Self-Assembly MXene-rGO/CoNi Film with Massive Continuous Heterointerfaces and Enhanced Magnetic Coupling for Superior Microwave Absorber
Corresponding Author: Renchao Che
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 73
Abstract
MXene, as a rising star of two-dimensional (2D) materials, has been widely applied in fields of microwave absorption and electromagnetic shielding to cope with the arrival of the 5G era. However, challenges arise due to the excessively high permittivity and the difficulty of surface modification of few-layered MXenes severely, which infect the microwave absorption performance. Herein, for the first time, a carefully designed and optimized electrostatic self-assembly strategy to fabricate magnetized MXene-rGO/CoNi film was reported. Inside the synthesized composite film, rGO nanosheets decorated with highly dispersed CoNi nanoparticles are interclacted into MXene layers, which effectively suppresses the originally self-restacked of MXene nanosheets, resulting in a reduction of high permittivity. In addition, owing to the strong magnetic coupling between the magnetic FeCo alloy nanoparticles on the rGO substrate, the entire MXene-rGO/CoNi film exhibits a strong magnetic loss capability. Moreover, the local dielectric polarized fields exist at the continuous hetero-interfaces between 2D MXene and rGO further improve the capacity of microwave loss. Hence, the synthesized composite film exhibits excellent microwave absorption property with a maximum reflection loss value of − 54.1 dB at 13.28 GHz. The electromagnetic synergy strategy is expected to guide future exploration of high-efficiency MXene-based microwave absorption materials.
Highlights:
1 The rGO/CoNi nanosheets embedded between the MXene layers can continue to serve as a conductive channel, ensuring carrier migration and proper conductive loss capability.
2 Owing to the strong magnetic coupling between the magnetic FeCo alloy nanoparticles on the rGO substrate, the entire MXene-rGO/CoNi film exhibits a strong magnetic loss capability.
3 Self-assembly MXene-rGO/CoNi films hold excellent microwave absorption performance − 54.1 dB at 13.28 GHz.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin et al., Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10(8), 3209–3215 (2010). https://doi.org/10.1021/nl1022139
- K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). https://doi.org/10.1126/science.1158877
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
- J.C. Lei, X. Zhang, Z. Zhou, Recent advances in MXene: preparation, properties, and applications. Front. Phys. 10(3), 276–286 (2015). https://doi.org/10.1007/s11467-015-0493-x
- M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
- L. Huang, C. Chen, Z. Li, Y. Zhang, H. Zhang et al., Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures. Nanotechnology 31(16), 162001 (2020). https://doi.org/10.1088/1361-6528/ab50af
- F.M. Oliveira, R. Gusmao, Recent advances in the electromagnetic interference shielding of 2D materials beyond graphene. ACS App. Electron. Mater. 2(10), 3048–3071 (2020). https://doi.org/10.1021/acsaelm.0c00545
- K. Raagulan, B.M. Kim, K.Y. Chai, Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials 10(4), 702 (2020). https://doi.org/10.3390/nano10040702
- N.K. Chaudhari, H. Jin, B. Kim, D.S. Baek, S.H. Joo et al., MXene: an emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 5(47), 24564–24579 (2017). https://doi.org/10.1039/C7TA09094C
- A. Zhang, R. Liu, J. Tian, W. Huang, J. Liu, MXene-based nanocomposites for energy conversion and storage applications. Chem. Eur. J. 26(29), 6342–6359 (2020). https://doi.org/10.1002/chem.202000191
- A. Sinha, H. Zhao, Y. Huang, X. Lu, J. Chen et al., MXene: an emerging material for sensing and biosensing. Trends Anal. Chem. 105, 424–435 (2018). https://doi.org/10.1016/j.trac.2018.05.021
- P.K. Kalambate, N.S. Gadhari, X. Li, Z. Rao, S.T. Navale et al., Recent advances in MXene-based electrochemical sensors and biosensors. Trends Anal. Chem. 120, 115643 (2019). https://doi.org/10.1016/j.trac.2019.115643
- L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang et al., MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9(1), 155 (2018). https://doi.org/10.1038/s41467-017-02529-6
- D. Petukhov, A. Kan, A. Chumakov, O. Konovalov, R. Valeev et al., MXene-based gas separation membranes with sorption type selectivity. J. Membr. Sci. 621, 118994 (2021). https://doi.org/10.1016/j.memsci.2020.118994
- Y.A. Al-Hamadani, B.M. Jun, M. Yoon, N. Taheri-Qazvini, S.A. Snyde et al., Applications of MXene-based membranes in water purification: a review. Chemosphere 254, 126821 (2020). https://doi.org/10.1016/j.chemosphere.2020.126821
- X. Xie, C. Chen, N. Zhang, Z.R. Tang, J. Jiang et al., Microstructure and surface control of MXene films for water purification. Nat. Sustain. 2(9), 856–862 (2019). https://doi.org/10.1038/s41893-019-0373-4
- Y. Qing, W. Zhou, F. Luo, D. Zhu, Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 42(14), 16412–16416 (2016). https://doi.org/10.1016/j.ceramint.2016.07.150
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- Z. Kang, Y. Ma, X. Tan, M. Zhu, Z. Zheng et al., MXene-silicon van der Waals heterostructures for high-speed self-driven photodetectors. Adv. Electron. Mater. 3(9), 1700165 (2017). https://doi.org/10.1002/aelm.201700165
- X. Li, W. You, L. Wang, J. Liu, Z. Wu et al., Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. ACS Appl. Mater. Interf. 11(47), 44536–44544 (2019). https://doi.org/10.1021/acsami.9b11861
- X. Li, M. Zhang, W. You, K. Pei, Q. Zeng et al., Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method. ACS Appl. Mater. Interf. 12(15), 18138–18147 (2020). https://doi.org/10.1021/acsami.0c00935
- G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011). https://doi.org/10.1021/cm103441u
- W. Feng, H. Luo, S. Zeng, C. Chen, L. Deng et al., Ni-modified Ti3C2 MXene with enhanced microwave absorbing ability. Mater. Chem. Front. 2(12), 2320–2326 (2018). https://doi.org/10.1039/C8QM00436F
- W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3(38), 10017–10022 (2015). https://doi.org/10.1039/C5TC02185E
- Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- X. Li, C. Wen, L. Yang, R. Zhang, X. Li et al., MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon 175, 509–518 (2021). https://doi.org/10.1016/j.carbon.2020.11.089
- W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958). https://doi.org/10.1021/ja01539a017
- J. Feng, F. Pu, Z. Li, X. Li, X. Hu et al., Interfacial interactions and synergistic effect of coni nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 104, 214–225 (2016). https://doi.org/10.1016/j.carbon.2016.04.006
- J. Ma, X. Wang, W. Cao, C. Han, H. Yang et al., A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-RGO hybrid-architectures. Chem. Eng. J. 339, 487–498 (2018). https://doi.org/10.1016/j.cej.2018.01.152
- M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen et al., Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interf. 4(12), 6949–6956 (2012). https://doi.org/10.1021/am3021069
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- H. Wang, Y. Dai, W. Gong, D. Geng, S. Ma et al., Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances. Appl. Phys. Lett. 102(22), 223113 (2013). https://doi.org/10.1063/1.4809675
- H. Tian, J. Verbeeck, S. Brück, M. Paul, D. Kufer et al., Interface-induced modulation of charge and polarization in thin film Fe3O4. Adv. Mater. 26(3), 461–465 (2014). https://doi.org/10.1002/adma.201303329
- A. Nie, L.Y. Gan, Y. Cheng, H. Asayesh-Ardakani, Q. Li et al., Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials. ACS Nano 7(7), 6203–6211 (2013). https://doi.org/10.1021/nn402125e
- X. Sun, M. Yang, S. Yang, S. Wang, W. Yin et al., Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 15(43), 1902974 (2019). https://doi.org/10.1002/smll.201902974
- X. Li, L. Wang, W. You, L. Xing, X. Yu et al., Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units. Nanoscale 11(6), 2694–2702 (2019). https://doi.org/10.1039/C8NR08601J
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@ SiO2@TiO2 and CoNi@ air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
References
L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin et al., Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10(8), 3209–3215 (2010). https://doi.org/10.1021/nl1022139
K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). https://doi.org/10.1126/science.1158877
S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
J.C. Lei, X. Zhang, Z. Zhou, Recent advances in MXene: preparation, properties, and applications. Front. Phys. 10(3), 276–286 (2015). https://doi.org/10.1007/s11467-015-0493-x
M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
L. Huang, C. Chen, Z. Li, Y. Zhang, H. Zhang et al., Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures. Nanotechnology 31(16), 162001 (2020). https://doi.org/10.1088/1361-6528/ab50af
F.M. Oliveira, R. Gusmao, Recent advances in the electromagnetic interference shielding of 2D materials beyond graphene. ACS App. Electron. Mater. 2(10), 3048–3071 (2020). https://doi.org/10.1021/acsaelm.0c00545
K. Raagulan, B.M. Kim, K.Y. Chai, Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials 10(4), 702 (2020). https://doi.org/10.3390/nano10040702
N.K. Chaudhari, H. Jin, B. Kim, D.S. Baek, S.H. Joo et al., MXene: an emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 5(47), 24564–24579 (2017). https://doi.org/10.1039/C7TA09094C
A. Zhang, R. Liu, J. Tian, W. Huang, J. Liu, MXene-based nanocomposites for energy conversion and storage applications. Chem. Eur. J. 26(29), 6342–6359 (2020). https://doi.org/10.1002/chem.202000191
A. Sinha, H. Zhao, Y. Huang, X. Lu, J. Chen et al., MXene: an emerging material for sensing and biosensing. Trends Anal. Chem. 105, 424–435 (2018). https://doi.org/10.1016/j.trac.2018.05.021
P.K. Kalambate, N.S. Gadhari, X. Li, Z. Rao, S.T. Navale et al., Recent advances in MXene-based electrochemical sensors and biosensors. Trends Anal. Chem. 120, 115643 (2019). https://doi.org/10.1016/j.trac.2019.115643
L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang et al., MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9(1), 155 (2018). https://doi.org/10.1038/s41467-017-02529-6
D. Petukhov, A. Kan, A. Chumakov, O. Konovalov, R. Valeev et al., MXene-based gas separation membranes with sorption type selectivity. J. Membr. Sci. 621, 118994 (2021). https://doi.org/10.1016/j.memsci.2020.118994
Y.A. Al-Hamadani, B.M. Jun, M. Yoon, N. Taheri-Qazvini, S.A. Snyde et al., Applications of MXene-based membranes in water purification: a review. Chemosphere 254, 126821 (2020). https://doi.org/10.1016/j.chemosphere.2020.126821
X. Xie, C. Chen, N. Zhang, Z.R. Tang, J. Jiang et al., Microstructure and surface control of MXene films for water purification. Nat. Sustain. 2(9), 856–862 (2019). https://doi.org/10.1038/s41893-019-0373-4
Y. Qing, W. Zhou, F. Luo, D. Zhu, Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 42(14), 16412–16416 (2016). https://doi.org/10.1016/j.ceramint.2016.07.150
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
Z. Kang, Y. Ma, X. Tan, M. Zhu, Z. Zheng et al., MXene-silicon van der Waals heterostructures for high-speed self-driven photodetectors. Adv. Electron. Mater. 3(9), 1700165 (2017). https://doi.org/10.1002/aelm.201700165
X. Li, W. You, L. Wang, J. Liu, Z. Wu et al., Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. ACS Appl. Mater. Interf. 11(47), 44536–44544 (2019). https://doi.org/10.1021/acsami.9b11861
X. Li, M. Zhang, W. You, K. Pei, Q. Zeng et al., Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method. ACS Appl. Mater. Interf. 12(15), 18138–18147 (2020). https://doi.org/10.1021/acsami.0c00935
G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011). https://doi.org/10.1021/cm103441u
W. Feng, H. Luo, S. Zeng, C. Chen, L. Deng et al., Ni-modified Ti3C2 MXene with enhanced microwave absorbing ability. Mater. Chem. Front. 2(12), 2320–2326 (2018). https://doi.org/10.1039/C8QM00436F
W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3(38), 10017–10022 (2015). https://doi.org/10.1039/C5TC02185E
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
X. Li, C. Wen, L. Yang, R. Zhang, X. Li et al., MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon 175, 509–518 (2021). https://doi.org/10.1016/j.carbon.2020.11.089
W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958). https://doi.org/10.1021/ja01539a017
J. Feng, F. Pu, Z. Li, X. Li, X. Hu et al., Interfacial interactions and synergistic effect of coni nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 104, 214–225 (2016). https://doi.org/10.1016/j.carbon.2016.04.006
J. Ma, X. Wang, W. Cao, C. Han, H. Yang et al., A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-RGO hybrid-architectures. Chem. Eng. J. 339, 487–498 (2018). https://doi.org/10.1016/j.cej.2018.01.152
M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen et al., Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interf. 4(12), 6949–6956 (2012). https://doi.org/10.1021/am3021069
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
H. Wang, Y. Dai, W. Gong, D. Geng, S. Ma et al., Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances. Appl. Phys. Lett. 102(22), 223113 (2013). https://doi.org/10.1063/1.4809675
H. Tian, J. Verbeeck, S. Brück, M. Paul, D. Kufer et al., Interface-induced modulation of charge and polarization in thin film Fe3O4. Adv. Mater. 26(3), 461–465 (2014). https://doi.org/10.1002/adma.201303329
A. Nie, L.Y. Gan, Y. Cheng, H. Asayesh-Ardakani, Q. Li et al., Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials. ACS Nano 7(7), 6203–6211 (2013). https://doi.org/10.1021/nn402125e
X. Sun, M. Yang, S. Yang, S. Wang, W. Yin et al., Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 15(43), 1902974 (2019). https://doi.org/10.1002/smll.201902974
X. Li, L. Wang, W. You, L. Xing, X. Yu et al., Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units. Nanoscale 11(6), 2694–2702 (2019). https://doi.org/10.1039/C8NR08601J
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@ SiO2@TiO2 and CoNi@ air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149