsami.8b13658
- C. Si, K.H. Jin, J. Zhou, Z. Sun, F. Liu, Large-gap quantum spin hall state in MXenes: D-band topological order in a triangular lattice. Nano Lett. 16(10), 6584–6591 (2016). https://doi.org/10.1021/acs.nanolett.6b03118
- F. Wu, K. Luo, C. Huang, W. Wu, P. Meng et al., Theoretical understanding of magnetic and electronic structures of Ti3C2 monolayer and its derivatives. Solid State Commun. 222, 9–13 (2015). https://doi.org/10.1016/J.SSC.2015.08.023
- Y. Yue, B. Wang, N. Miao, C. Jiang, H. Lu et al., Tuning the magnetic properties of Zr2N MXene by biaxial strain. Ceram. Int. 47(2), 2367–2373 (2021). https://doi.org/10.1016/J.CERAMINT.2020.09.079
- H. Kumar, N.C. Frey, L. Dong, B. Anasori, Y. Gogotsi et al., Tunable magnetism and transport properties in nitride MXenes. ACS Nano 11(8), 7648–7655 (2017). https://doi.org/10.1021/ACSNANO.7B02578
- J. He, P. Lyu, L.Z. Sun, Á.M. García, P. Nachtigall, High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes. J. Mater. Chem. C 4(27), 6500–6509 (2016). https://doi.org/10.1039/c6tc01287f
- Y. Lu, X. Qu, S. Wang, Y. Zhao, Y. Ren et al., Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin. Nano Res. (2021). https://doi.org/10.1007/S12274-021-4032-5
- K. Allen-Perry, W. Straka, D. Keith, S. Han, L. Reynolds et al., Tuning the magnetic properties of two-dimensional MXenes by chemical etching. Materials 14(3), 694 (2021). https://doi.org/10.3390/MA14030694
- O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
- K. Wang, Y. Zhou, W. Xu, D. Huang, Z. Wang et al., Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceram. Int. 42(7), 8419–8424 (2016). https://doi.org/10.1016/J.CERAMINT.2016.02.059
- H. Jing, H. Yeo, B. Lyu, J. Ryou, S. Choi et al., Modulation of the electronic properties of MXene (Ti3C2Tx) via surface-covalent functionalization with diazonium. ACS Nano 15(1), 1388–1396 (2021). https://doi.org/10.1021/ACSNANO.0C08664
- V. Shukla, The tunable electric and magnetic properties of 2D MXenes and their potential applications. Mater. Adv. 1(9), 3104–3121 (2020). https://doi.org/10.1039/D0MA00548G
- E.S. Muckley, M. Naguib, I.N. Ivanov, Ultrasensitive, wide-range humidity sensing with Ti3C2 film. Nanoscale 10(46), 21689–21695 (2018). https://doi.org/10.1039/C8NR05170D
- T. Hu, H. Zhang, J. Wang, Z. Li, M. Hu et al., Anisotropic electronic conduction in stacked two-dimensional titanium carbide. Sci. Rep. 5, 16329 (2015). https://doi.org/10.1038/srep16329
- Y. Liu, H. Xiao, W.A. Goddard, Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc. 138(49), 15853–15856 (2016). https://doi.org/10.1021/jacs.6b10834
- C. Si, J. Zhou, Z. Sun, Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Appl. Mater. Interfaces 7(31), 17510–17515 (2015). https://doi.org/10.1021/acsami.5b05401
- Q. Wan, S. Li, J.B. Liu, First-principle study of Li-ion storage of functionalized Ti2C monolayer with vacancies. ACS Appl. Mater. Interfaces 10(7), 6369–6377 (2018). https://doi.org/10.1021/ACSAMI.7B18369
- K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich et al., Two-dimensional atomic crystals. PNAS 102(30), 10451–10453 (2005). https://doi.org/10.1073/PNAS.0502848102
- T. Hu, M. Hu, B. Gao, W. Li, X. Wang, Screening surface structure of MXenes by high-throughput computation and vibrational spectroscopic confirmation. J. Phys. Chem. C 122(32), 18501–18509 (2018). https://doi.org/10.1021/ACS.JPCC.8B04427
- V.M.H. Ng, H. Huang, K. Zhou, P.S. Lee, W. Que et al., Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5(7), 3039–3068 (2017). https://doi.org/10.1039/c6ta06772g
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012). https://doi.org/10.1021/NN204153H
- M. Naguib, J. Come, B. Dyatkin, V. Presser, P.L. Taberna et al., MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. commun. 16(1), 61–64 (2012). https://doi.org/10.1016/J.ELECOM.2012.01.002
- H. Wang, J. Sun, L. Lu, X. Yang, J. Xia et al., Competitive electrochemical aptasensor based on a CDNA-ferrocene/MXene probe for detection of breast cancer marker mucin1. Anal. Chim. Acta 1094, 18–25 (2020). https://doi.org/10.1016/j.aca.2019.10.003
- B. Qiao, Q. Guo, J. Jiang, Y. Qi, H. Zhang et al., An electrochemiluminescent aptasensor for amplified detection of exosomes from breast tumor cells (MCF-7 cells) based on G-quadruplex/hemin DNAzymes. Analyst 144(11), 3668–3675 (2019). https://doi.org/10.1039/C9AN00181F
- H. Zhang, Z. Wang, F. Wang, Y. Zhang, H. Wang et al., Ti3C2 MXene mediated Prussian blue in situ hybridization and electrochemical signal amplification for the detection of exosomes. Talanta 224, 121879 (2021). https://doi.org/10.1016/j.talanta.2020.121879
- S. Zhou, C. Gu, Z. Li, L. Yang, L. He et al., Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: ultra-sensitive platform for the detection of osteopontin. Appl. Surf. Sci. 498, 143889 (2019). https://doi.org/10.1016/J.APSUSC.2019.143889
- N. Kurra, B. Ahmed, Y. Gogotsi, H.N. Alshareef, MXene-on-paper coplanar microsupercapacitors. Adv. Energy Mater. 6(24), 1601372 (2016). https://doi.org/10.1002/aenm.201601372
- X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5(2), 235–258 (2020). https://doi.org/10.1039/C9NH00571D
- Y.Y. Peng, B. Akuzum, N. Kurra, M.Q. Zhao, M. Alhabeb et al., All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9(9), 2847–2854 (2016). https://doi.org/10.1039/c6ee01717g
- Y. Wang, J. Luo, J. Liu, S. Sun, Y. Xiong et al., Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers. Biosens. Bioelectron. 136, 84–90 (2019). https://doi.org/10.1016/j.bios.2019.04.032
- X. Yang, M. Feng, J. Xia, F. Zhang, Z. Wang, An electrochemical biosensor based on AuNPs/Ti3C2 MXene three-dimensional nanocomposite for microRNA-155 detection by exonuclease III-aided cascade target recycling. J. Electroanal. Chem. 878, 114669 (2020). https://doi.org/10.1016/J.JELECHEM.2020.114669
- H. Zhang, Z. Wang, Q. Zhang, F. Wang, Y. Liu, Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosens. Bioelectron. 124–125, 184–190 (2019). https://doi.org/10.1016/J.BIOS.2018.10.016
- J. Zhao, C. He, W. Wu, H. Yang, J. Dong et al., MXene-MoS2 heterostructure collaborated with catalyzed hairpin assembly for label-free electrochemical detection of microRNA-21. Talanta 237, 122927 (2022). https://doi.org/10.1016/J.TALANTA.2021.122927
- F. Vajhadin, M. Mazloum-Ardakani, M. Shahidi, S.M. Moshtaghioun, F. Haghiralsadat et al., MXene-based cytosensor for the detection of HER2-positive cancer cells using CoFe2O4@Ag magnetic nanohybrids conjugated to the HB5 aptamer. Biosens. Bioelectron. 195, 113626 (2022). https://doi.org/10.1016/J.BIOS.2021.113626
- Y. Liu, S. Huang, J. Li, M. Wang, C. Wang et al., 0D/2D heteronanostructure–integrated bimetallic CoCu-ZIF nanosheets and MXene-derived carbon dots for impedimetric cytosensing of melanoma B16–F10 cells. Microchim. Acta 188(3), 69 (2021). https://doi.org/10.1007/S00604-021-04726-Z
- M.A. Sadique, S. Yadav, P. Ranjan, M.A. Khan, A. Kumar et al., Rapid detection of SARS-CoV-2 using graphene-based IoT integrated advanced electrochemical biosensor. Mater. Lett. 305, 130824 (2021). https://doi.org/10.1016/j.matlet.2021.130824
- P. Ranjan, A. Singhal, M.A. Sadique, S. Yadav, A. Parihar et al., Scope of biosensors, commercial aspects, and miniaturized devices for point-of-care testing from lab to clinics applications. Biosensor Based Advanced Cancer Diagnostics 395–410 (2022). https://doi.org/10.1016/B978-0-12-823424-2.00004-1
References
H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/CAAC.21660
GLOBOCAN 2020: new global cancer data. (UICC, 2020). https://www.uicc.org/news/globocan-2020-new-global-cancer-data (Accessed Mar 9, 2022)
J. Brodersen, L.M. Schwartz, S. Woloshin, Overdiagnosis: how cancer screening can turn indolent pathology into illness. APMIS 122(8), 683–689 (2014). https://doi.org/10.1111/APM.12278
N. Goossens, S. Nakagawa, X. Sun, Y. Hoshida, Cancer biomarker discovery and validation. Transl. Cancer Res. 4(3), 256 (2015). https://doi.org/10.3978/J.ISSN.2218-676X.2015.06.04
P.R. Srinivas, B.S. Kramer, S. Srivastava, Trends in biomarker research for cancer detection. Lancet Oncol. 2(11), 698–704 (2001). https://doi.org/10.1016/S1470-2045(01)00560-5
R. Khan, A. Parihar, S.K. Sanghi, Biosensor Based Advanced Cancer Diagnostics: From Lab to Clinics (ScienceDirect, 2021). https://doi.org/10.1016/C2020-0-00363-4
R. Etzioni, N. Urban, S. Ramsey, M. McIntosh, S. Schwartz et al., The case for early detection. Nat. Rev. Cancer. 3(4), 243–252 (2003). https://doi.org/10.1038/nrc1041
G.P. Hemstreet, S. Yin, Z. Ma, R.B. Bonner, W. Bi et al., Biomarker risk assessment and bladder cancer detection in a cohort exposed to benzidine. J. Natl. Cancer Inst. 93(6), 427–436 (2001). https://doi.org/10.1093/JNCI/93.6.427
H. Kobayashi, H. Sugimoto, S. Onishi, K. Nakano, Novel biomarker candidates for the diagnosis of ovarian clear cell carcinoma (review). Oncol. Lett. 10(2), 612–618 (2015). https://doi.org/10.3892/ol.2015.3367
R. Liu, X. Chen, Y. Du, W. Yao, L. Shen et al., Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin. Chem. 58(3), 610–618 (2012). https://doi.org/10.1373/CLINCHEM.2011.172767
D. Sin, C.M. Tammemagi, S. Lam, M.J. Barnett, X. Duan et al., Pro–surfactant protein B as a biomarker for lung cancer prediction. J. Clin. Oncol. 31(36), 4536 (2013). https://doi.org/10.1200/JCO.2013.50.6105
R.M. Witteles, Biomarkers as predictors of cardiac toxicity from targeted cancer therapies. J. Card. Fail. 22(6), 459–464 (2016). https://doi.org/10.1016/J.CARDFAIL.2016.03.016
Y. Chen, K. Li, D. Gong, J. Zhang, Q. Li et al., ACLY: a biomarker of recurrence in breast cancer. Pathol. Res. Pract. 216(9), 153076 (2020). https://doi.org/10.1016/J.PRP.2020.153076
A. Parihar, S. Jain, D.S. Parihar, P. Ranjan, R. Khan, Biomarkers associated with different types of cancer as a potential candidate for early diagnosis of oncological disorders. Biosensor Based Advanced Cancer Diagnostics: From Lab to Clinics 47–57 (2022). https://doi.org/10.1016/b978-0-12-823424-2.00007-7
A. Parihar, S. Malviya, R. Khan, Identification of biomarkers associated with cancer using integrated bioinformatic analysis. Cancer Bioinformatics (2021). https://doi.org/10.5772/INTECHOPEN.101432
A. Parihar, P. Ranjan, S.K. Sanghi, A.K. Srivastava, R. Khan, Point-of-care biosensor-based diagnosis of COVID-19 holds promise to combat current and future pandemics. ACS Appl. Bio Mater. 3(11), 7326–7343 (2020). https://doi.org/10.1021/acsabm.0c01083
M. Blanco-Formoso, R.A. Alvarez-Puebla, Cancer diagnosis through SERS and other related techniques. Int. J. Mol. Sci. 21(6), 2253 (2020). https://doi.org/10.3390/IJMS21062253
P.S. Bernard, C.T. Wittwer, Real-time PCR technology for cancer diagnostics. Clin. Chem. 48(8), 1178–1185 (2002). https://doi.org/10.1093/CLINCHEM/48.8.1178
S. Yadav, M.A. Sadique, P. Ranjan, N. Kumar, A. Singhal et al., SERS based lateral flow immunoassay for point-of-care detection of Sars-Cov-2 in clinical samples. ACS Appl. Bio Mater. 4(4), 2974–2995 (2021). https://doi.org/10.1021/acsabm.1c00102
N. Kumar, V.S. Gowri, R. Khan, P. Ranjan, M.A. Sadique et al., Efficiency of nanomaterials for electrochemical diagnostics based point-of-care detection of non-Invasive oral cancer biomarkers. Adv. Mater. Lett. 12(8), 1–20 (2021). https://doi.org/10.5185/amlett.2021.081651
P. Ranjan, A. Singhal, S. Yadav, N. Kumar, S. Murali et al., Diagnosis of SARS-CoV-2 using potential point-of-care electrochemical immunosensor: toward the future prospects. Int. Rev. Immunol. 40(1–2), 126–142 (2021). https://doi.org/10.1080/08830185.2021.1872566
L.K. Kiio, D.N. Mbui, P.M. Ndangili, O.J. Onam, F. Oloo, Current biosensors used for early detection of lung cancer biomarkers. J. Cancer Res. Rev. Rep. (2021). https://doi.org/10.47363/JCRR/2021(3)148
P. Ranjan, A. Parihar, S. Jain, N. Kumar, C. Dhand et al., Biosensor-based diagnostic approaches for various cellular biomarkers of breast cancer: a comprehensive review. Anal. Biochem. 610, 113996 (2020). https://doi.org/10.1016/j.ab.2020.113996
M. Lakshmanakumar, N. Nesakumar, A.J. Jbb, J.B.B. Rayappan, Electrochemical DNA biosensors for cervical cancers. biomarkers biosens. In Biomarkers and biosensors for cervical cancer diagnosis: from lab to clinics, (Springer, Singapore, 2021), pp 57–69. https://doi.org/10.1007/978-981-16-2586-2_5
R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3(1), 20–30 (2011). https://doi.org/10.1039/C0NR00323A
B. Mortazavi, G. Cuniberti, T. Rabczuk, Mechanical properties and thermal conductivity of graphitic carbon nitride: a molecular dynamics study. Comput. Mater. Sci. 99, 285–289 (2015). https://doi.org/10.1016/J.COMMATSCI.2014.12.036
F.A. Rasmussen, K.S. Thygesen, Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119(23), 13169–13183 (2015). https://doi.org/10.1021/acs.jpcc.5b02950
P. Chen, N. Li, X. Chen, W.J. Ong, X. Zhao, The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater. 5(1), 014002 (2017). https://doi.org/10.1088/2053-1583/AA8D37
S. Yadav, M.A. Sadique, A. Kaushik, P. Ranjan, R. Khan et al., Borophene as an emerging 2D flatland for biomedical applications: current challenges and future prospects. J. Mater. Chem. B 10(8), 1146–1175 (2022). https://doi.org/10.1039/D1TB02277F
N. Kumar, M.A. Sadique, R. Khan, Electrochemical exfoliation of graphene quantum dots from waste dry cell battery for biosensor applications. Mater. Lett. 305, 130829 (2021). https://doi.org/10.1016/j.matlet.2021.130829
C. Huo, B. Cai, Z. Yuan, B. Ma, H. Zeng et al., Two-dimensional metal halide perovskites: theory, synthesis, and optoelectronics. Small Methods 1(3), 1600018 (2017). https://doi.org/10.1002/SMTD.201600018
S. Barua, H.S. Dutta, S. Gogoi, R. Devi, R. Khan, Nanostructured MoS2-based advanced biosensors: a review. ACS Appl. Nano Mater. 1(1), 2–25 (2017). https://doi.org/10.1021/ACSANM.7B00157
A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, A. Dhakshinamoorthy, A.M. Asiri et al., 2D metal–organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis. Adv. Mater. 31(41), 1900617 (2019). https://doi.org/10.1002/ADMA.201900617
A. Singhal, A. Parihar, N. Kumar, R. Khan, High throughput molecularly imprinted polymers based electrochemical nanosensors for point-of-care diagnostics of COVID-19. Mater. Lett. 306, 130898 (2022). https://doi.org/10.1016/j.matlet.2021.130898
J. Yi, J. Li, S. Huang, L. Hu, L. Miao et al., Ti2CTx MXene-based all-optical modulator. InfoMat 2(3), 601–609 (2020). https://doi.org/10.1002/inf2.12052
W. Huang, L. Hu, Y. Tang, Z. Xie, H. Zhang et al., Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv. Funct. Mater. 30(49), 2005223 (2020). https://doi.org/10.1002/ADFM.202005223
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/ADMA.201102306
X. Li, C. Wang, Y. Cao, G. Wang, Functional MXene materials: progress of their applications. Chem. An Asian J. 13(19), 2742–2757 (2018). https://doi.org/10.1002/ASIA.201800543
X. Xu, Y. Chen, P. He, S. Wang, K. Ling et al., Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 14(8), 2875–2883 (2021). https://doi.org/10.1007/S12274-021-3536-3
X. Han, J. Huang, H. Lin, Z. Wang, P. Li et al., 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 7(9), 1701394 (2018). https://doi.org/10.1002/adhm.201701394
X. Yu, X. Cai, H. Cui, S.W. Lee, X.F. Yu et al., Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 9(45), 17859–17864 (2017). https://doi.org/10.1039/C7NR05997C
C. Zhang, L. Cui, S. Abdolhosseinzadeh, J. Heier, Two-dimensional MXenes for lithium-sulfur batteries. InfoMat 2(4), 613–638 (2020). https://doi.org/10.1002/inf2.12080
B. Cao, H. Liu, X. Zhang, P. Zhang, Q. Zhu et al., MOF-derived ZnS nanodots/Ti3C2Tx MXene hybrids boosting superior lithium storage performance. Nano-Micro Lett. 13, 202 (2021). https://doi.org/10.1007/S40820-021-00728-X
J. Luo, E. Matios, H. Wang, X. Tao, W. Li, Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat 2(6), 1057–1076 (2020). https://doi.org/10.1002/inf2.12118
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Enhanced catalytic conversion of polysulfide using 1D CoTe and 2D MXene for heat-resistant and lean-electrolyte Li–S batteries. Chem. Eng. J. 430, 132734 (2022). https://doi.org/10.1016/J.CEJ.2021.132734
A.S. Etman, J. Halim, J. Rosen, Fabrication of Mo1. 33CTz(MXene)-cellulose freestanding electrodes for supercapacitor applications. Mater. Adv. 2(2), 743–753 (2021). https://doi.org/10.1039/d0ma00922a
J. Yin, S. Pan, X. Guo, Y. Gao, D. Zhu et al., Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
M. Sajid, MXenes: are they emerging materials for analytical chemistry applications?–a review. Anal. Chim. Acta 1143, 267–280 (2021). https://doi.org/10.1016/J.ACA.2020.08.063
O. Salim, K.A. Mahmoud, K.K. Pant, R.K. Joshi, Introduction to MXenes: synthesis and characteristics. Mater. Today Chem. 14, 100191 (2019). https://doi.org/10.1016/J.MTCHEM.2019.08.010
K. Maleski, C.E. Ren, M.Q. Zhao, B. Anasori, Y. Gogotsi, Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Appl. Mater. Interfaces 10(29), 24491–24498 (2018). https://doi.org/10.1021/ACSAMI.8B04662
J. Sun, H. Du, Z. Chen, L. Wang, G. Shen, MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. (2021). https://doi.org/10.1007/S12274-021-3967-X
A. Sundaram, J.S. Ponraj, J.S. Ponraj, C. Wang, W.K. Peng et al., Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics. J. Mater. Chem. B 8(23), 4990–5013 (2020). https://doi.org/10.1039/D0TB00251H
P. Röthlisberger, M. Hollenstein, Aptamer chemistry. Adv. Drug Deliv. Rev. 134, 3–21 (2018). https://doi.org/10.1016/J.ADDR.2018.04.007
S. Song, L. Wang, J. Li, C. Fan, J. Zhao, Aptamer-based biosensors. TrAC. Trends Anal. Chem. 27(2), 108–117 (2008). https://doi.org/10.1016/J.TRAC.2007.12.004
G. Zhou, G. Wilson, L. Hebbard, W. Duan, C. Liddle et al., Aptamers: a promising chemical antibody for cancer therapy. Oncotarget 7(12), 13446 (2016)
M. Darmostuk, S. Rimpelova, H. Gbelcova, T. Ruml, Current approaches in SELEX: an update to aptamer selection technology. Biotechnol. Adv. 33(6), 1141–1161 (2015). https://doi.org/10.1016/J.BIOTECHADV.2015.02.008
P.H.L. Tran, D. Xiang, T.N.G. Nguyen, T.T.D. Tran, Q. Chen et al., Aptamer-guided extracellular vesicle theranostics in oncology. Theranostics 10(9), 3849 (2020). https://doi.org/10.7150/THNO.39706
B. Guan, X. Zhang, Aptamers as versatile ligands for biomedical and pharmaceutical applications. Int. J. Nanomed. 15, 1059 (2020). https://doi.org/10.2147/IJN.S237544
R. Savla, O. Taratula, O. Garbuzenko, T. Minko, Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J. Control. Release 153(1), 16–22 (2011). https://doi.org/10.1016/J.JCONREL.2011.02.015
M. Sun, S. Liu, X. Wei, S. Wan, M. Huang et al., Aptamer blocking strategy inhibits SARS-CoV-2 virus infection. Angew. Chem. Int. Ed. 133(18), 10354–10360 (2021). https://doi.org/10.1002/ANGE.202100225
J. Nan, X. Guo, J. Xiao, X. Li, W. Chen et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2021). https://doi.org/10.1002/SMLL.201902085
K. Chen, B. Liu, B. Yu, W. Zhong, Y. Lu et al., Advances in the development of aptamer drug conjugates for targeted drug delivery. WIREs Nanomed. Nanobiotechnol. 9(3), e1438 (2017). https://doi.org/10.1002/WNAN.1438
J.D. Munzar, A. Ng, D. Juncker, Duplexed aptamers: history, design, theory, and application to biosensing. Chem. Soc. Rev. 48(5), 1390–1419 (2019). https://doi.org/10.1039/C8CS00880A
N. Li, J. Peng, W.J. Ong, T. Ma, Arramel et al., MXenes: an emerging platform for wearable electronics and looking beyond. Matter 4(2), 377–407 (2021). https://doi.org/10.1016/j.matt.2020.10.024
L. Zhou, F. Wu, J. Yu, Q. Deng, F. Zhang et al., Titanium carbide (Ti3C2Tx) MXene: a novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon 118, 50–57 (2017). https://doi.org/10.1016/J.CARBON.2017.03.023
G.J. Soufi, P. Iravani, A. Hekmatnia, E. Mostafavi, M. Khatami et al., MXenes and MXene-based materials with cancer diagnostic applications: challenges and opportunities. Comments Inorg. Chem. (2021). https://doi.org/10.1080/02603594.2021.1990890
K. Mao, H. Zhang, Z. Wang, H. Cao, K. Zhang et al., Nanomaterial-based aptamer sensors for arsenic detection. Biosens. Bioelectron. 148, 111785 (2020). https://doi.org/10.1016/J.BIOS.2019.111785
Y.W. Cheung, R.M. Dirkzwager, W.C. Wong, J. Cardoso, J.D.N. Costa et al., Aptamer-mediated plasmodium-specific diagnosis of malaria. Biochimie 145, 131–136 (2018). https://doi.org/10.1016/J.BIOCHI.2017.10.017
C.E. Sunday, M. Chowdhury, Review—aptamer-based electrochemical sensing strategies for breast cancer. J. Electrochem. Soc. 168(2), 027511 (2021). https://doi.org/10.1149/1945-7111/ABE34D
Q. Wu, G. Chen, S. Qiu, S. Feng, D. Lin, Target-triggered and self-calibration aptasensor based on SERS for precise detection of a prostate cancer biomarker in human blood. Nanoscale 13(16), 7574–7582 (2021). https://doi.org/10.1039/d1nr00480h
NCI dictionary of cancer terms. https://www.cancer.gov/publications/dictionaries/cancer-terms (Accessed Feb 19, 2022)
R.M. Califf, Biomarker definitions and their applications. Exp. Biol. Med. 243(3), 213 (2018). https://doi.org/10.1177/1535370217750088
Diagnostic biomarker. https://me-pedia.org/wiki/Diagnostic_biomarker (Accessed March 03, 2022)
I. Martins, I.P. Ribeiro, J. Jorge, A.C. Gonçalves, A.B. Sarmento-Ribeiro, Liquid biopsies: applications for cancer diagnosis and monitoring. Genes 12(3), 349 (2021). https://doi.org/10.3390/GENES12030349
BEST (biomarkers, endpoints, and other tools) resource. (NCBI Bookshelf, 2016). https://www.ncbi.nlm.nih.gov/books/NBK326791 (Accessed Mar 9, 2022)
M. Adamaki, V. Zoumpourlis, Prostate cancer biomarkers: from diagnosis to prognosis and precision-guided therapeutics. Pharmacol. Ther. 228, 107932 (2021). https://doi.org/10.1016/J.PHARMTHERA.2021.107932
H.M. Meng, H. Liu, H. Kuai, R. Peng, L. Mo et al., Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem. Soc. Rev. 45(9), 2583–2602 (2019). https://doi.org/10.1039/C5CS00645G
M. Jamal-Hanjani, S.A. Quezada, J. Larkin, C. Swanton, Translational implications of tumor heterogeneity. Clin. Cancer Res. 21(6), 1258–1266 (2015). https://doi.org/10.1158/1078-0432.CCR-14-1429
T. Katsuda, N. Kosaka, T. Ochiya, The roles of extracellular vesicles in cancer biology: toward the development of novel cancer biomarkers. Proteomics 14(4–5), 412–425 (2014). https://doi.org/10.1002/PMIC.201300389
B. Dai, C. Yin, J. Wu, W. Li, L. Zheng et al., Lab chip a flux-adaptable pump-free microfluidics-based self-contained platform for multiplex cancer biomarker detection. Lab Chip 21(1), 143–153 (2021). https://doi.org/10.1039/d0lc00944j
L. Wu, X. Qu, Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev. 44(10), 2963–2997 (2015). https://doi.org/10.1039/C4CS00370E
V.S.P.K.S.A. Jayanthi, A.B. Das, U. Saxena, Recent advances in biosensor development for the detection of cancer biomarkers. Biosens. Bioelectron. 91, 15–23 (2017). https://doi.org/10.1016/j.bios.2016.12.014
J. Zhou, J. Rossi, Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16(3), 181 (2017). https://doi.org/10.1038/NRD.2016.199
Y. Morita, M. Leslie, H. Kameyama, D.E. Volk, T. Tanaka, Aptamer therapeutics in cancer: current and future. Cancers 10(3), 80 (2018). https://doi.org/10.3390/CANCERS10030080
A. Qureshi, I. Roci, Y. Gurbuz, J.H. Niazi, VEGF cancer biomarker protein detection in real human serum using capacitive label-free aptasensor. Macromol. Symp. 357(1), 74–78 (2015). https://doi.org/10.1002/MASY.201400191
X. Li, X. Ding, J. Fan, Nicking endonuclease-assisted signal amplification of a split molecular aptamer beacon for biomolecule detection using graphene oxide as a sensing platform. Analyst 140(23), 7918–7925 (2015). https://doi.org/10.1039/C5AN01759A
A. Nabok, H. Abu-Ali, S. Takita, D.P. Smith, Electrochemical detection of prostate cancer biomarker PCA3 using specific RNA-based aptamer labelled with ferrocene. Chemosensors 9(4), 59 (2021). https://doi.org/10.3390/chemosensors9040059
A. Díaz-Fernández, R. Miranda-Castro, N. de-los-Santos-Álvarez, M.J. Lobo-Castañón, P. Estrela, Impedimetric aptamer-based glycan PSA score for discrimination of prostate cancer from other prostate diseases. Biosens. Bioelectron. 175, 112872 (2021). https://doi.org/10.1016/j.bios.2020.112872
H. Wan, X. Cao, M. Liu, F. Zhang, C. Sun et al., Aptamer and bifunctional enzyme co-functionalized MOF-derived porous carbon for low-background electrochemical aptasensing. Anal. Bioanal. Chem. 413(25), 6303–6312 (2021). https://doi.org/10.1007/s00216-021-03585-0
S.R. Nxele, T. Nyokong, The effects of the composition and structure of quantum dots combined with cobalt phthalocyanine and an aptamer on the electrochemical detection of prostate specific antigen. Dyes Pigments 192, 109407 (2021). https://doi.org/10.1016/j.dyepig.2021.109407
S.S.S. Toloun, L. Pishkar, Study of the prostate-specific antigen–aptamer stability in the PSA–aptamer-single wall carbon nanotube assembly by docking and molecular dynamics simulation. Mol. Simul. 47(12), 951–959 (2021). https://doi.org/10.1080/08927022.2021.1932874
Y. Wang, X. Kan, Sensitive and selective “signal-off” electrochemiluminescence sensing for prostate-specific antigen based on aptamer and molecularly imprinted polymer. Analyst 146(24), 7693–7701 (2021). https://doi.org/10.1039/d1an01645h
N. Ma, W. Jiang, T. Li, Z. Zhang, H. Qi et al., Fluorescence aggregation assay for the protein biomarker mucin 1 using carbon dot-labeled antibodies and aptamers. Microchim. Acta 182(1–2), 443–447 (2015). https://doi.org/10.1007/s00604-014-1386-3
L. Zhao, M. Cheng, G. Liu, H. Lu, Y. Gao et al., A fluorescent biosensor based on molybdenum disulfide nanosheets and protein aptamer for sensitive detection of carcinoembryonic antigen. Sens. Actuators B Chem. 273, 185–190 (2018). https://doi.org/10.1016/j.snb.2018.06.004
Y. Wang, L. Chen, T. Xuan, J. Wang, X. Wang, Label-free electrochemical impedance spectroscopy aptasensor for ultrasensitive detection of lung cancer biomarker carcinoembryonic antigen. Front. Chem. 9, 721008 (2021). https://doi.org/10.3389/fchem.2021.721008
B. Bao, P. Su, J. Zhu, J. Chen, Y. Xu et al., Rapid aptasensor capable of simply detect tumor markers based on conjugated polyelectrolytes. Talanta 190, 204–209 (2018). https://doi.org/10.1016/j.talanta.2018.07.072
J. Shi, J. Lyu, F. Tian, M. Yang, A fluorescence turn-on biosensor based on graphene quantum dots (GQDs) and molybdenum disulfide (MoS2) nanosheets for epithelial cell adhesion molecule (EpCAM) detection. Biosens. Bioelectron. 93, 182–188 (2017). https://doi.org/10.1016/j.bios.2016.09.012
Y. Wang, S. Sun, J. Luo, Y. Xiong, T. Ming et al., Low sample volume origami-paper-based graphene-modified aptasensors for label-free electrochemical detection of cancer biomarker-EGFR. Microsyst. Nanoeng. 6(1), 32 (2020). https://doi.org/10.1038/s41378-020-0146-2
Z. Hao, Y. Pan, W. Shao, Q. Lin, X. Zhao, Graphene-based fully integrated portable nanosensing system for on-line detection of cytokine biomarkers in saliva. Biosens. Bioelectron. 134, 16–23 (2019). https://doi.org/10.1016/j.bios.2019.03.053
K. Zhang, M. Pei, Y. Cheng, Z. Zhang, C. Niu et al., A novel electrochemical aptamer biosensor based on tetrahedral DNA nanostructures and catalytic hairpin assembly for CEA detection. J. Electroanal. Chem. 898, 115635 (2021). https://doi.org/10.1016/j.jelechem.2021.115635
H. Lee, D.H.M. Dam, J.W. Ha, J. Yue, T.W. Odom, Enhanced human epidermal growth factor receptor 2 degradation in breast cancer cells by lysosome-targeting gold nanoconstructs. ACS Nano 9(10), 9859–9867 (2015). https://doi.org/10.1021/acsnano.5b05138
T. Harahsheh, Y.F. Makableh, I. Rawashdeh, M. Al-Fandi, Enhanced aptasensor performance for targeted HER2 breast cancer detection by using screen-printed electrodes modified with Au nanops. Biomed. Microdevices 23(4), 46 (2021). https://doi.org/10.1007/s10544-021-00586-9
Z. Wang, J. Luo, M. Yang, X. Wang, Photoelectrochemical assay for the detection of circulating tumor cells based on aptamer-Ag2S nanocrystals for signal amplification. Anal. Bioanal. Chem. 413(21), 5259–5266 (2021). https://doi.org/10.1007/s00216-021-03502-5
D.C. Ferreira, M.R. Batistuti, B. Bachour, M. Mulato, Aptasensor based on screen-printed electrode for breast cancer detection in undiluted human serum. Bioelectrochemistry 137, 107586 (2021). https://doi.org/10.1016/j.bioelechem.2020.107586
M. Loyez, M. Lobry, E.M. Hassan, M.C. DeRosa, C. Caucheteur et al., HER2 breast cancer biomarker detection using a sandwich optical fiber assay. Talanta 221, 121452 (2021). https://doi.org/10.1016/j.talanta.2020.121452
S. Rauf, A.A. Lahcen, A. Aljedaibi, T. Beduk, J.I.O. Filho et al., Gold nanostructured laser-scribed graphene: a new electrochemical biosensing platform for potential point-of-care testing of disease biomarkers. Biosens. Bioelectron. 180, 113116 (2021). https://doi.org/10.1016/j.bios.2021.113116
R.M. Eaton, J.A. Shallcross, L.E. Mael, K.S. Mears, L. Minkoff et al., Selection of DNA aptamers for ovarian cancer biomarker HE4 using CE-SELEX and high-throughput sequencing. Anal. Bioanal. Chem. 407(23), 6965–6973 (2015). https://doi.org/10.1007/s00216-015-8665-7
X. Zhang, Y. Wang, H. Deng, X. Xiong, H. Zhang et al., An aptamer biosensor for CA125 quantification in human serum based on upconversion luminescence resonance energy transfer. Microchem. J. 161, 105761 (2021). https://doi.org/10.1016/j.microc.2020.105761
Z. Hu, X. Zhou, J. Duan, X. Wu, J. Wu et al., Aptamer-based novel Ag-coated magnetic recognition and SERS nanotags with interior nanogap biosensor for ultrasensitive detection of protein biomarker. Sens. Actuators B Chem. 334, 129640 (2021). https://doi.org/10.1016/j.snb.2021.129640
S. Li, X. Liu, S. Liu, M. Guo, C. Liu et al., Fluorescence sensing strategy based on aptamer recognition and mismatched catalytic hairpin assembly for highly sensitive detection of alpha-fetoprotein. Anal. Chim. Acta 1141, 21 (2021). https://doi.org/10.1016/j.aca.2020.10.030
R. Gao, C. Zhan, C. Wu, Y. Lu, B. Cao et al., Simultaneous single-cell phenotype analysis of hepatocellular carcinoma CTCs using a SERS-aptamer based microfluidic chip. Lab Chip 21(20), 3888–3898 (2021). https://doi.org/10.1039/d1lc00516b
Y.C. Tsai, C.S. Lin, C.N. Lin, K.F. Hsu, G.B. Lee, Screening aptamers targeting the cell membranes of clinical cancer tissues on an integrated microfluidic system. Sens. Actuators B Chem. 330, 129334 (2021). https://doi.org/10.1016/j.snb.2020.129334
M. Liu, L. Xi, T. Tan, L. Jin, Z. Wang et al., Chinese a novel aptamer-based histochemistry assay for specific diagnosis of clinical breast cancer tissues. Chinese Chem. Lett. 32(5), 1726–1730 (2021). https://doi.org/10.1016/j.cclet.2020.11.072
C. Zhu, L. Li, S. Fang, Y. Zhao, L. Zhao et al., Selection and characterization of an ssDNA aptamer against thyroglobulin. Talanta 223(P1), 121690 (2021). https://doi.org/10.1016/j.talanta.2020.121690
A. Miranda, T. Santos, J. Carvalho, D. Alexandre, A. Jardim et al., Aptamer-based approaches to detect nucleolin in prostate cancer. Talanta 226, 122037 (2020). https://doi.org/10.1016/j.talanta.2020.122037
C.F. Shi, Z.Q. Li, C. Wang, J. Li, X.H. Xia, Ultrasensitive plasmon enhanced Raman scattering detection of nucleolin using nanochannels of 3D hybrid plasmonic metamaterial. Biosens. Bioelectron. 178, 113040 (2021). https://doi.org/10.1016/j.bios.2021.113040
Z. Li, X. Miao, Z. Cheng, P. Wang, Hybridization chain reaction coupled with the fluorescence quenching of gold nanops for sensitive cancer protein detection. Sens. Actuators B Chem. 243, 731–737 (2017). https://doi.org/10.1016/J.SNB.2016.12.047
M. Asgari, H. Khanahmad, H. Motaghi, A. Farzadniya, M.A. Mehrgardi et al., Aptamer modified nanoprobe for multimodal fluorescence/magnetic resonance imaging of human ovarian cancer cells. Appl. Phys. A Mater. Sci. Proc. 127(1), 47 (2021). https://doi.org/10.1007/s00339-020-04171-4
S. Takita, A. Nabok, D. Smith, A. Lishchuk, Comparison of the performances of two RNA-based geno- sensing principles for the detection of LncPCA3 biomarker. Chem. Proc. 3, (2021). https://sciforum.net/manuscripts/10453/manuscript.pdf
S. Forouzanfar, F. Alam, N. Pala, C. Wang, Highly sensitive label-free electrochemical aptasensors based on photoresist derived carbon for cancer biomarker detection. Biosens. Bioelectron. 170, 112598 (2020). https://doi.org/10.1016/j.bios.2020.112598
S. Chung, J.K. Sicklick, P. Ray, D.A. Hall, Development of a soluble KIT electrochemical aptasensor for cancer theranostics. ACS Sens. 6(5), 1971–1979 (2021). https://doi.org/10.1021/acssensors.1c00535
S. Lee, S. Hayati, S. Kim, H.J. Lee, Determination of protein tyrosine kinase-7 concentration using electrocatalytic reaction and an aptamer-antibody sandwich assay platform. Catal. Today 359, 76–82 (2021). https://doi.org/10.1016/j.cattod.2019.05.029
H. Wang, X. Li, L.A. Lai, T.A. Brentnall, D.W. Dawson et al., X-aptamers targeting Thy-1 membrane glycoprotein in pancreatic ductal adenocarcinoma. Biochimie 181, 25–33 (2021). https://doi.org/10.1016/j.biochi.2020.11.018
S. Gogoi, R. Khan, Fluorescence immunosensor for cardiac troponin T based on Förster resonance energy transfer (FRET) between carbon dot and MoS2 nano-couple. Phys. Chem. Chem. Phys. 20(24), 16501–16509 (2018). https://doi.org/10.1039/C8CP02433B
F. Odeh, H. Nsairat, W. Alshaer, M.A. Ismail, E. Esawi et al., Aptamers chemistry: chemical modifications and conjugation strategies. Molecules 25(1), 3 (2019). https://doi.org/10.3390/MOLECULES25010003
S. Cai, J. Yan, H. Xiong, Y. Liu, D. Peng et al., Investigations on the interface of nucleic acid aptamers and binding targets. Analyst 143(22), 5317–5338 (2018). https://doi.org/10.1039/C8AN01467A
B. Chatterjee, N. Kalyani, A. Anand, E. Khan, S. Das et al., GOLD SELEX: a novel SELEX approach for the development of high-affinity aptamers against small molecules without residual activity. Microchim. Acta 187(11), 618 (2020). https://doi.org/10.1007/S00604-020-04577-0
T. Adachi, Y. Nakamura, Aptamers: a review of their chemical properties and modifications for therapeutic application. Molecules 24(23), 4229 (2019). https://doi.org/10.3390/MOLECULES24234229
M. Sola, A.P. Menon, B. Moreno, D. Meraviglia-Crivelli, M.M. Soldevilla et al., Aptamers against live targets: is in vivo SELEX finally coming to the edge? Mol. Ther. Nucleic Acids 21, 192–204 (2020). https://doi.org/10.1016/J.OMTN.2020.05.025
A. Parashar, J. Clin, Aptamers in therapeutics. J. Clin. Diagn. Res. (2016). https://doi.org/10.7860/JCDR/2016/18712.7922
A. Brady, H.W. Wang, M. Naguib, K. Liang, V.Q. Vuong et al., Pre-sodiated Ti3C2Tx MXene structure and behavior as electrode for sodium-ion capacitors. ACS Nano 15(2), 2994–3003 (2021). https://doi.org/10.1021/acsnano.0c09301
Á. Morales-Garciá, F. Calle-Vallejo, F. Illas, MXenes: new horizons in catalysis. ACS Catal. 10(22), 13487–13503 (2020). https://doi.org/10.1021/ACSCATAL.0C03106
K. Maleski, M. Alhabeb, Top-down MXene synthesis (selective etching). 2D Metal Carbides and Nitrides (MXenes) 69–87 (2019). https://doi.org/10.1007/978-3-030-19026-2_5
K. Xiong, P. Wang, G. Yang, Z. Liu, H. Zhang et al., Functional group effects on the photoelectronic properties of MXene (Sc2CT2, T=O, F, OH) and their possible photocatalytic activities. Sci. Rep. 7(1), 15095 (2017). https://doi.org/10.1038/s41598-017-15233-8
Y. Jia, Y. Pan, C. Wang, C. Liu, C. Shen et al., Flexible Ag microp/MXene-based film for energy harvesting. Nano-Micro Lett. 13, 201 (2021). https://doi.org/10.1007/S40820-021-00729-W
I. Persson, L.A. Näslund, J. Halim, M.W. Barsoum, V. Darakchieva et al., On the organization and thermal behavior of functional groups on Ti3C2 surfaces in vacuum. 2D Mater 5(1), 015002 (2017). https://doi.org/10.1088/2053-1583/AA89CD
N.R. Hemanth, B. Kandasubramanian, Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review. Chem. Eng. J. 392, 123678 (2020). https://doi.org/10.1016/J.CEJ.2019.123678
R. Syamsai, J.R. Rodriguez, V.G. Pol, Q.V. Le, K.M. Batoo et al., Double transition metal MXene (TixTa4−xC3) 2D materials as anodes for Li-ion batteries. Sci. Rep. 11(1), 688 (2021). https://doi.org/10.1038/s41598-020-79991-8
R.M. Ronchi, J.T. Arantes, S.F. Santos, Synthesis, structure, properties and applications of MXenes: current status and perspectives. Ceram. Int. 45(15), 18167–18188 (2019). https://doi.org/10.1016/J.CERAMINT.2019.06.114
N. Xu, H. Li, Y. Gan, H. Chen, W. Li et al., Zero-dimensional MXene-based optical devices for ultrafast and ultranarrow photonics applications. Adv. Sci. 7(22), 2002209 (2020). https://doi.org/10.1002/advs.202002209
F. Wu, Z. Liu, J. Wang, T. Shah, P. Liu et al., Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem. Eng. J. 422, 130591 (2021). https://doi.org/10.1016/j.cej.2021.130591
X. Zhao, X.J. Zha, J.H. Pu, L. Bai, R.Y. Bao et al., Macroporous three-dimensional MXene architectures for highly efficient solar steam generation. J. Mater. Chem. A 7(17), 10446–10455 (2019). https://doi.org/10.1039/c9ta00176j
Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/S40820-021-00673-9
D. Wang, L. Wang, Z. Lou, Y. Zheng, K. Wang et al., Biocompatible and robust silk fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 78, 105252 (2020). https://doi.org/10.1016/J.NANOEN.2020.105252
C.E. Shuck, K. Ventura-martinez, A. Goad, S. Uzun, M. Shekhirev et al., Safe synthesis of MAX and MXene: guidelines to reduce risk during synthesis. ACS Chem. Health Saf. 28(5), 326–338 (2021). https://doi.org/10.1021/acs.chas.1c00051
M. Malaki, A. Maleki, R.S. Varma, MXenes and ultrasonication. J. Mater. Chem. A 7(18), 10843–10857 (2019). https://doi.org/10.1039/C9TA01850F
Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. PNAS 111(47), 16676–16681 (2014). https://doi.org/10.1073/PNAS.1414215111
R.A. Vaia, A. Jawaid, A. Hassan, G. Neher, D. Nepal et al., Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS Nano 15(2), 2771–2777 (2021). https://doi.org/10.1021/ACSNANO.0C08630
T. Li, L. Yao, Q. Liu, J. Gu, R. Luo et al., Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew. Chem. Int. Ed. 130(21), 6223–6227 (2018). https://doi.org/10.1002/ANGE.201800887
P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8(22), 11385–11391 (2016). https://doi.org/10.1039/C6NR02253G
S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe et al., Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57(47), 15491–15495 (2018). https://doi.org/10.1002/ANIE.201809662
C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29(11), 4848–4856 (2017). https://doi.org/10.1021/ACS.CHEMMATER.7B00745
M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes.” Dalt. Trans. 44(20), 9353–9358 (2015). https://doi.org/10.1039/C5DT01247C
H. Tang, H. Tang, Y. Yang, Y. Yang, R. Wang et al., Improving the properties of 2D titanium carbide films by thermal treatment. J. Mater. Chem. C 8(18), 6214–6220 (2020). https://doi.org/10.1039/C9TC07018D
J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du et al., Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017). https://doi.org/10.1038/ncomms13907
L. Wang, H. Qiu, P. Song, Y. Zhang, Y. Lu et al., 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. Part A Appl. Sci. Manuf. 123, 293–300 (2019). https://doi.org/10.1016/J.COMPOSITESA.2019.05.030
Y. Fang, R. Hu, B. Liu, Y. Zhang, K. Zhu et al., MXene-derived TiO2 /reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J. Mater. Chem. A 7(10), 5363–5372 (2019). https://doi.org/10.1039/C8TA12069B
A. Sinha, Dhanjai, H. Zhao, Y. Huang, X. Lu et al., MXene: an emerging material for sensing and biosensing. TrAC Trends Anal. Chem. 105, 424–435 (2018). https://doi.org/10.1016/J.TRAC.2018.05.021
Z. Li, Y. Wu, Z. Li, Y. Wu, 2D early transition metal carbides (MXenes) for catalysis. Small 15(29), 1804736 (2019). https://doi.org/10.1002/SMLL.201804736
T. Wang, T. Wang, C. Weng, L. Liu, J. Zhao et al., Engineering electrochemical actuators with large bending strain based on 3D-structure titanium carbide MXene composites. Nano Res. 14(7), 2277–2284 (2021). https://doi.org/10.1007/S12274-020-3222-X
S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018). https://doi.org/10.1021/ACSNANO.7B07460
B. Shen, H. Huang, H. Liu, Q. Jiang, H. He, Bottom-up construction of three-dimensional porous MXene/nitrogen-doped graphene architectures as efficient hydrogen evolution electrocatalysts. Int. J. Hydrogen Energy 46(58), 29984–29993 (2021). https://doi.org/10.1016/J.IJHYDENE.2021.06.157
K. Li, X. Wang, S. Li, P. Urbankowski, J. Li et al., An ultrafast conducting polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors. Small 16(4), 1906851 (2020). https://doi.org/10.1002/smll.201906851
A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2(12), 1600255 (2016). https://doi.org/10.1002/aelm.201600255
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
D. Fang, D. Zhao, S. Zhang, Y. Huang, H. Dai et al., Black phosphorus quantum dots functionalized MXenes as the enhanced dual-mode probe for exosomes sensing. Sens. Actuators B Chem. 305, 127544 (2020). https://doi.org/10.1016/J.SNB.2019.127544
F. Duan, C. Guo, M. Hu, Y. Song, M. Wang et al., Construction of the 0D/2D heterojunction of Ti3C2Tx MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of microRNA-155. Sens. Actuators B Chem. 310, 127844 (2020). https://doi.org/10.1016/J.SNB.2020.127844
B.C. Wyatt, A. Rosenkranz, B. Anasori, B.C. Wyatt, B. Anasori et al., 2D MXenes: tunable mechanical and tribological properties. Adv. Mater. 33(17), 2007973 (2021). https://doi.org/10.1002/ADMA.202007973
I. Persson, A. Ghazaly, Q. Tao, J. Halim, S. Kota et al., Tailoring structure, composition, and energy storage properties of MXenes from selective etching of in-plane, chemically ordered MAX phases. Small 14(17), 1703676 (2018). https://doi.org/10.1002/SMLL.201703676
V.N. Borysiuk, V.N. Mochalin, Y. Gogotsi, Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: a molecular dynamics study. Comput. Mater. Sci. 143, 418–424 (2018). https://doi.org/10.1016/J.COMMATSCI.2017.11.028
S.M. Hatam-Lee, A. Esfandiar, A. Rajabpour, Mechanical behaviors of titanium nitride and carbide MXenes: a molecular dynamics study. Appl. Surf. Sci. 566, 150633 (2021). https://doi.org/10.1016/J.APSUSC.2021.150633
G. Plummer, B. Anasori, Y. Gogotsi, G.J. Tucker, Nanoindentation of monolayer Tin+1CnTx MXenes via atomistic simulations: the role of composition and defects on strength. Comput. Mater. Sci. 157, 168–174 (2019). https://doi.org/10.1016/J.COMMATSCI.2018.10.033
K. Ren, R. Zheng, P. Xu, D. Cheng, W. Huo et al., Electronic and optical properties of atomic-scale heterostructure based on MXene and MN (M = Al, Ga): a DFT investigation. Nanomaterials 11(9), 2236 (2021). https://doi.org/10.3390/NANO11092236
K. Hantanasirisakul, M.Q. Zhao, P. Urbankowski, J. Halim, B. Anasori et al., Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2(6), 1600050 (2016). https://doi.org/10.1002/AELM.201600050
Y. Xu, Y. Wang, J. An, A.C. Sedgwick, M. Li et al., 2D-ultrathin MXene/DOXjade platform for iron chelation chemo-photothermal therapy. Bioact. Mater. 14, 76–85 (2021). https://doi.org/10.1016/J.BIOACTMAT.2021.12.011
C.J. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29(36), 1702678 (2017). https://doi.org/10.1002/ADMA.201702678
C. Xing, S. Chen, X. Liang, Q. Liu, M. Qu et al., Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl. Mater. Interfaces 10(33), 27631–27643 (2018). https://doi.org/10.1021/ACSAMI.8B08314
G. Ying, S. Kota, A.D. Dillon, A.T. Fafarman, M.W. Barsoum, Conductive transparent V2CTx (MXene) films. FlatChem 8, 25–30 (2018). https://doi.org/10.1016/J.FLATC.2018.03.001
G.R. Berdiyorov, Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: first-principles calculations. AIP Adv. 6(5), 055105 (2016). https://doi.org/10.1063/1.4948799
J. Wang, X. Zhou, M. Yang, D. Cao, X. Chen et al., Interface and polarization effects induced Schottky-barrier-free contacts in two-dimensional MXene/GaN heterojunctions. J. Mater. Chem. C 8(22), 7350–7357 (2020). https://doi.org/10.1039/D0TC01405B
R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11(4), 3752–3759 (2017). https://doi.org/10.1021/ACSNANO.6B08415
Z. Huang, X. Cui, S. Li, J. Wei, P. Li et al., Two-dimensional MXene-based materials for photothermal therapy. Nanophotonics 9(8), 2233–2249 (2020). https://doi.org/10.1515/nanoph-2019-0571
A. Paściak, A. Pilch-Wróbel, Ł Marciniak, P.J. Schuck, A. Bednarkiewicz, Standardization of methodology of light-to-heat conversion efficiency determination for colloidal nanoheaters. ACS Appl. Mater. Interfaces 13(37), 44556–44567 (2021). https://doi.org/10.1021/ACSAMI.1C12409
Z.L. Lei, B. Guo, 2D material-based optical biosensor: status and prospect. Adv. Sci. 9(4), 2102924 (2021). https://doi.org/10.1002/ADVS.202102924
X. Chen, Y. Zhao, L. Li, Y. Wang, J. Wang et al., MXene/polymer nanocomposites: preparation, properties, and applications. Polym. Rev. 61(1), 80–115 (2020). https://doi.org/10.1080/15583724.2020.1729179
M.R. Lukatskaya, S. Kota, Z. Lin, M.Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2(8), 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
X. Li, X. Yin, H. Xu, M. Han, M. Li et al., Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band. ACS Appl. Mater. Interfaces 10(40), 34524–34533 (2018). https://doi.org/10.1021/acsami.8b13658
C. Si, K.H. Jin, J. Zhou, Z. Sun, F. Liu, Large-gap quantum spin hall state in MXenes: D-band topological order in a triangular lattice. Nano Lett. 16(10), 6584–6591 (2016). https://doi.org/10.1021/acs.nanolett.6b03118
F. Wu, K. Luo, C. Huang, W. Wu, P. Meng et al., Theoretical understanding of magnetic and electronic structures of Ti3C2 monolayer and its derivatives. Solid State Commun. 222, 9–13 (2015). https://doi.org/10.1016/J.SSC.2015.08.023
Y. Yue, B. Wang, N. Miao, C. Jiang, H. Lu et al., Tuning the magnetic properties of Zr2N MXene by biaxial strain. Ceram. Int. 47(2), 2367–2373 (2021). https://doi.org/10.1016/J.CERAMINT.2020.09.079
H. Kumar, N.C. Frey, L. Dong, B. Anasori, Y. Gogotsi et al., Tunable magnetism and transport properties in nitride MXenes. ACS Nano 11(8), 7648–7655 (2017). https://doi.org/10.1021/ACSNANO.7B02578
J. He, P. Lyu, L.Z. Sun, Á.M. García, P. Nachtigall, High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes. J. Mater. Chem. C 4(27), 6500–6509 (2016). https://doi.org/10.1039/c6tc01287f
Y. Lu, X. Qu, S. Wang, Y. Zhao, Y. Ren et al., Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin. Nano Res. (2021). https://doi.org/10.1007/S12274-021-4032-5
K. Allen-Perry, W. Straka, D. Keith, S. Han, L. Reynolds et al., Tuning the magnetic properties of two-dimensional MXenes by chemical etching. Materials 14(3), 694 (2021). https://doi.org/10.3390/MA14030694
O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
K. Wang, Y. Zhou, W. Xu, D. Huang, Z. Wang et al., Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceram. Int. 42(7), 8419–8424 (2016). https://doi.org/10.1016/J.CERAMINT.2016.02.059
H. Jing, H. Yeo, B. Lyu, J. Ryou, S. Choi et al., Modulation of the electronic properties of MXene (Ti3C2Tx) via surface-covalent functionalization with diazonium. ACS Nano 15(1), 1388–1396 (2021). https://doi.org/10.1021/ACSNANO.0C08664
V. Shukla, The tunable electric and magnetic properties of 2D MXenes and their potential applications. Mater. Adv. 1(9), 3104–3121 (2020). https://doi.org/10.1039/D0MA00548G
E.S. Muckley, M. Naguib, I.N. Ivanov, Ultrasensitive, wide-range humidity sensing with Ti3C2 film. Nanoscale 10(46), 21689–21695 (2018). https://doi.org/10.1039/C8NR05170D
T. Hu, H. Zhang, J. Wang, Z. Li, M. Hu et al., Anisotropic electronic conduction in stacked two-dimensional titanium carbide. Sci. Rep. 5, 16329 (2015). https://doi.org/10.1038/srep16329
Y. Liu, H. Xiao, W.A. Goddard, Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc. 138(49), 15853–15856 (2016). https://doi.org/10.1021/jacs.6b10834
C. Si, J. Zhou, Z. Sun, Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Appl. Mater. Interfaces 7(31), 17510–17515 (2015). https://doi.org/10.1021/acsami.5b05401
Q. Wan, S. Li, J.B. Liu, First-principle study of Li-ion storage of functionalized Ti2C monolayer with vacancies. ACS Appl. Mater. Interfaces 10(7), 6369–6377 (2018). https://doi.org/10.1021/ACSAMI.7B18369
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich et al., Two-dimensional atomic crystals. PNAS 102(30), 10451–10453 (2005). https://doi.org/10.1073/PNAS.0502848102
T. Hu, M. Hu, B. Gao, W. Li, X. Wang, Screening surface structure of MXenes by high-throughput computation and vibrational spectroscopic confirmation. J. Phys. Chem. C 122(32), 18501–18509 (2018). https://doi.org/10.1021/ACS.JPCC.8B04427
V.M.H. Ng, H. Huang, K. Zhou, P.S. Lee, W. Que et al., Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5(7), 3039–3068 (2017). https://doi.org/10.1039/c6ta06772g
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012). https://doi.org/10.1021/NN204153H
M. Naguib, J. Come, B. Dyatkin, V. Presser, P.L. Taberna et al., MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. commun. 16(1), 61–64 (2012). https://doi.org/10.1016/J.ELECOM.2012.01.002
H. Wang, J. Sun, L. Lu, X. Yang, J. Xia et al., Competitive electrochemical aptasensor based on a CDNA-ferrocene/MXene probe for detection of breast cancer marker mucin1. Anal. Chim. Acta 1094, 18–25 (2020). https://doi.org/10.1016/j.aca.2019.10.003
B. Qiao, Q. Guo, J. Jiang, Y. Qi, H. Zhang et al., An electrochemiluminescent aptasensor for amplified detection of exosomes from breast tumor cells (MCF-7 cells) based on G-quadruplex/hemin DNAzymes. Analyst 144(11), 3668–3675 (2019). https://doi.org/10.1039/C9AN00181F
H. Zhang, Z. Wang, F. Wang, Y. Zhang, H. Wang et al., Ti3C2 MXene mediated Prussian blue in situ hybridization and electrochemical signal amplification for the detection of exosomes. Talanta 224, 121879 (2021). https://doi.org/10.1016/j.talanta.2020.121879
S. Zhou, C. Gu, Z. Li, L. Yang, L. He et al., Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: ultra-sensitive platform for the detection of osteopontin. Appl. Surf. Sci. 498, 143889 (2019). https://doi.org/10.1016/J.APSUSC.2019.143889
N. Kurra, B. Ahmed, Y. Gogotsi, H.N. Alshareef, MXene-on-paper coplanar microsupercapacitors. Adv. Energy Mater. 6(24), 1601372 (2016). https://doi.org/10.1002/aenm.201601372
X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5(2), 235–258 (2020). https://doi.org/10.1039/C9NH00571D
Y.Y. Peng, B. Akuzum, N. Kurra, M.Q. Zhao, M. Alhabeb et al., All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9(9), 2847–2854 (2016). https://doi.org/10.1039/c6ee01717g
Y. Wang, J. Luo, J. Liu, S. Sun, Y. Xiong et al., Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers. Biosens. Bioelectron. 136, 84–90 (2019). https://doi.org/10.1016/j.bios.2019.04.032
X. Yang, M. Feng, J. Xia, F. Zhang, Z. Wang, An electrochemical biosensor based on AuNPs/Ti3C2 MXene three-dimensional nanocomposite for microRNA-155 detection by exonuclease III-aided cascade target recycling. J. Electroanal. Chem. 878, 114669 (2020). https://doi.org/10.1016/J.JELECHEM.2020.114669
H. Zhang, Z. Wang, Q. Zhang, F. Wang, Y. Liu, Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosens. Bioelectron. 124–125, 184–190 (2019). https://doi.org/10.1016/J.BIOS.2018.10.016
J. Zhao, C. He, W. Wu, H. Yang, J. Dong et al., MXene-MoS2 heterostructure collaborated with catalyzed hairpin assembly for label-free electrochemical detection of microRNA-21. Talanta 237, 122927 (2022). https://doi.org/10.1016/J.TALANTA.2021.122927
F. Vajhadin, M. Mazloum-Ardakani, M. Shahidi, S.M. Moshtaghioun, F. Haghiralsadat et al., MXene-based cytosensor for the detection of HER2-positive cancer cells using CoFe2O4@Ag magnetic nanohybrids conjugated to the HB5 aptamer. Biosens. Bioelectron. 195, 113626 (2022). https://doi.org/10.1016/J.BIOS.2021.113626
Y. Liu, S. Huang, J. Li, M. Wang, C. Wang et al., 0D/2D heteronanostructure–integrated bimetallic CoCu-ZIF nanosheets and MXene-derived carbon dots for impedimetric cytosensing of melanoma B16–F10 cells. Microchim. Acta 188(3), 69 (2021). https://doi.org/10.1007/S00604-021-04726-Z
M.A. Sadique, S. Yadav, P. Ranjan, M.A. Khan, A. Kumar et al., Rapid detection of SARS-CoV-2 using graphene-based IoT integrated advanced electrochemical biosensor. Mater. Lett. 305, 130824 (2021). https://doi.org/10.1016/j.matlet.2021.130824
P. Ranjan, A. Singhal, M.A. Sadique, S. Yadav, A. Parihar et al., Scope of biosensors, commercial aspects, and miniaturized devices for point-of-care testing from lab to clinics applications. Biosensor Based Advanced Cancer Diagnostics 395–410 (2022). https://doi.org/10.1016/B978-0-12-823424-2.00004-1