Multiplexed Profiling of Extracellular Vesicles for Biomarker Development
Corresponding Author: George K. Tofaris
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 3
Abstract
Extracellular vesicles (EVs) are cell-derived membranous particles that play a crucial role in molecular trafficking, intercellular transport and the egress of unwanted proteins. They have been implicated in many diseases including cancer and neurodegeneration. EVs are detected in all bodily fluids, and their protein and nucleic acid content offers a means of assessing the status of the cells from which they originated. As such, they provide opportunities in biomarker discovery for diagnosis, prognosis or the stratification of diseases as well as an objective monitoring of therapies. The simultaneous assaying of multiple EV-derived markers will be required for an impactful practical application, and multiplexing platforms have evolved with the potential to achieve this. Herein, we provide a comprehensive overview of the currently available multiplexing platforms for EV analysis, with a primary focus on miniaturized and integrated devices that offer potential step changes in analytical power, throughput and consistency.
Highlights:
1 Extracellular vesicle (EV) multiplexing involves chemical, physical spatial, biological, or nanoparticle-based strategies.
2 Multiplexing in EV biomarker development includes high-throughput screening as well as point-of-care testing platforms which to date have been applied mainly to EV surface proteins or internal cargo miRNAs.
3 Multiplexed measurements at single-EV resolution are likely to revolutionize the applicability of EV analytes as biomarkers in complex and heterogeneous diseases.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Colombo, G. Raposo, C. Théry, Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 3, 255–289 (2014). https://doi.org/10.1146/annurev-cellbio-101512-122326
- Y.P. Loh, Advances in EV isolation technology and function. Extracell. Vesicles Circ. Nucleic Acids 2(1), 1–2 (2021). https://doi.org/10.20517/evcna.2021.09
- Z. Fan, J. Yu, J. Lin, Y. Liu, Y. Liao, Exosome-specific tumor diagnosis via biomedical analysis of exosome-containing microrna biomarkers. Analyst 144(19), 5856–5865 (2019). https://doi.org/10.1039/C9AN00777F
- E. Ragni, C.P. Orfei, A. Papait, L. Girolamo, Comparison of miRNA cargo in human adipose-tissue Vs amniotic-membrane derived mesenchymal stromal cells extracellular vesicles for osteoarthritis treatment. Extracell. Vesicles Circ. Nucleic Acids 2(3), 202–221 (2021)
- H. Xiong, Z. Huang, Z. Yang, Q. Lin, B. Yang et al., Recent progress in detection and profiling of cancer cell-derived exosomes. Small 17(35), 2007971 (2021). https://doi.org/10.1002/smll.202007971
- S. Cui, Z. Cheng, W. Qin, L. Jiang, Exosomes as a liquid biopsy for lung cancer. Lung Cancer 116, 46–54 (2018). https://doi.org/10.1016/j.lungcan.2017.12.012
- T. Hu, J. Wolfram, S. Srivastava, Extracellular vesicles in cancer detection: hopes and hypes. Trends in Cancer 7(2), 122–133 (2021). https://doi.org/10.1016/j.trecan.2020.09.003
- Z. Fan, K. Xiao, J. Lin, Y. Liao, X. Huang, Functionalized DNA enables programming exosomes/vesicles for tumor imaging and therapy. Small 15(47), 1903761 (2019). https://doi.org/10.1002/smll.201903761
- T. Tamura, Y. Yoshioka, S. Sakamoto, T. Ichikawa, T. Ochiya, Extracellular vesicles as a promising biomarker resource in liquid biopsy for cancer. Extracell. Vesicles Circ. Nucleic Acids 2(2), 148–174 (2021). https://doi.org/10.20517/evcna.2021.06
- Y. Zhang, N. Ding, S. Xie, Y. Ding, M. Huang et al., Identification of important extracellular vesicle RNA molecules related to sperm motility and prostate cancer. Extracell. Vesicles Circ. Nucleic Acids 2(2), 104–126 (2021). https://doi.org/10.20517/evcna.2021.02
- P.R. Tomlinson, Y. Zheng, R. Fischer, R. Heidasch, C. Gardiner et al., Identification of distinct circulating exosomes in Parkinson’s disease. Ann. Clin. Transl. Neurol. 2(4), 353–361 (2015). https://doi.org/10.1002/acn3.175
- Q. Li, G.K. Tofaris, J.J. Davis, Concentration-normalized electroanalytical assaying of exosomal markers. Anal. Chem. 89(5), 3184–3190 (2017). https://doi.org/10.1021/acs.analchem.6b05037
- G.K. Tofaris, A critical assessment of exosomes in the pathogenesis and stratification of Parkinson’s disease. J. Parkinsons. Dis. 7(4), 569–576 (2017). https://doi.org/10.3233/JPD-171176
- L. Xiao, S. Hareendran, Y.P. Loh, Function of exosomes in neurological disorders and brain tumors. Extracell. Vesicles Circ. Nucleic Acids 2(1), 55–79 (2021). https://doi.org/10.20517/evcna.2021.04
- C. Jiang, F. Hopfner, D. Berg, M.T. Hu, A. Pilotto et al., Validation of α-synuclein in L1CAM-immunocaptured exosomes as a biomarker for the stratification of parkinsonian syndromes. Mov. Disord. (2021). https://doi.org/10.1002/mds.28591
- Y. Bei, S. Das, R.S. Rodosthenous, P. Holvoet, M. Vanhaverbeke et al., Extracellular vesicles in cardiovascular theranostics. Theranostics 7(17), 4168–4182 (2017). https://doi.org/10.7150/thno.21274
- F. Jansen, G. Nickenig, N. Werner, Extracellular vesicles in cardiovascular disease. Circul. Res. 120(10), 1649–1657 (2017). https://doi.org/10.1161/CIRCRESAHA.117.310752
- H. Shao, H. Im, C.M. Castro, X. Breakefield, R. Weissleder et al., New technologies for analysis of extracellular vesicles. Chem. Rev. 118(4), 1917–1950 (2018). https://doi.org/10.1021/acs.chemrev.7b00534
- H. Xu, B.C. Ye, Advances in biosensing technologies for analysis of cancer-derived exosomes. TrAC Trends Anal. Chem. 123, 115773 (2020). https://doi.org/10.1016/j.trac.2019.115773
- S. Zhou, Y. Yang, Y. Wu, S. Liu, Review: multiplexed profiling of biomarkers in extracellular vesicles for cancer diagnosis and therapy monitoring. Anal. Chim. Acta 1175, 338633 (2021). https://doi.org/10.1016/j.aca.2021.338633
- A. Nakamura, N. Kaneko, V.L. Villemagne, T. Kato, J. Doecke et al., High performance plasma amyloid-Β biomarkers for Alzheimer’s disease. Nature 554(7691), 249–254 (2018). https://doi.org/10.1038/nature25456
- D. Jin, X.X. Peng, Y. Qin, P. Wu, H. Lu et al., Multivalence-actuated DNA nanomachines enable bicolor exosomal phenotyping and PD-L1-guided therapy monitoring. Anal. Chem. 92(14), 9877–9886 (2020). https://doi.org/10.1021/acs.analchem.0c01387
- Q. Chen, T. Sun, C. Jiang, Recent advancements in nanomedicine for ‘cold’ tumor immunotherapy. Nano-Micro Lett. 13, 92 (2021). https://doi.org/10.1007/s40820-021-00622-6
- M. Zhang, K. Jin, L. Gao, Z. Zhang, F. Li et al., Methods and technologies for exosome isolation and characterization. Small Methods 2(9), 1800021 (2018). https://doi.org/10.1002/smtd.201800021
- P. Ziaei, C.E. Berkman, M.G. Norton, Isolation and detection of tumor-derived extracellular vesicles. ACS Appl. Nano Mater. 1(5), 2004–2020 (2018). https://doi.org/10.1021/acsanm.8b00267
- Z. Zhao, H. Wijerathne, A.K. Godwin, S.A. Soper, Isolation and analysis methods of extracellular vesicles (EVs). Extracell. Vesicles Circ. Nucleic Acids 2(1), 80–103 (2021). https://doi.org/10.20517/evcna.2021.07
- A. Abramowicz, P. Widlak, M. Pietrowska, Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. Mol. Biosyst. 12(5), 1407–1419 (2016). https://doi.org/10.1039/C6MB00082G
- D.S. Choi, D.K. Kim, Y.K. Kim, Y.S. Gho, Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrom. Rev. 34(4), 474–490 (2015). https://doi.org/10.1002/mas.21420
- S. Wu, Y. Li, W. Ding, L. Xu, Y. Ma et al., Recent advances of persistent luminescence nanoparticles in bioapplications. Nano-Micro Lett. 12, 70 (2020). https://doi.org/10.1007/s40820-020-0404-8
- C. Zong, M. Xu, L.J. Xu, T. Wei, X. Ma et al., Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem. Rev. 118(10), 4946–4980 (2018). https://doi.org/10.1021/acs.chemrev.7b00668
- J. Plou, I. García, M. Charconnet, I. Astobiza, C. García-Astrain et al., Multiplex SERS detection of metabolic alterations in tumor extracellular media. Adv. Funct. Mater. 30(17), 1910335 (2020). https://doi.org/10.1002/adfm.201910335
- Y. Zheng, C. Jiang, S.H. Ng, Y. Lu, F. Han et al., Unclonable plasmonic security labels achieved by shadow-mask-lithography-assisted self-assembly. Adv. Mater. 28(12), 2330–2336 (2016). https://doi.org/10.1002/adma.201505022
- Z. Ji, C. Zhang, Y. Ye, J. Ji, H. Dong et al., Magnetically enhanced liquid SERS for ultrasensitive analysis of bacterial and SARS-Cov-2 biomarkers. Front. Bioeng. Biotechnol. 9(787), 735711 (2021). https://doi.org/10.3389/fbioe.2021.735711
- Y. Wang, S. Zeng, A. Crunteanu, Z. Xie, G. Humbert et al., Targeted sub-attomole cancer biomarker detection based on phase singularity 2D nanomaterial-enhanced plasmonic biosensor. Nano-Micro Lett. 13, 96 (2021). https://doi.org/10.1007/s40820-021-00613-7
- H. Shin, H. Jeong, J. Park, S. Hong, Y. Choi, Correlation between cancerous exosomes and protein markers based on surface-enhanced Raman spectroscopy (SERS) and principal component analysis (PCA). ACS Sens. 3(12), 2637–2643 (2018). https://doi.org/10.1021/acssensors.8b01047
- W. Zhang, L. Jiang, R.J. Diefenbach, D.H. Campbell, B.J. Walsh et al., Enabling sensitive phenotypic profiling of cancer-derived small extracellular vesicles using surface-enhanced Raman spectroscopy nanotags. ACS Sens. 5(3), 764–771 (2020). https://doi.org/10.1021/acssensors.9b02377
- Z. Wang, S. Zong, Y. Wang, N. Li, L. Li et al., Screening and multiple detection of cancerous exosomes using a SERS-based method. Nanoscale 10, 9053–9062 (2018). https://doi.org/10.1039/C7NR09162A
- C.F. Ning, L. Wang, Y.F. Tian, B.C. Yin, B.C. Ye, Multiple and sensitive SERS detection of cancer-related exosomes based on gold–silver bimetallic nanotrepangs. Analyst 145(7), 2795–2804 (2020). https://doi.org/10.1039/C9AN02180A
- J. Wang, A. Wuethrich, A.A.I. Sina, R.E. Lane, L.L. Lin et al., Tracking extracellular vesicle phenotypic changes enables treatment monitoring in melanoma. Sci. Adv. 6(9), eaax3223 (2020). https://doi.org/10.1126/sciadv.aax3223
- G. Huang, G. Lin, Y. Zhu, W. Duan, D. Jin, Emerging technologies for profiling extracellular vesicle heterogeneity. Lab Chip 20(14), 2423–2437 (2020). https://doi.org/10.1039/D0LC00431F
- D. Cialla, A. März, R. Böhme, F. Theil, K. Weber et al., Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal. Bioanal. Chem. 403(1), 27–54 (2012). https://doi.org/10.1007/s00216-011-5631-x
- D. Cialla-May, X.S. Zheng, K. Weber, J. Popp, Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem. Soc. Rev. 46(13), 3945–3961 (2017). https://doi.org/10.1039/C7CS00172J
- Z. Zhao, Y. Yang, Y. Zeng, M. He, A microfluidic Exosearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 16(3), 489–496 (2016). https://doi.org/10.1039/c5lc01117e
- M. Deng, C. Jiang, L. Jia, N-Methylimidazolium modified magnetic particles as adsorbents for solid phase extraction of genomic deoxyribonucleic acid from genetically modified soybeans. Anal. Chim. Acta 771, 31–36 (2013). https://doi.org/10.1016/j.aca.2013.02.005
- Y. Guan, C. Jiang, C. Hu, L. Jia, Preparation of multi-walled carbon nanotubes functionalized magnetic particles by sol-gel technology and its application in extraction of estrogens. Talanta 83(2), 337–343 (2010). https://doi.org/10.1016/j.talanta.2010.09.023
- S. Lin, Z. Yu, D. Chen, Z. Wang, J. Miao et al., Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small 16(9), 1903916 (2020). https://doi.org/10.1002/smll.201903916
- S. Xu, C. Jiang, Y. Lin, L. Jia, Magnetic nanoparticles modified with polydimethylsiloxane and multi-walled carbon nanotubes for solid-phase extraction of fluoroquinolones. Microchim. Acta 179(3), 257–264 (2012). https://doi.org/10.1007/s00604-012-0894-2
- S. Fang, H. Tian, X. Li, D. Jin, X. Li et al., Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS ONE 12(4), e0175050 (2017). https://doi.org/10.1371/journal.pone.0175050
- M. He, J. Crow, M. Roth, Y. Zeng, A.K. Godwin, Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 14(19), 3773–3780 (2014). https://doi.org/10.1039/C4LC00662C
- S. Wang, A. Khan, R. Huang, S. Ye, K. Di et al., Recent advances in single extracellular vesicle detection methods. Biosens. Bioelectron. 154, 112056 (2020). https://doi.org/10.1016/j.bios.2020.112056
- K. Lee, K. Fraser, B. Ghaddar, K. Yang, E. Kim et al., Multiplexed profiling of single extracellular vesicles. ACS Nano 12(1), 494–503 (2018). https://doi.org/10.1021/acsnano.7b07060
- S. Cavallaro, F. Pevere, F. Stridfeldt, A. Görgens, C. Paba et al., Multiparametric profiling of single nanoscale extracellular vesicles by combined atomic force and fluorescence microscopy: correlation and heterogeneity in their molecular and biophysical features. Small 17(14), 2008155 (2021). https://doi.org/10.1002/smll.202008155
- H. Wang, H. Chen, Z. Huang, T. Li, A. Deng et al., DAase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection. Talanta 184, 219–226 (2018). https://doi.org/10.1016/j.talanta.2018.02.083
- B. Li, C. Liu, W. Pan, J. Shen, J. Guo et al., Facile fluorescent aptasensor using aggregation-induced emission luminogens for exosomal proteins profiling towards liquid biopsy. Biosens. Bioelectron. 168, 112520 (2020). https://doi.org/10.1016/j.bios.2020.112520
- Y. Xia, M. Liu, L. Wang, A. Yan, W. He et al., A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. Biosens. Bioelectron. 92, 8–15 (2017). https://doi.org/10.1016/j.bios.2017.01.063
- D. Jin, F. Yang, Y. Zhang, L. Liu, Y. Zhou et al., ExoAPP: exosome-oriented, aptamer nanoprobe-enabled surface proteins profiling and detection. Anal. Chem. 90(24), 14402–14411 (2018). https://doi.org/10.1021/acs.analchem.8b03959
- C. Liu, J. Zhao, F. Tian, L. Cai, W. Zhang et al., Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers. Nat. Biomed. Eng. 3(3), 183–193 (2019). https://doi.org/10.1038/s41551-018-0343-6
- F. Tian, Z. Han, J. Deng, C. Liu, J. Sun, Thermomicrofluidics for biosensing applications. VIEW (2021). https://doi.org/10.1002/VIW.20200148
- B. Lin, T. Tian, Y. Lu, D. Liu, M. Huang et al., Tracing tumor-derived exosomal PD-L1 by dual-aptamer activated proximity-induced droplet digital PCR. Angew. Chem. Int. Ed. 60(14), 7582–7586 (2021). https://doi.org/10.1002/anie.202015628
- D. Wu, J. Yan, X. Shen, Y. Sun, M. Thulin et al., Profiling surface proteins on individual exosomes using a proximity barcoding assay. Nat. Comm. 10(1), 3854 (2019). https://doi.org/10.1038/s41467-019-11486-1
- L. Löf, T. Ebai, L. Dubois, L. Wik, K.G. Ronquist et al., Detecting individual extracellular vesicles using a multicolor in situ proximity ligation assay with flow cytometric readout. Sci. Rep. 6, 34358 (2016). https://doi.org/10.1038/srep34358
- J. Zhang, J. Shi, H. Zhang, Y. Zhu, W. Liu et al., Localized fluorescent imaging of multiple proteins on individual extracellular vesicles using rolling circle amplification for cancer diagnosis. J. Extracell. Vesicles 10(1), e12025 (2020). https://doi.org/10.1002/jev2.12025
- X. Wu, H. Zhao, A. Natalia, C.Z.J. Lim, N.R.Y. Ho et al., Exosome-templated nanoplasmonics for multiparametric molecular profiling. Sci. Adv. 6(19), 2556 (2020). https://doi.org/10.1126/sciadv.aba2556
- E.C. Yeh, C.C. Fu, L. Hu, R. Thakur, J. Feng et al., Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip. Sci. Adv. 3(3), e1501645 (2017). https://doi.org/10.1126/sciadv.1501645
- V. Yelleswarapu, J.R. Buser, M. Haber, J. Baron, E. Inapuri et al., Mobile platform for rapid sub–picogram-per-milliliter, multiplexed, digital droplet detection of proteins. PNAS 116(10), 4489–4495 (2019). https://doi.org/10.1073/pnas.1814110116
- B. Shu, L. Lin, B. Wu, E. Huang, Y. Wang et al., A pocket-sized device automates multiplexed point-of-care RNA testing for rapid screening of infectious pathogens. Biosens. Bioelectron. 181, 113145 (2021). https://doi.org/10.1016/j.bios.2021.113145
- T. Tian, B. Shu, Y. Jiang, M. Ye, L. Liu et al., An ultralocalized cas13a assay enables universal and nucleic acid amplification-free single-molecule RNA diagnostics. ACS Nano 15(1), 1167–1178 (2021). https://doi.org/10.1021/acsnano.0c08165
- C.Z.J. Lim, Y. Zhang, Y. Chen, H. Zhao, M.C. Stephenson et al., Subtyping of circulating exosome-bound amyloid β reflects brain plaque deposition. Nat. Comm. 10(1), 1144 (2019). https://doi.org/10.1038/s41467-019-09030-2
- Y. Li, J. Deng, Z. Han, C. Liu, F. Tian et al., Molecular identification of tumor-derived extracellular vesicles using thermophoresis-mediated DNA computation. J. Am. Chem. Soc. 143(3), 1290–1295 (2021). https://doi.org/10.1021/jacs.0c12016
- J. Zhao, C. Liu, Y. Li, Y. Ma, J. Deng et al., Thermophoretic detection of exosomal microRNAs by nanoflares. J. Am. Chem. Soc. 142(11), 4996–5001 (2020). https://doi.org/10.1021/jacs.9b13960
- H. Schwarzenbach, N. Nishida, G.A. Calin, K. Pantel, Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol. 11(3), 145–156 (2014). https://doi.org/10.1038/nrclinonc.2014.5
- J.R. Chevillet, Q. Kang, I.K. Ruf, H.A. Briggs, L.N. Vojtech et al., Quantitative and stoichiometric analysis of the microRNA content of exosomes. PNAS 111(41), 14888–14893 (2014). https://doi.org/10.1073/pnas.1408301111
- G. Liu, C. Jiang, X. Lin, Y. Yang, Point-of-care detection of cytokines in cytokine storm management and beyond: significance and challenges. VIEW 2(4), 20210003 (2021). https://doi.org/10.1002/VIW.20210003
- J.H. Lee, J.A. Kim, S. Jeong, W.J. Rhee, Simultaneous and multiplexed detection of exosome micrornas using molecular beacons. Biosens. Bioelectron. 86, 202–210 (2016). https://doi.org/10.1016/j.bios.2016.06.058
- J. Lee, M.H. Kwon, J.A. Kim, W.J. Rhee, Detection of exosome miRNAs using molecular beacons for diagnosing prostate cancer. Artif. Cells Nanomed. Biotechnol. 46, S52–S63 (2018). https://doi.org/10.1080/21691401.2018.1489263
- H.C. Yang, W.J. Rhee, Single step in situ detection of surface protein and microRNA in clustered extracellular vesicles using flow cytometry. J. Clin. Med. 10(2), 319 (2021). https://doi.org/10.3390/jcm10020319
- S. Zhou, T. Hu, G. Han, Y. Wu, X. Hua et al., Accurate cancer diagnosis and stage monitoring enabled by comprehensive profiling of different types of exosomal biomarkers: surface proteins and miRNAs. Small 16(48), 2004492 (2020). https://doi.org/10.1002/smll.202004492
- C. Liu, E. Kannisto, G. Yu, Y. Yang, M.E. Reid et al., Non-invasive detection of exosomal microRNAs via tethered cationic lipoplex nanoparticles (tCLN) biochip for lung cancer early detection. Front. Genet. 11(258), 258 (2020). https://doi.org/10.3389/fgene.2020.00258
- Y. Yang, E. Kannisto, G. Yu, M.E. Reid, S.K. Patnaik et al., An immuno-biochip selectively captures tumor-derived exosomes and detects exosomal RNAs for cancer diagnosis. ACS Appl. Mater. Interfaces 10(50), 43375–43386 (2018). https://doi.org/10.1021/acsami.8b13971
- J. Zhou, Z. Wu, J. Hu, D. Yang, X. Chen et al., High-throughput single-EV liquid biopsy: rapid, simultaneous, and multiplexed detection of nucleic acids, proteins, and their combinations. Sci. Adv. 6(47), eabc1204 (2020). https://doi.org/10.1126/sciadv.abc1204
- Y. Wu, K.J. Kwak, K. Agarwal, A. Marras, C. Wang et al., Detection of extracellular RNAs in cancer and viral infection via tethered cationic lipoplex nanoparticles containing molecular beacons. Anal. Chem. 85(23), 11265–11274 (2013). https://doi.org/10.1021/ac401983w
- X. Wang, K.J. Kwak, Z. Yang, A. Zhang, X. Zhang et al., Extracellular mRNA detected by molecular beacons in tethered lipoplex nanoparticles for diagnosis of human hepatocellular carcinoma. PLoS ONE 13(6), e0198552 (2018). https://doi.org/10.1371/journal.pone.0198552
- P. Ghassemi, B. Wang, J. Wang, Q. Wang, Y. Chen et al., Evaluation of mobile phone performance for near-infrared fluorescence imaging. IEEE Trans. Biomed. Eng. 64(7), 1650–1653 (2017). https://doi.org/10.1109/TBME.2016.2601014
- R. Vaidyanathan, M. Naghibosadat, S. Rauf, D. Korbie, L.G. Carrascosa et al., Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing. Anal. Chem. 86(22), 11125–11132 (2014). https://doi.org/10.1021/ac502082b
- C. Liu, J. Zhao, F. Tian, J. Chang, W. Zhang et al., λ-DNA- and aptamer-mediated sorting and analysis of extracellular vesicles. J. Am. Chem. Soc. 141(9), 3817–3821 (2019). https://doi.org/10.1021/jacs.9b00007
- H. Im, H. Shao, Y.I. Park, V.M. Peterson, C.M. Castro et al., Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 32(5), 490–495 (2014). https://doi.org/10.1038/nbt.2886
- W. Liu, J. Li, Y. Wu, S. Xing, Y. Lai et al., Target-induced proximity ligation triggers recombinase polymerase amplification and transcription-mediated amplification to detect tumor-derived exosomes in nasopharyngeal carcinoma with high sensitivity. Biosens. Bioelectron. 102, 204–210 (2018). https://doi.org/10.1016/j.bios.2017.11.033
- Y. Jiang, M. Shi, Y. Liu, S. Wan, C. Cui et al., Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew. Chem. Int. Ed. 56(39), 11916–11920 (2017). https://doi.org/10.1002/anie.201703807
- Y. Lyu, D. Cui, J. Huang, W. Fan, Y. Miao et al., Near-infrared afterglow semiconducting nano-polycomplexes for the multiplex differentiation of cancer exosomes. Angew. Chem. Int. Ed. 58(15), 4983–4987 (2019). https://doi.org/10.1002/ange.201900092
- Y.J. Chiu, W. Cai, Y.R.V. Shih, I. Lian, Y.H. Lo, A single-cell assay for time lapse studies of exosome secretion and cell behaviors. Small 12(27), 3658–3666 (2016). https://doi.org/10.1002/smll.201600725
- K. Mori, M. Hirase, T. Morishige, E. Takano, H. Sunayama et al., A pretreatment-free, polymer-based platform prepared by molecular imprinting and post-imprinting modifications for sensing intact exosomes. Angew. Chem. Int. Ed. 58(6), 1612–1615 (2019). https://doi.org/10.1002/anie.201811142
- S. Jeong, J. Park, D. Pathania, C.M. Castro, R. Weissleder et al., Integrated magneto–electrochemical sensor for exosome analysis. ACS Nano 10(2), 1802–1809 (2016). https://doi.org/10.1021/acsnano.5b07584
- C. Jiang, F. Hopfner, A. Katsikoudi, R. Hein, C. Catli et al., Serum neuronal exosomes predict and differentiate Parkinson’s disease from atypical parkinsonism. J. Neurol. Neurosurg. Psychiatry 91, 720–729 (2020). https://doi.org/10.1136/jnnp-2019-322588
- J. Park, H. Im, S. Hong, C.M. Castro, R. Weissleder et al., Analyses of intravesicular exosomal proteins using a nano-plasmonic system. ACS Photonics 5(2), 487–494 (2018). https://doi.org/10.1021/acsphotonics.7b00992
- E.A. Kwizera, R. O’Connor, V. Vinduska, M. Williams, E.R. Butch et al., Molecular detection and analysis of exosomes using surface-enhanced Raman scattering gold nanorods and a miniaturized device. Theranostics 8(10), 2722 (2018). https://doi.org/10.7150/thno.21358
- L. Zhu, K. Wang, J. Cui, H. Liu, X. Bu et al., Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal. Chem. 86(17), 8857–8864 (2014). https://doi.org/10.1021/ac5023056
- M. Rodrigues, N. Richards, B. Ning, C.J. Lyon, T.Y. Hu, Rapid lipid-based approach for normalization of quantum-dot-detected biomarker expression on extracellular vesicles in complex biological samples. Nano Lett. 19(11), 7623–7631 (2019). https://doi.org/10.1021/acs.nanolett.9b02232
- T. Takeuchi, K. Mori, H. Sunayama, E. Takano, Y. Kitayama et al., Antibody-conjugated signaling nanocavities fabricated by dynamic molding for detecting cancers using small extracellular vesicle markers from tears. J. Am. Chem. Soc. 142(14), 6617–6624 (2020). https://doi.org/10.1021/jacs.9b13874
- P. Zhang, X. Zhou, Y. Zeng, Multiplexed immunophenotyping of circulating exosomes on nano-engineered exoprofile chip towards early diagnosis of cancer. Chem. Sci. 10(21), 5495–5504 (2019). https://doi.org/10.1039/C9SC00961B
- S. Zhou, T. Hu, F. Zhang, D. Tang, D. Li et al., Integrated microfluidic device for accurate extracellular vesicle quantification and protein markers analysis directly from human whole blood. Anal. Chem. 92(1), 1574–1581 (2020). https://doi.org/10.1021/acs.analchem.9b04852
- Y. An, R. Li, F. Zhang, P. He, Magneto-mediated electrochemical sensor for simultaneous analysis of breast cancer exosomal proteins. Anal. Chem. 92(7), 5404–5410 (2020). https://doi.org/10.1021/acs.analchem.0c00106
- K.S. Yang, H. Im, S. Hong, I. Pergolini, A.F. Castillo et al., Multiparametric plasma EV profiling facilitates diagnosis of pancreatic malignancy. Sci. Transl. Med. 9(391), l3226 (2017). https://doi.org/10.1126/scitranslmed.aal3226
- H.L. Cheng, C.Y. Fu, W.C. Kuo, Y.W. Chen, Y.S. Chen et al., Detecting mirna biomarkers from extracellular vesicles for cardiovascular disease with a microfluidic system. Lab Chip 18(19), 2917–2925 (2018). https://doi.org/10.1039/C8LC00386F
- H. Wang, D. He, K. Wan, X. Sheng, H. Cheng et al., In situ multiplex detection of serum exosomal micrornas using all-in-one biosensor for breast cancer diagnosis. Analyst 145, 3289–3296 (2020). https://doi.org/10.1039/D0AN00393J
- M. Jang, G. Choi, Y.Y. Choi, J.E. Lee, J.H. Jung et al., Extracellular vesicle (EV)-polyphenol nanoaggregates for microrna-based cancer diagnosis. NPG Asia Mater. 11(1), 79 (2019). https://doi.org/10.1038/s41427-019-0184-0
- Z. Wang, X. Sun, A. Natalia, C.S.L. Tang, C.B.T. Ang et al., Dual-selective magnetic analysis of extracellular vesicle glycans. Matter 2(1), 150–166 (2020). https://doi.org/10.1016/j.matt.2019.10.018
- D.L.M. Rupert, C. Lässer, M. Eldh, S. Block, V.P. Zhdanov et al., Determination of exosome concentration in solution using surface plasmon resonance spectroscopy. Anal. Chem. 86(12), 5929–5936 (2014). https://doi.org/10.1021/ac500931f
- A. Thakur, G. Qiu, S.P. Ng, J. Guan, J. Yue et al., Direct detection of two different tumor-derived extracellular vesicles by SAM-AuNIs LSPR biosensor. Biosens. Bioelectron. 94, 400–407 (2017). https://doi.org/10.1016/j.bios.2017.03.036
- E.L. Gool, I. Stojanovic, R.B.M. Schasfoort, A. Sturk, T.G. Leeuwen et al., Surface plasmon resonance is an analytically sensitive method for antigen profiling of extracellular vesicles. Clin. Chem. 63(10), 1633–1641 (2017). https://doi.org/10.1373/clinchem.2016.271049
- M.A. Khan, Y. Zhu, Y. Yao, P. Zhang, A. Agrawal et al., Impact of metal crystallinity-related morphologies on the sensing performance of plasmonic nanohole arrays. Nanoscale 12(14), 7577–7585 (2020). https://doi.org/10.1039/D0NR00619J
- C. Liu, Y. Yang, Y. Wu, Recent advances in exosomal protein detection via liquid biopsy biosensors for cancer screening, diagnosis, and prognosis. AAPS J. 20(2), 41 (2018). https://doi.org/10.1208/s12248-018-0201-1
- S. Taufik, A. Barfidokht, M.T. Alam, C. Jiang, S.G. Parker et al., An antifouling electrode based on electrode–organic layer–nanoparticle constructs: electrodeposited organic layers versus self-assembled monolayers. J. Electroanal. Chem. 779, 229–235 (2016). https://doi.org/10.1016/j.jelechem.2016.01.031
- C. Jiang, G. Wang, R. Hein, N. Liu, X. Luo et al., Antifouling strategies for selective in vitro and in vivo sensing. Chem. Rev. 120(8), 3852–3889 (2020). https://doi.org/10.1021/acs.chemrev.9b00739
- W. Wu, X. Yu, J. Wu, T. Wu, Y. Fan et al., Surface plasmon resonance imaging-based biosensor for multiplex and ultrasensitive detection of NSCLC-associated exosomal miRNAs using DNA programmed heterostructure of Au-on-Ag. Biosens. Bioelectron. 175, 112835 (2021). https://doi.org/10.1016/j.bios.2020.112835
- J.A. Huang, M.Z. Mousavi, Y. Zhao, A. Hubarevich, F. Omeis et al., SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping. Nat. Commun. 10(1), 5321 (2019). https://doi.org/10.1038/s41467-019-13242-x
- J.A. Huang, M.Z. Mousavi, G. Giovannini, Y. Zhao, A. Hubarevich et al., Multiplexed discrimination of single amino acid residues in polypeptides in a single SERS hot spot. Angew. Chem. Int. Ed. 59(28), 11423–11431 (2020). https://doi.org/10.1002/anie.202000489
- S. Pan, Y. Zhang, A. Natalia, C.Z.J. Lim, N.R.Y. Ho et al., Extracellular vesicle drug occupancy enables real-time monitoring of targeted cancer therapy. Nat. Nanotechnol. 16(6), 734–742 (2021). https://doi.org/10.1038/s41565-021-00872-w
- J. Min, T. Son, J.S. Hong, P.S. Cheah, A. Wegemann et al., Plasmon-enhanced biosensing for multiplexed profiling of extracellular vesicles. Adv. Biosyst. 4(12), 2000003 (2020). https://doi.org/10.1002/adbi.202000003
- Q. Su, C. Jiang, D. Gou, Y. Long, Surface plasmon-assisted fluorescence enhancing and quenching: from theory to application. ACS Appl. Bio Mater. 4(6), 4684–4705 (2021). https://doi.org/10.1021/acsabm.1c00320
- L.K. Chin, T. Son, J.S. Hong, A.Q. Liu, J. Skog et al., Plasmonic sensors for extracellular vesicle analysis: from scientific development to translational research. ACS Nano 14(11), 14528–14548 (2020). https://doi.org/10.1021/acsnano.0c07581
- H. Aoki, R.M. Corn, B. Matthews, Microrna detection on microsensor arrays by SPR imaging measurements with enzymatic signal enhancement. Biosens. Bioelectron. 142, 111565 (2019). https://doi.org/10.1016/j.bios.2019.111565
- C. Zhou, H. Zou, C. Sun, D. Ren, J. Chen et al., Signal amplification strategies for DNA-based surface plasmon resonance biosensors. Biosensors Bioelectron. 117, 678–689 (2018). https://doi.org/10.1016/j.bios.2018.06.062
- M. Jørgensen, R. Bæk, S. Pedersen, E.K. Søndergaard, S.R. Kristensen et al., Extracellular vesicle (EV) array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping. J. Extracell. Vesicles 2(1), 20920 (2013). https://doi.org/10.3402/jev.v2i0.20920
- M.P. Zaborowski, K. Lee, Y.J. Na, A. Sammarco, X. Zhang et al., Methods for systematic identification of membrane proteins for specific capture of cancer-derived extracellular vesicles. Cell Rep. 27(1), 255-268.e6 (2019). https://doi.org/10.1016/j.celrep.2019.03.003
- M.M. Jørgensen, R. Bæk, K. Varming, Potentials and capabilities of the extracellular vesicle (EV) array. J. Extracell. Vesicles 4(1), 26048 (2015). https://doi.org/10.3402/jev.v4.26048
- L. Xu, N. Shoaei, F. Jahanpeyma, J. Zhao, M. Azimzadeh et al., Optical, electrochemical and electrical (Nano) biosensors for detection of exosomes: a comprehensive overview. Biosens. Bioelectron. 161, 112222 (2020). https://doi.org/10.1016/j.bios.2020.112222
- H. Xu, C. Liao, P. Zuo, Z. Liu, B.C. Ye, Magnetic-based microfluidic device for on-chip isolation and detection of tumor-derived exosomes. Anal. Chem. 90(22), 13451–13458 (2018). https://doi.org/10.1021/acs.analchem.8b03272
- F. Tian, C. Liu, L. Lin, Q. Chen, J. Sun, Microfluidic analysis of circulating tumor cells and tumor-derived extracellular vesicles. TrAC Trends Anal. Chem. 117, 128–145 (2019). https://doi.org/10.1016/j.trac.2019.05.013
- J. Park, H.Y. Lin, J.P. Assaker, S. Jeong, C.H. Huang et al., Integrated kidney exosome analysis for the detection of kidney transplant rejection. ACS Nano 11(11), 11041–11046 (2017). https://doi.org/10.1021/acsnano.7b05083
- C.K. Tang, A. Vaze, M. Shen, J.F. Rusling, High-throughput electrochemical microfluidic immunoarray for multiplexed detection of cancer biomarker proteins. ACS Sens. 1(8), 1036–1043 (2016). https://doi.org/10.1021/acssensors.6b00256
- T. Goda, K. Masuno, J. Nishida, N. Kosaka, T. Ochiya et al., A label-free electrical detection of exosomal micrornas using microelectrode array. Chem. Comm. 48(98), 11942–11944 (2012). https://doi.org/10.1039/C2CC36111F
- C. Jiang, M.T. Alam, S.M. Silva, S. Taufik, S. Fan et al., Unique sensing interface that allows the development of an electrochemical immunosensor for the detection of tumor necrosis factor α in whole blood. ACS Sens. 1(12), 1432–1438 (2016). https://doi.org/10.1021/acssensors.6b00532
- Y. Fu, C. Jiang, G.K. Tofaris, J.J. Davis, Facile impedimetric analysis of neuronal exosome markers in Parkinson’s disease diagnostics. Anal. Chem. 92(20), 13647–13651 (2020). https://doi.org/10.1021/acs.analchem.0c03092
- C. Jiang, S.M. Silva, S. Fan, Y. Wu, M.T. Alam et al., Aryldiazonium salt derived mixed organic layers: from surface chemistry to their applications. J. Electroanal. Chem. 785, 265–278 (2017). https://doi.org/10.1016/j.jelechem.2016.11.043
- C. Jiang, Protein-Resistant Electrode for Biosensing. PhD Thesis (2016).
- C. Jiang, M.T. Alam, S.G. Parker, J.J. Gooding, Zwitterionic phenyl phosphorylcholine on indium tin oxide: a low-impedance protein-resistant platform for biosensing. Electroanalysis 27(4), 884–889 (2015). https://doi.org/10.1002/elan.201400557
- S.B. Patil, R.M. Al-Jehani, H. Etayash, V. Turbe, K. Jiang et al., Modified cantilever arrays improve sensitivity and reproducibility of nanomechanical sensing in living cells. Commun. Biol. 1(1), 175 (2018). https://doi.org/10.1038/s42003-018-0179-3
- J.L. Arlett, E.B. Myers, M.L. Roukes, Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6(4), 203–215 (2011). https://doi.org/10.1038/nnano.2011.44
- S. Olcum, N. Cermak, S.C. Wasserman, K.S. Christine, H. Atsumi et al., Weighing nanoparticles in solution at the attogram scale. PNAS 111(4), 1310–1315 (2014). https://doi.org/10.1073/pnas.1318602111
- H. Etayash, A. McGee, K. Kaur, T. Thundat, Nanomechanical sandwich assay for multiple cancer biomarkers in breast cancer cell-derived exosomes. Nanoscale 8(33), 15137–15141 (2016). https://doi.org/10.1039/C6NR03478K
- G.G. Daaboul, P. Gagni, L. Benussi, P. Bettotti, M. Ciani et al., Digital detection of exosomes by interferometric imaging. Sci. Rep. 6, 37246 (2016). https://doi.org/10.1038/srep37246
- M. Oliveira-Rodríguez, E. Serrano-Pertierra, A.C. García, S. López-Martín, M. Yañez-Mo et al., Point-of-care detection of extracellular vesicles: sensitivity optimization and multiple-target detection. Biosens. Bioelectron. 87, 38–45 (2017). https://doi.org/10.1016/j.bios.2016.08.001
- G.G. Daaboul, C.A. Lopez, J. Chinnala, B.B. Goldberg, J.H. Connor et al., Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for Ebola and Marburg detection. ACS Nano 8(6), 6047–6055 (2014). https://doi.org/10.1021/nn501312q
- P. Gebauer, Z. Malá, P. Boček, Recent progress in analytical capillary ITP. Electrophoresis 30(1), 29–35 (2009). https://doi.org/10.1002/elps.200800425
- S. Guo, J. Xu, A.P. Estell, C.F. Ivory, D. Du et al., Paper-based ITP technology: an application to specific cancer-derived exosome detection and analysis. Biosens. Bioelectron. 164, 112292 (2020). https://doi.org/10.1016/j.bios.2020.112292
- V. Shirshahi, G. Liu, Enhancing the analytical performance of paper lateral flow assays: from chemistry to engineering. TrAC Trends Anal. Chem. 136, 116200 (2021). https://doi.org/10.1016/j.trac.2021.116200
- M. Baharfar, M. Rahbar, M. Tajik, G. Liu, Engineering strategies for enhancing the performance of electrochemical paper-based analytical devices. Biosens. Bioelectron. 167, 112506 (2020). https://doi.org/10.1016/j.bios.2020.112506
- L. Liu, D. Yang, G. Liu, Signal amplification strategies for paper-based analytical devices. Biosens. Bioelectron. 136, 60–75 (2019). https://doi.org/10.1016/j.bios.2019.04.043
- Z. Luo, T. Lv, K. Zhu, Y. Li, L. Wang et al., Paper-based ratiometric fluorescence analytical devices towards point-of-care testing of human serum albumin. Angew. Chem. Int. Ed. 59(8), 3131–3136 (2020). https://doi.org/10.1002/anie.201915046
- C. Jiang, M.T. Alam, S.G. Parker, N. Darwish, J.J. Gooding, Strategies to achieve control over the surface ratio of two different components on modified electrodes using aryldiazonium salts. Langmuir 32(10), 2509–2517 (2016). https://doi.org/10.1021/acs.langmuir.5b04550
- X. Zhang, Q. Li, X. Jin, C. Jiang, Y. Lu et al., Quantitative determination of target gene with electrical sensor. Sci. Rep. 5(1), 12539 (2015). https://doi.org/10.1038/srep12539
- S. Zhang, C. Jiang, L. Jia, Tetrabutylammonium phosphate-assisted separation of multiplex polymerase chain reaction products in non-gel sieving capillary electrophoresis. Anal. Biochem. 408(2), 284–288 (2011). https://doi.org/10.1016/j.ab.2010.09.022
- C. Jiang, S. Xu, S. Zhang, L. Jia, Chitosan functionalized magnetic particle-assisted detection of genetically modified soybeans based on polymerase chain reaction and capillary electrophoresis. Anal. Biochem. 420(1), 20–25 (2012). https://doi.org/10.1016/j.ab.2011.09.004
- C. Song, W. Chen, J. Kuang, Y. Yao, S. Tang et al., Recent advances in the detection of multiple micrornas. TrAC Trends Anal. Chem. 139, 116269 (2021). https://doi.org/10.1016/j.trac.2021.116269
- N. Singh, L. Huang, D.B. Wang, N. Shao, X.E. Zhang, Simultaneous detection of a cluster of differentiation markers on leukemia-derived exosomes by multiplex immuno-polymerase chain reaction via capillary electrophoresis analysis. Anal. Chem. 92(15), 10569–10577 (2020). https://doi.org/10.1021/acs.analchem.0c01464
- S.K. Jha, R. Chand, D. Han, Y.C. Jang, G.S. Ra et al., An integrated PCR microfluidic chip incorporating aseptic electrochemical cell lysis and capillary electrophoresis amperometric DNA detection for rapid and quantitative genetic analysis. Lab Chip 12(21), 4455–4464 (2012). https://doi.org/10.1039/C2LC40727B
- J. Ko, Y. Wang, J.C.T. Carlson, A. Marquard, J. Gungabeesoon et al., Single extracellular vesicle protein analysis using immuno-droplet digital polymerase chain reaction amplification. Adv. Biosyst. 4(12), 1900307 (2020). https://doi.org/10.1002/adbi.201900307
- Q. Tian, C. He, G. Liu, Y. Zhao, L. Hui et al., Nanoparticle counting by microscopic digital detection: selective quantitative analysis of exosomes via surface-anchored nucleic acid amplification. Anal. Chem. 90(11), 6556–6562 (2018). https://doi.org/10.1021/acs.analchem.8b00189
- J. Ko, Y. Wang, K. Sheng, D.A. Weitz, R. Weissleder, Sequencing-based protein analysis of single extracellular vesicles. ACS Nano 15(3), 5631–5638 (2021). https://doi.org/10.1021/acsnano.1c00782
- M. Gaňová, H. Zhang, H. Zhu, M. Korabečná, P. Neužil, Multiplexed digital polymerase chain reaction as a powerful diagnostic tool. Biosens. Bioelectron. 181, 113155 (2021). https://doi.org/10.1016/j.bios.2021.113155
- R. Jara-Acevedo, C. Campos-Silva, M. Valés-Gómez, M. Yáñez-Mó, H. Suárez et al., Exosome beads array for multiplexed phenotyping in cancer. J. Proteomics 198, 87–97 (2019). https://doi.org/10.1016/j.jprot.2018.12.023
- N. Koliha, Y. Wiencek, U. Heider, C. Jüngst, N. Kladt et al., A novel multiplex bead-based platform highlights the diversity of extracellular vesicles. J. Extracell. Vesicles 5(1), 29975 (2016). https://doi.org/10.3402/jev.v5.29975
- M. Shi, C. Liu, T.J. Cook, K.M. Bullock, Y. Zhao et al., Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol. 128(5), 639–650 (2014). https://doi.org/10.1007/s00401-014-1314-y
- O.P.B. Wiklander, R.B. Bostancioglu, J.A. Welsh, A.M. Zickler, F. Murke et al., Systematic methodological evaluation of a multiplex bead-based flow cytometry assay for detection of extracellular vesicle surface signatures. Front. Immunol. 9(1326), 1326 (2018). https://doi.org/10.3389/fimmu.2018.01326
- E. Vacchi, J. Burrello, D. Di Silvestre, A. Burrello, S. Bolis et al., Immune profiling of plasma-derived extracellular vesicles identifies parkinson disease. Neurol. Neuroimmunol. 7(6), e866 (2020). https://doi.org/10.1212/nxi.0000000000000866
- G. Marcoux, A.C. Duchez, N. Cloutier, P. Provost, P.A. Nigrovic et al., Revealing the diversity of extracellular vesicles using high-dimensional flow cytometry analyses. Sci. Rep. 6(1), 35928 (2016). https://doi.org/10.1038/srep35928
- L. Ma, S. Zhu, Y. Tian, W. Zhang, S. Wang et al., Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry. Angew. Chem. Int. Ed. 128(35), 10395–10399 (2016). https://doi.org/10.1002/anie.201603007
- Y. Tian, L. Ma, M. Gong, G. Su, S. Zhu et al., Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry. ACS Nano 12(1), 671–680 (2018). https://doi.org/10.1021/acsnano.7b07782
- W.C.W. Chan, D.J. Maxwell, X. Gao, R.E. Bailey, M. Han et al., Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13(1), 40–46 (2002). https://doi.org/10.1016/S0958-1669(02)00282-3
- X. Cheng, S.B. Lowe, P.J. Reece, J.J. Gooding, Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev. 43(8), 2680–2700 (2014). https://doi.org/10.1039/C3CS60353A
- X. Cheng, E. Hinde, D.M. Owen, S.B. Lowe, P.J. Reece et al., Enhancing quantum dots for bioimaging using advanced surface chemistry and advanced optical microscopy: application to silicon quantum dots (SiQDs). Adv. Mater. 27(40), 6144–6150 (2015). https://doi.org/10.1002/adma.201503223
- T.A. Taton, G. Lu, C.A. Mirkin, Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J. Am. Chem. Soc. 123(21), 5164–5165 (2001). https://doi.org/10.1021/ja0102639
- G.D. Noto, A. Bugatti, A. Zendrini, E.L. Mazzoldi, A. Montanelli et al., Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes. Biosens. Bioelectron. 77, 518–524 (2016). https://doi.org/10.1016/j.bios.2015.09.061
- R. Rica, M.M. Stevens, Plasmonic elisa for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotechnol. 7(12), 821–824 (2012). https://doi.org/10.1038/nnano.2012.186
- Y. Zheng, A.H. Soeriyadi, L. Rosa, S.H. Ng, U. Bach et al., Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection. Nat. Commun. 6(1), 8797 (2015). https://doi.org/10.1038/ncomms9797
- Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo et al., DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor. Adv. Funct. Mater. 23(12), 1519–1526 (2013). https://doi.org/10.1002/adfm.201202073
- K. Liang, F. Liu, J. Fan, D. Sun, C. Liu et al., Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat. Biomed. Eng. 1(4), 0021 (2017). https://doi.org/10.1038/s41551-016-0021
- Y. Zhao, Z. Xie, H. Gu, C. Zhu, Z. Gu, Bio-inspired variable structural color materials. Chem. Soc. Rev. 41(8), 3297–3317 (2012). https://doi.org/10.1039/C2CS15267C
- Y.G. Zhou, R.M. Mohamadi, M. Poudineh, L. Kermanshah, S. Ahmed et al., Interrogating circulating microsomes and exosomes using metal nanoparticles. Small 12(6), 727–732 (2016). https://doi.org/10.1002/smll.201502365
- Y. Wan, Y.G. Zhou, M. Poudineh, T.S. Safaei, R.M. Mohamadi et al., Highly specific electrochemical analysis of cancer cells using multi-nanoparticle labeling. Angew. Chem. Int. Ed. 53(48), 13145–13149 (2014). https://doi.org/10.1002/anie.201407982
- H. Wei, S. Ni, C. Cao, G. Yang, G. Liu, Graphene oxide signal reporter based multifunctional immunosensing platform for amperometric profiling of multiple cytokines in serum. ACS Sens. 3(8), 1553–1561 (2018). https://doi.org/10.1021/acssensors.8b00365
- Z. Shen, J. Huang, H. Wei, H. Niu, B. Li et al., Validation of an in vivo electrochemical immunosensing platform for simultaneous detection of multiple cytokines in Parkinson’s disease mice model. Bioelectrochemistry 134, 107532 (2020). https://doi.org/10.1016/j.bioelechem.2020.107532
- W. Guo, H. Ding, C. Gu, Y. Liu, X. Jiang et al., Potential-resolved multicolor electrochemiluminescence for multiplex immunoassay in a single sample. J. Am. Chem. Soc. 140(46), 15904–15915 (2018). https://doi.org/10.1021/jacs.8b09422
- W. Lv, H. Ye, Z. Yuan, X. Liu, X. Chen et al., Recent advances in electrochemiluminescence-based simultaneous detection of multiple targets. TrAC Trends Anal. Chem. 123, 115767 (2020). https://doi.org/10.1016/j.trac.2019.115767
- Y. Bai, Y. Lu, K. Wang, Z. Cheng, Y. Qu et al., Rapid isolation and multiplexed detection of exosome tumor markers via queued beads combined with quantum dots in a microarray. Nano-Micro Lett. 11, 59 (2019). https://doi.org/10.1007/s40820-019-0285-x
- N. Soda, B.H.A. Rehm, P. Sonar, N.T. Nguyen, M.J.A. Shiddiky, Advanced liquid biopsy technologies for circulating biomarker detection. J. Mater. Chem. B 7(43), 6670–6704 (2019). https://doi.org/10.1039/C9TB01490J
- Q. Guo, Y. Wang, C. Chen, D. Wei, J. Fu et al., Multiplexed luminescence oxygen channeling immunoassay based on dual-functional barcodes with a host-guest structure: a facile and robust suspension array platform. Small 16(17), 1907521 (2020). https://doi.org/10.1002/smll.201907521
- F. Bian, L. Sun, L. Cai, Y. Wang, Y. Zhao, Bioinspired Mxene-integrated colloidal crystal arrays for multichannel bioinformation coding. PNAS 117(37), 22736–22742 (2020). https://doi.org/10.1073/pnas.2011660117
- M. Yang, Y. Liu, X. Jiang, Barcoded point-of-care bioassays. Chem. Soc. Rev. 48(3), 850–884 (2019). https://doi.org/10.1039/C8CS00303C
- Y. Geng, W.J. Peveler, V.M. Rotello, Array-based “chemical nose” sensing in diagnostics and drug discovery. Angew. Chem. Int. Ed. 58(16), 5190–5200 (2019). https://doi.org/10.1002/anie.201809607
- C.C. You, O.R. Miranda, B. Gider, P.S. Ghosh, I.B. Kim et al., Detection and identification of proteins using nanoparticle–fluorescent polymer ‘chemical nose’ sensors. Nat. Nanotechnol. 2(5), 318–323 (2007). https://doi.org/10.1038/nnano.2007.99
- T. Yu, Y. Xianyu, Array-based biosensors for bacteria detection: from the perspective of recognition. Small 17(21), 2006230 (2021). https://doi.org/10.1002/smll.202006230
- H. Liu, L.H. Xiong, R.T.K. Kwok, X. He, J.W.Y. Lam et al., AIE bioconjugates for biomedical applications. Adv. Opt. Mater. 8(14), 2000162 (2020). https://doi.org/10.1002/adom.202000162
- M.T. Yaraki, M. Wu, E. Middha, W. Wu, S.D. Rezaei et al., Gold nanostars-AIE theranostic nanodots with enhanced fluorescence and photosensitization towards effective image-guided photodynamic therapy. Nano-Micro Lett. 13, 58 (2021). https://doi.org/10.1007/s40820-020-00583-2
- Y. Li, S. Li, J. Wang, G. Liu, Crispr/cas systems towards next-generation biosensing. Trends Biotechnol. 37(7), 730–743 (2019). https://doi.org/10.1016/j.tibtech.2018.12.005
- Y. Li, L. Liu, G. Liu, CRISPR/Cas multiplexed biosensing: a challenge or an insurmountable obstacle? Trends Biotechnol. 37(8), 792–795 (2019). https://doi.org/10.1016/j.tibtech.2019.04.012
- L. Hao, R.T. Zhao, C. Ngambenjawong, H.E. Fleming, S.N. Bhatia, CRISPR-Cas-amplified urine biomarkers for multiplexed and portable cancer diagnostics. bioRxiv (2020). https://doi.org/10.1101/2020.06.17.157180
- Y. Dai, Y. Wu, G. Liu, J.J. Gooding, CRISPR mediated biosensing toward understanding cellular biology and point-of-care diagnosis. Angew. Chem. Int. Ed. 59(47), 20754–20766 (2020). https://doi.org/10.1002/anie.202005398
- J.S. Gootenberg, O.O. Abudayyeh, M.J. Kellner, J. Joung, J.J. Collins et al., Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360(6387), 439–444 (2018). https://doi.org/10.1126/science.aaq0179
- H. Yue, B. Shu, T. Tian, E. Xiong, M. Huang et al., Droplet Cas12a assay enables DNA quantification from unamplified samples at the single-molecule level. Nano Lett. 21(11), 4643–4653 (2021). https://doi.org/10.1021/acs.nanolett.1c00715
- C.M. Ackerman, C. Myhrvold, S.G. Thakku, C.A. Freije, H.C. Metsky et al., Massively multiplexed nucleic acid detection with Cas13. Nature 582(7811), 277–282 (2020). https://doi.org/10.1038/s41586-020-2279-8
- N.E. Weckman, N. Ermann, R. Gutierrez, K. Chen, J. Graham et al., Multiplexed DNA identification using site specific dCas9 barcodes and nanopore sensing. ACS Sens. 4(8), 2065–2072 (2019). https://doi.org/10.1021/acssensors.9b00686
- R. Bruch, G.A. Urban, C. Dincer, Crispr/Cas powered multiplexed biosensing. Trends Biotechnol. 37(8), 791–792 (2019). https://doi.org/10.1016/j.tibtech.2019.04.005
- R. Bruch, J. Baaske, C. Chatelle, W. Weber, C. Dincer et al. Electrochemical biosensor for Crispr/Cas13a powered miRNA diagnostics. 2019 IEEE SENSORS, Montreal, QC, Canada, 27–30 Oct. (2019). https://ieeexplore.ieee.org/document/8956561
- F. Mei, S.P.J. Fancy, Y.A.A. Shen, J. Niu, C. Zhao et al., Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat. Med. 20(8), 954–960 (2014). https://doi.org/10.1038/nm.3618
- P. Zhang, X. Wu, G. Gardashova, Y. Yang, Y. Zhang et al., Molecular and functional extracellular vesicle analysis using nanopatterned microchips monitors tumor progression and metastasis. Sci. Transl. Med. 12(547), 2878 (2020). https://doi.org/10.1126/scitranslmed.aaz2878
- P. Zhang, X. Zhou, M. He, Y. Shang, A.L. Tetlow et al., Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat. Biomed. Eng. 3(6), 438–451 (2019). https://doi.org/10.1038/s41551-019-0356-9
- L. Huang, S. Tian, W. Zhao, K. Liu, X. Ma et al., Multiplexed detection of biomarkers in lateral-flow immunoassays. Analyst 145(8), 2828–2840 (2020). https://doi.org/10.1039/C9AN02485A
- W. Zhao, S. Tian, L. Huang, K. Liu, L. Dong et al., A smartphone-based biomedical sensory system. Analyst 145(8), 2873–2891 (2020). https://doi.org/10.1039/C9AN02294E
- C. Dincer, R. Bruch, A. Kling, P.S. Dittrich, G.A. Urban, Multiplexed point-of-care testing–Xpoct. Trends Biotechnol. 35(8), 728–742 (2017). https://doi.org/10.1016/j.tibtech.2017.03.013
- J. Kaur, C. Jiang, G. Liu, Different strategies for detection of HBA1C emphasizing on biosensors and point-of-care analyzers. Biosens. Bioelectron. 123(1), 85–100 (2019). https://doi.org/10.1016/j.bios.2018.06.018
- Z. Dong, C. Tang, Z. Zhang, W. Zhou, R. Zhao et al., Simultaneous detection of exosomal membrane protein and RNA by highly sensitive aptamer assisted multiplex–PCR. ACS Appl. Bio Mater. 3(5), 2560–2567 (2020). https://doi.org/10.1021/acsabm.9b00825
- C.Z.J. Lim, A. Natalia, N.R. Sundah, H. Shao, Biomarker organization in circulating extracellular vesicles: new applications in detecting neurodegenerative diseases. Adv. Biosyst. 4(12), 1900309 (2020). https://doi.org/10.1002/adbi.201900309
- K.E. Richards, D.B. Go, R. Hill (2017) Surface acoustic wave lysis and ion-exchange membrane quantification of exosomal microRNA. MicroRNA Detection and Target Identification. Methods in Molecular Biology chapter 5, 59–70. https://doi.org/10.1007/978-1-4939-6866-4_5
- D. Taller, K. Richards, Z. Slouka, S. Senapati, R. Hill et al., On-chip surface acoustic wave lysis and ion-exchange nanomembrane detection of exosomal RNA for pancreatic cancer study and diagnosis. Lab Chip 15(7), 1656–1666 (2015). https://doi.org/10.1039/C5LC00036J
- F. Zhu, Y. Ji, J. Deng, L. Li, X. Bai et al., Microfluidics-based technologies for the analysis of extracellular vesicles at the single-cell level and single-vesicle level. Chin. Chem. Lett. (2021). https://doi.org/10.1016/j.cclet.2021.09.058
- Y. Orooji, H. Sohrabi, N. Hemmat, F. Oroojalian, B. Baradaran et al., An overview on SARS-Cov-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Lett. 13, 18 (2020). https://doi.org/10.1007/s40820-020-00533-y
- C. Cao, Y. Zhang, C. Jiang, M. Qi, G. Liu, Advances on aryldiazonium salt chemistry based interfacial fabrication for sensing applications. ACS Appl. Mater. Interfaces 9(6), 5031–5049 (2017). https://doi.org/10.1021/acsami.6b16108
- A. Krug, D. Enderle, C. Karlovich, T. Priewasser, S. Bentink et al., Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma. Ann. Oncol. 29(3), 700–706 (2018). https://doi.org/10.1093/annonc/mdx765
- H. Shin, S. Oh, S. Hong, M. Kang, D. Kang et al., Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes. ACS Nano 14(5), 5435–5444 (2020). https://doi.org/10.1021/acsnano.9b09119
- J. Riordon, D. Sovilj, S. Sanner, D. Sinton, E.W. Young, Deep learning with microfluidics for biotechnology. Trends Biotechnol. 37(3), 310–324 (2019). https://doi.org/10.1016/j.tibtech.2018.08.005
- L. Min, B. Wang, H. Bao, X. Li, L. Zhao et al., Advanced nanotechnologies for extracellular vesicle-based liquid biopsy. Adv. Sci. 8(20), 2102789 (2021). https://doi.org/10.1002/advs.202102789
- K. Fraser, A. Jo, J. Giedt, C. Vinegoni, K.S. Yang et al., Characterization of single microvesicles in plasma from glioblastoma patients. Neuro Oncol. 21(5), 606–615 (2019). https://doi.org/10.1093/neuonc/noy187
References
M. Colombo, G. Raposo, C. Théry, Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 3, 255–289 (2014). https://doi.org/10.1146/annurev-cellbio-101512-122326
Y.P. Loh, Advances in EV isolation technology and function. Extracell. Vesicles Circ. Nucleic Acids 2(1), 1–2 (2021). https://doi.org/10.20517/evcna.2021.09
Z. Fan, J. Yu, J. Lin, Y. Liu, Y. Liao, Exosome-specific tumor diagnosis via biomedical analysis of exosome-containing microrna biomarkers. Analyst 144(19), 5856–5865 (2019). https://doi.org/10.1039/C9AN00777F
E. Ragni, C.P. Orfei, A. Papait, L. Girolamo, Comparison of miRNA cargo in human adipose-tissue Vs amniotic-membrane derived mesenchymal stromal cells extracellular vesicles for osteoarthritis treatment. Extracell. Vesicles Circ. Nucleic Acids 2(3), 202–221 (2021)
H. Xiong, Z. Huang, Z. Yang, Q. Lin, B. Yang et al., Recent progress in detection and profiling of cancer cell-derived exosomes. Small 17(35), 2007971 (2021). https://doi.org/10.1002/smll.202007971
S. Cui, Z. Cheng, W. Qin, L. Jiang, Exosomes as a liquid biopsy for lung cancer. Lung Cancer 116, 46–54 (2018). https://doi.org/10.1016/j.lungcan.2017.12.012
T. Hu, J. Wolfram, S. Srivastava, Extracellular vesicles in cancer detection: hopes and hypes. Trends in Cancer 7(2), 122–133 (2021). https://doi.org/10.1016/j.trecan.2020.09.003
Z. Fan, K. Xiao, J. Lin, Y. Liao, X. Huang, Functionalized DNA enables programming exosomes/vesicles for tumor imaging and therapy. Small 15(47), 1903761 (2019). https://doi.org/10.1002/smll.201903761
T. Tamura, Y. Yoshioka, S. Sakamoto, T. Ichikawa, T. Ochiya, Extracellular vesicles as a promising biomarker resource in liquid biopsy for cancer. Extracell. Vesicles Circ. Nucleic Acids 2(2), 148–174 (2021). https://doi.org/10.20517/evcna.2021.06
Y. Zhang, N. Ding, S. Xie, Y. Ding, M. Huang et al., Identification of important extracellular vesicle RNA molecules related to sperm motility and prostate cancer. Extracell. Vesicles Circ. Nucleic Acids 2(2), 104–126 (2021). https://doi.org/10.20517/evcna.2021.02
P.R. Tomlinson, Y. Zheng, R. Fischer, R. Heidasch, C. Gardiner et al., Identification of distinct circulating exosomes in Parkinson’s disease. Ann. Clin. Transl. Neurol. 2(4), 353–361 (2015). https://doi.org/10.1002/acn3.175
Q. Li, G.K. Tofaris, J.J. Davis, Concentration-normalized electroanalytical assaying of exosomal markers. Anal. Chem. 89(5), 3184–3190 (2017). https://doi.org/10.1021/acs.analchem.6b05037
G.K. Tofaris, A critical assessment of exosomes in the pathogenesis and stratification of Parkinson’s disease. J. Parkinsons. Dis. 7(4), 569–576 (2017). https://doi.org/10.3233/JPD-171176
L. Xiao, S. Hareendran, Y.P. Loh, Function of exosomes in neurological disorders and brain tumors. Extracell. Vesicles Circ. Nucleic Acids 2(1), 55–79 (2021). https://doi.org/10.20517/evcna.2021.04
C. Jiang, F. Hopfner, D. Berg, M.T. Hu, A. Pilotto et al., Validation of α-synuclein in L1CAM-immunocaptured exosomes as a biomarker for the stratification of parkinsonian syndromes. Mov. Disord. (2021). https://doi.org/10.1002/mds.28591
Y. Bei, S. Das, R.S. Rodosthenous, P. Holvoet, M. Vanhaverbeke et al., Extracellular vesicles in cardiovascular theranostics. Theranostics 7(17), 4168–4182 (2017). https://doi.org/10.7150/thno.21274
F. Jansen, G. Nickenig, N. Werner, Extracellular vesicles in cardiovascular disease. Circul. Res. 120(10), 1649–1657 (2017). https://doi.org/10.1161/CIRCRESAHA.117.310752
H. Shao, H. Im, C.M. Castro, X. Breakefield, R. Weissleder et al., New technologies for analysis of extracellular vesicles. Chem. Rev. 118(4), 1917–1950 (2018). https://doi.org/10.1021/acs.chemrev.7b00534
H. Xu, B.C. Ye, Advances in biosensing technologies for analysis of cancer-derived exosomes. TrAC Trends Anal. Chem. 123, 115773 (2020). https://doi.org/10.1016/j.trac.2019.115773
S. Zhou, Y. Yang, Y. Wu, S. Liu, Review: multiplexed profiling of biomarkers in extracellular vesicles for cancer diagnosis and therapy monitoring. Anal. Chim. Acta 1175, 338633 (2021). https://doi.org/10.1016/j.aca.2021.338633
A. Nakamura, N. Kaneko, V.L. Villemagne, T. Kato, J. Doecke et al., High performance plasma amyloid-Β biomarkers for Alzheimer’s disease. Nature 554(7691), 249–254 (2018). https://doi.org/10.1038/nature25456
D. Jin, X.X. Peng, Y. Qin, P. Wu, H. Lu et al., Multivalence-actuated DNA nanomachines enable bicolor exosomal phenotyping and PD-L1-guided therapy monitoring. Anal. Chem. 92(14), 9877–9886 (2020). https://doi.org/10.1021/acs.analchem.0c01387
Q. Chen, T. Sun, C. Jiang, Recent advancements in nanomedicine for ‘cold’ tumor immunotherapy. Nano-Micro Lett. 13, 92 (2021). https://doi.org/10.1007/s40820-021-00622-6
M. Zhang, K. Jin, L. Gao, Z. Zhang, F. Li et al., Methods and technologies for exosome isolation and characterization. Small Methods 2(9), 1800021 (2018). https://doi.org/10.1002/smtd.201800021
P. Ziaei, C.E. Berkman, M.G. Norton, Isolation and detection of tumor-derived extracellular vesicles. ACS Appl. Nano Mater. 1(5), 2004–2020 (2018). https://doi.org/10.1021/acsanm.8b00267
Z. Zhao, H. Wijerathne, A.K. Godwin, S.A. Soper, Isolation and analysis methods of extracellular vesicles (EVs). Extracell. Vesicles Circ. Nucleic Acids 2(1), 80–103 (2021). https://doi.org/10.20517/evcna.2021.07
A. Abramowicz, P. Widlak, M. Pietrowska, Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. Mol. Biosyst. 12(5), 1407–1419 (2016). https://doi.org/10.1039/C6MB00082G
D.S. Choi, D.K. Kim, Y.K. Kim, Y.S. Gho, Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrom. Rev. 34(4), 474–490 (2015). https://doi.org/10.1002/mas.21420
S. Wu, Y. Li, W. Ding, L. Xu, Y. Ma et al., Recent advances of persistent luminescence nanoparticles in bioapplications. Nano-Micro Lett. 12, 70 (2020). https://doi.org/10.1007/s40820-020-0404-8
C. Zong, M. Xu, L.J. Xu, T. Wei, X. Ma et al., Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem. Rev. 118(10), 4946–4980 (2018). https://doi.org/10.1021/acs.chemrev.7b00668
J. Plou, I. García, M. Charconnet, I. Astobiza, C. García-Astrain et al., Multiplex SERS detection of metabolic alterations in tumor extracellular media. Adv. Funct. Mater. 30(17), 1910335 (2020). https://doi.org/10.1002/adfm.201910335
Y. Zheng, C. Jiang, S.H. Ng, Y. Lu, F. Han et al., Unclonable plasmonic security labels achieved by shadow-mask-lithography-assisted self-assembly. Adv. Mater. 28(12), 2330–2336 (2016). https://doi.org/10.1002/adma.201505022
Z. Ji, C. Zhang, Y. Ye, J. Ji, H. Dong et al., Magnetically enhanced liquid SERS for ultrasensitive analysis of bacterial and SARS-Cov-2 biomarkers. Front. Bioeng. Biotechnol. 9(787), 735711 (2021). https://doi.org/10.3389/fbioe.2021.735711
Y. Wang, S. Zeng, A. Crunteanu, Z. Xie, G. Humbert et al., Targeted sub-attomole cancer biomarker detection based on phase singularity 2D nanomaterial-enhanced plasmonic biosensor. Nano-Micro Lett. 13, 96 (2021). https://doi.org/10.1007/s40820-021-00613-7
H. Shin, H. Jeong, J. Park, S. Hong, Y. Choi, Correlation between cancerous exosomes and protein markers based on surface-enhanced Raman spectroscopy (SERS) and principal component analysis (PCA). ACS Sens. 3(12), 2637–2643 (2018). https://doi.org/10.1021/acssensors.8b01047
W. Zhang, L. Jiang, R.J. Diefenbach, D.H. Campbell, B.J. Walsh et al., Enabling sensitive phenotypic profiling of cancer-derived small extracellular vesicles using surface-enhanced Raman spectroscopy nanotags. ACS Sens. 5(3), 764–771 (2020). https://doi.org/10.1021/acssensors.9b02377
Z. Wang, S. Zong, Y. Wang, N. Li, L. Li et al., Screening and multiple detection of cancerous exosomes using a SERS-based method. Nanoscale 10, 9053–9062 (2018). https://doi.org/10.1039/C7NR09162A
C.F. Ning, L. Wang, Y.F. Tian, B.C. Yin, B.C. Ye, Multiple and sensitive SERS detection of cancer-related exosomes based on gold–silver bimetallic nanotrepangs. Analyst 145(7), 2795–2804 (2020). https://doi.org/10.1039/C9AN02180A
J. Wang, A. Wuethrich, A.A.I. Sina, R.E. Lane, L.L. Lin et al., Tracking extracellular vesicle phenotypic changes enables treatment monitoring in melanoma. Sci. Adv. 6(9), eaax3223 (2020). https://doi.org/10.1126/sciadv.aax3223
G. Huang, G. Lin, Y. Zhu, W. Duan, D. Jin, Emerging technologies for profiling extracellular vesicle heterogeneity. Lab Chip 20(14), 2423–2437 (2020). https://doi.org/10.1039/D0LC00431F
D. Cialla, A. März, R. Böhme, F. Theil, K. Weber et al., Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal. Bioanal. Chem. 403(1), 27–54 (2012). https://doi.org/10.1007/s00216-011-5631-x
D. Cialla-May, X.S. Zheng, K. Weber, J. Popp, Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem. Soc. Rev. 46(13), 3945–3961 (2017). https://doi.org/10.1039/C7CS00172J
Z. Zhao, Y. Yang, Y. Zeng, M. He, A microfluidic Exosearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 16(3), 489–496 (2016). https://doi.org/10.1039/c5lc01117e
M. Deng, C. Jiang, L. Jia, N-Methylimidazolium modified magnetic particles as adsorbents for solid phase extraction of genomic deoxyribonucleic acid from genetically modified soybeans. Anal. Chim. Acta 771, 31–36 (2013). https://doi.org/10.1016/j.aca.2013.02.005
Y. Guan, C. Jiang, C. Hu, L. Jia, Preparation of multi-walled carbon nanotubes functionalized magnetic particles by sol-gel technology and its application in extraction of estrogens. Talanta 83(2), 337–343 (2010). https://doi.org/10.1016/j.talanta.2010.09.023
S. Lin, Z. Yu, D. Chen, Z. Wang, J. Miao et al., Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small 16(9), 1903916 (2020). https://doi.org/10.1002/smll.201903916
S. Xu, C. Jiang, Y. Lin, L. Jia, Magnetic nanoparticles modified with polydimethylsiloxane and multi-walled carbon nanotubes for solid-phase extraction of fluoroquinolones. Microchim. Acta 179(3), 257–264 (2012). https://doi.org/10.1007/s00604-012-0894-2
S. Fang, H. Tian, X. Li, D. Jin, X. Li et al., Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS ONE 12(4), e0175050 (2017). https://doi.org/10.1371/journal.pone.0175050
M. He, J. Crow, M. Roth, Y. Zeng, A.K. Godwin, Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 14(19), 3773–3780 (2014). https://doi.org/10.1039/C4LC00662C
S. Wang, A. Khan, R. Huang, S. Ye, K. Di et al., Recent advances in single extracellular vesicle detection methods. Biosens. Bioelectron. 154, 112056 (2020). https://doi.org/10.1016/j.bios.2020.112056
K. Lee, K. Fraser, B. Ghaddar, K. Yang, E. Kim et al., Multiplexed profiling of single extracellular vesicles. ACS Nano 12(1), 494–503 (2018). https://doi.org/10.1021/acsnano.7b07060
S. Cavallaro, F. Pevere, F. Stridfeldt, A. Görgens, C. Paba et al., Multiparametric profiling of single nanoscale extracellular vesicles by combined atomic force and fluorescence microscopy: correlation and heterogeneity in their molecular and biophysical features. Small 17(14), 2008155 (2021). https://doi.org/10.1002/smll.202008155
H. Wang, H. Chen, Z. Huang, T. Li, A. Deng et al., DAase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection. Talanta 184, 219–226 (2018). https://doi.org/10.1016/j.talanta.2018.02.083
B. Li, C. Liu, W. Pan, J. Shen, J. Guo et al., Facile fluorescent aptasensor using aggregation-induced emission luminogens for exosomal proteins profiling towards liquid biopsy. Biosens. Bioelectron. 168, 112520 (2020). https://doi.org/10.1016/j.bios.2020.112520
Y. Xia, M. Liu, L. Wang, A. Yan, W. He et al., A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. Biosens. Bioelectron. 92, 8–15 (2017). https://doi.org/10.1016/j.bios.2017.01.063
D. Jin, F. Yang, Y. Zhang, L. Liu, Y. Zhou et al., ExoAPP: exosome-oriented, aptamer nanoprobe-enabled surface proteins profiling and detection. Anal. Chem. 90(24), 14402–14411 (2018). https://doi.org/10.1021/acs.analchem.8b03959
C. Liu, J. Zhao, F. Tian, L. Cai, W. Zhang et al., Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers. Nat. Biomed. Eng. 3(3), 183–193 (2019). https://doi.org/10.1038/s41551-018-0343-6
F. Tian, Z. Han, J. Deng, C. Liu, J. Sun, Thermomicrofluidics for biosensing applications. VIEW (2021). https://doi.org/10.1002/VIW.20200148
B. Lin, T. Tian, Y. Lu, D. Liu, M. Huang et al., Tracing tumor-derived exosomal PD-L1 by dual-aptamer activated proximity-induced droplet digital PCR. Angew. Chem. Int. Ed. 60(14), 7582–7586 (2021). https://doi.org/10.1002/anie.202015628
D. Wu, J. Yan, X. Shen, Y. Sun, M. Thulin et al., Profiling surface proteins on individual exosomes using a proximity barcoding assay. Nat. Comm. 10(1), 3854 (2019). https://doi.org/10.1038/s41467-019-11486-1
L. Löf, T. Ebai, L. Dubois, L. Wik, K.G. Ronquist et al., Detecting individual extracellular vesicles using a multicolor in situ proximity ligation assay with flow cytometric readout. Sci. Rep. 6, 34358 (2016). https://doi.org/10.1038/srep34358
J. Zhang, J. Shi, H. Zhang, Y. Zhu, W. Liu et al., Localized fluorescent imaging of multiple proteins on individual extracellular vesicles using rolling circle amplification for cancer diagnosis. J. Extracell. Vesicles 10(1), e12025 (2020). https://doi.org/10.1002/jev2.12025
X. Wu, H. Zhao, A. Natalia, C.Z.J. Lim, N.R.Y. Ho et al., Exosome-templated nanoplasmonics for multiparametric molecular profiling. Sci. Adv. 6(19), 2556 (2020). https://doi.org/10.1126/sciadv.aba2556
E.C. Yeh, C.C. Fu, L. Hu, R. Thakur, J. Feng et al., Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip. Sci. Adv. 3(3), e1501645 (2017). https://doi.org/10.1126/sciadv.1501645
V. Yelleswarapu, J.R. Buser, M. Haber, J. Baron, E. Inapuri et al., Mobile platform for rapid sub–picogram-per-milliliter, multiplexed, digital droplet detection of proteins. PNAS 116(10), 4489–4495 (2019). https://doi.org/10.1073/pnas.1814110116
B. Shu, L. Lin, B. Wu, E. Huang, Y. Wang et al., A pocket-sized device automates multiplexed point-of-care RNA testing for rapid screening of infectious pathogens. Biosens. Bioelectron. 181, 113145 (2021). https://doi.org/10.1016/j.bios.2021.113145
T. Tian, B. Shu, Y. Jiang, M. Ye, L. Liu et al., An ultralocalized cas13a assay enables universal and nucleic acid amplification-free single-molecule RNA diagnostics. ACS Nano 15(1), 1167–1178 (2021). https://doi.org/10.1021/acsnano.0c08165
C.Z.J. Lim, Y. Zhang, Y. Chen, H. Zhao, M.C. Stephenson et al., Subtyping of circulating exosome-bound amyloid β reflects brain plaque deposition. Nat. Comm. 10(1), 1144 (2019). https://doi.org/10.1038/s41467-019-09030-2
Y. Li, J. Deng, Z. Han, C. Liu, F. Tian et al., Molecular identification of tumor-derived extracellular vesicles using thermophoresis-mediated DNA computation. J. Am. Chem. Soc. 143(3), 1290–1295 (2021). https://doi.org/10.1021/jacs.0c12016
J. Zhao, C. Liu, Y. Li, Y. Ma, J. Deng et al., Thermophoretic detection of exosomal microRNAs by nanoflares. J. Am. Chem. Soc. 142(11), 4996–5001 (2020). https://doi.org/10.1021/jacs.9b13960
H. Schwarzenbach, N. Nishida, G.A. Calin, K. Pantel, Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol. 11(3), 145–156 (2014). https://doi.org/10.1038/nrclinonc.2014.5
J.R. Chevillet, Q. Kang, I.K. Ruf, H.A. Briggs, L.N. Vojtech et al., Quantitative and stoichiometric analysis of the microRNA content of exosomes. PNAS 111(41), 14888–14893 (2014). https://doi.org/10.1073/pnas.1408301111
G. Liu, C. Jiang, X. Lin, Y. Yang, Point-of-care detection of cytokines in cytokine storm management and beyond: significance and challenges. VIEW 2(4), 20210003 (2021). https://doi.org/10.1002/VIW.20210003
J.H. Lee, J.A. Kim, S. Jeong, W.J. Rhee, Simultaneous and multiplexed detection of exosome micrornas using molecular beacons. Biosens. Bioelectron. 86, 202–210 (2016). https://doi.org/10.1016/j.bios.2016.06.058
J. Lee, M.H. Kwon, J.A. Kim, W.J. Rhee, Detection of exosome miRNAs using molecular beacons for diagnosing prostate cancer. Artif. Cells Nanomed. Biotechnol. 46, S52–S63 (2018). https://doi.org/10.1080/21691401.2018.1489263
H.C. Yang, W.J. Rhee, Single step in situ detection of surface protein and microRNA in clustered extracellular vesicles using flow cytometry. J. Clin. Med. 10(2), 319 (2021). https://doi.org/10.3390/jcm10020319
S. Zhou, T. Hu, G. Han, Y. Wu, X. Hua et al., Accurate cancer diagnosis and stage monitoring enabled by comprehensive profiling of different types of exosomal biomarkers: surface proteins and miRNAs. Small 16(48), 2004492 (2020). https://doi.org/10.1002/smll.202004492
C. Liu, E. Kannisto, G. Yu, Y. Yang, M.E. Reid et al., Non-invasive detection of exosomal microRNAs via tethered cationic lipoplex nanoparticles (tCLN) biochip for lung cancer early detection. Front. Genet. 11(258), 258 (2020). https://doi.org/10.3389/fgene.2020.00258
Y. Yang, E. Kannisto, G. Yu, M.E. Reid, S.K. Patnaik et al., An immuno-biochip selectively captures tumor-derived exosomes and detects exosomal RNAs for cancer diagnosis. ACS Appl. Mater. Interfaces 10(50), 43375–43386 (2018). https://doi.org/10.1021/acsami.8b13971
J. Zhou, Z. Wu, J. Hu, D. Yang, X. Chen et al., High-throughput single-EV liquid biopsy: rapid, simultaneous, and multiplexed detection of nucleic acids, proteins, and their combinations. Sci. Adv. 6(47), eabc1204 (2020). https://doi.org/10.1126/sciadv.abc1204
Y. Wu, K.J. Kwak, K. Agarwal, A. Marras, C. Wang et al., Detection of extracellular RNAs in cancer and viral infection via tethered cationic lipoplex nanoparticles containing molecular beacons. Anal. Chem. 85(23), 11265–11274 (2013). https://doi.org/10.1021/ac401983w
X. Wang, K.J. Kwak, Z. Yang, A. Zhang, X. Zhang et al., Extracellular mRNA detected by molecular beacons in tethered lipoplex nanoparticles for diagnosis of human hepatocellular carcinoma. PLoS ONE 13(6), e0198552 (2018). https://doi.org/10.1371/journal.pone.0198552
P. Ghassemi, B. Wang, J. Wang, Q. Wang, Y. Chen et al., Evaluation of mobile phone performance for near-infrared fluorescence imaging. IEEE Trans. Biomed. Eng. 64(7), 1650–1653 (2017). https://doi.org/10.1109/TBME.2016.2601014
R. Vaidyanathan, M. Naghibosadat, S. Rauf, D. Korbie, L.G. Carrascosa et al., Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing. Anal. Chem. 86(22), 11125–11132 (2014). https://doi.org/10.1021/ac502082b
C. Liu, J. Zhao, F. Tian, J. Chang, W. Zhang et al., λ-DNA- and aptamer-mediated sorting and analysis of extracellular vesicles. J. Am. Chem. Soc. 141(9), 3817–3821 (2019). https://doi.org/10.1021/jacs.9b00007
H. Im, H. Shao, Y.I. Park, V.M. Peterson, C.M. Castro et al., Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 32(5), 490–495 (2014). https://doi.org/10.1038/nbt.2886
W. Liu, J. Li, Y. Wu, S. Xing, Y. Lai et al., Target-induced proximity ligation triggers recombinase polymerase amplification and transcription-mediated amplification to detect tumor-derived exosomes in nasopharyngeal carcinoma with high sensitivity. Biosens. Bioelectron. 102, 204–210 (2018). https://doi.org/10.1016/j.bios.2017.11.033
Y. Jiang, M. Shi, Y. Liu, S. Wan, C. Cui et al., Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew. Chem. Int. Ed. 56(39), 11916–11920 (2017). https://doi.org/10.1002/anie.201703807
Y. Lyu, D. Cui, J. Huang, W. Fan, Y. Miao et al., Near-infrared afterglow semiconducting nano-polycomplexes for the multiplex differentiation of cancer exosomes. Angew. Chem. Int. Ed. 58(15), 4983–4987 (2019). https://doi.org/10.1002/ange.201900092
Y.J. Chiu, W. Cai, Y.R.V. Shih, I. Lian, Y.H. Lo, A single-cell assay for time lapse studies of exosome secretion and cell behaviors. Small 12(27), 3658–3666 (2016). https://doi.org/10.1002/smll.201600725
K. Mori, M. Hirase, T. Morishige, E. Takano, H. Sunayama et al., A pretreatment-free, polymer-based platform prepared by molecular imprinting and post-imprinting modifications for sensing intact exosomes. Angew. Chem. Int. Ed. 58(6), 1612–1615 (2019). https://doi.org/10.1002/anie.201811142
S. Jeong, J. Park, D. Pathania, C.M. Castro, R. Weissleder et al., Integrated magneto–electrochemical sensor for exosome analysis. ACS Nano 10(2), 1802–1809 (2016). https://doi.org/10.1021/acsnano.5b07584
C. Jiang, F. Hopfner, A. Katsikoudi, R. Hein, C. Catli et al., Serum neuronal exosomes predict and differentiate Parkinson’s disease from atypical parkinsonism. J. Neurol. Neurosurg. Psychiatry 91, 720–729 (2020). https://doi.org/10.1136/jnnp-2019-322588
J. Park, H. Im, S. Hong, C.M. Castro, R. Weissleder et al., Analyses of intravesicular exosomal proteins using a nano-plasmonic system. ACS Photonics 5(2), 487–494 (2018). https://doi.org/10.1021/acsphotonics.7b00992
E.A. Kwizera, R. O’Connor, V. Vinduska, M. Williams, E.R. Butch et al., Molecular detection and analysis of exosomes using surface-enhanced Raman scattering gold nanorods and a miniaturized device. Theranostics 8(10), 2722 (2018). https://doi.org/10.7150/thno.21358
L. Zhu, K. Wang, J. Cui, H. Liu, X. Bu et al., Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal. Chem. 86(17), 8857–8864 (2014). https://doi.org/10.1021/ac5023056
M. Rodrigues, N. Richards, B. Ning, C.J. Lyon, T.Y. Hu, Rapid lipid-based approach for normalization of quantum-dot-detected biomarker expression on extracellular vesicles in complex biological samples. Nano Lett. 19(11), 7623–7631 (2019). https://doi.org/10.1021/acs.nanolett.9b02232
T. Takeuchi, K. Mori, H. Sunayama, E. Takano, Y. Kitayama et al., Antibody-conjugated signaling nanocavities fabricated by dynamic molding for detecting cancers using small extracellular vesicle markers from tears. J. Am. Chem. Soc. 142(14), 6617–6624 (2020). https://doi.org/10.1021/jacs.9b13874
P. Zhang, X. Zhou, Y. Zeng, Multiplexed immunophenotyping of circulating exosomes on nano-engineered exoprofile chip towards early diagnosis of cancer. Chem. Sci. 10(21), 5495–5504 (2019). https://doi.org/10.1039/C9SC00961B
S. Zhou, T. Hu, F. Zhang, D. Tang, D. Li et al., Integrated microfluidic device for accurate extracellular vesicle quantification and protein markers analysis directly from human whole blood. Anal. Chem. 92(1), 1574–1581 (2020). https://doi.org/10.1021/acs.analchem.9b04852
Y. An, R. Li, F. Zhang, P. He, Magneto-mediated electrochemical sensor for simultaneous analysis of breast cancer exosomal proteins. Anal. Chem. 92(7), 5404–5410 (2020). https://doi.org/10.1021/acs.analchem.0c00106
K.S. Yang, H. Im, S. Hong, I. Pergolini, A.F. Castillo et al., Multiparametric plasma EV profiling facilitates diagnosis of pancreatic malignancy. Sci. Transl. Med. 9(391), l3226 (2017). https://doi.org/10.1126/scitranslmed.aal3226
H.L. Cheng, C.Y. Fu, W.C. Kuo, Y.W. Chen, Y.S. Chen et al., Detecting mirna biomarkers from extracellular vesicles for cardiovascular disease with a microfluidic system. Lab Chip 18(19), 2917–2925 (2018). https://doi.org/10.1039/C8LC00386F
H. Wang, D. He, K. Wan, X. Sheng, H. Cheng et al., In situ multiplex detection of serum exosomal micrornas using all-in-one biosensor for breast cancer diagnosis. Analyst 145, 3289–3296 (2020). https://doi.org/10.1039/D0AN00393J
M. Jang, G. Choi, Y.Y. Choi, J.E. Lee, J.H. Jung et al., Extracellular vesicle (EV)-polyphenol nanoaggregates for microrna-based cancer diagnosis. NPG Asia Mater. 11(1), 79 (2019). https://doi.org/10.1038/s41427-019-0184-0
Z. Wang, X. Sun, A. Natalia, C.S.L. Tang, C.B.T. Ang et al., Dual-selective magnetic analysis of extracellular vesicle glycans. Matter 2(1), 150–166 (2020). https://doi.org/10.1016/j.matt.2019.10.018
D.L.M. Rupert, C. Lässer, M. Eldh, S. Block, V.P. Zhdanov et al., Determination of exosome concentration in solution using surface plasmon resonance spectroscopy. Anal. Chem. 86(12), 5929–5936 (2014). https://doi.org/10.1021/ac500931f
A. Thakur, G. Qiu, S.P. Ng, J. Guan, J. Yue et al., Direct detection of two different tumor-derived extracellular vesicles by SAM-AuNIs LSPR biosensor. Biosens. Bioelectron. 94, 400–407 (2017). https://doi.org/10.1016/j.bios.2017.03.036
E.L. Gool, I. Stojanovic, R.B.M. Schasfoort, A. Sturk, T.G. Leeuwen et al., Surface plasmon resonance is an analytically sensitive method for antigen profiling of extracellular vesicles. Clin. Chem. 63(10), 1633–1641 (2017). https://doi.org/10.1373/clinchem.2016.271049
M.A. Khan, Y. Zhu, Y. Yao, P. Zhang, A. Agrawal et al., Impact of metal crystallinity-related morphologies on the sensing performance of plasmonic nanohole arrays. Nanoscale 12(14), 7577–7585 (2020). https://doi.org/10.1039/D0NR00619J
C. Liu, Y. Yang, Y. Wu, Recent advances in exosomal protein detection via liquid biopsy biosensors for cancer screening, diagnosis, and prognosis. AAPS J. 20(2), 41 (2018). https://doi.org/10.1208/s12248-018-0201-1
S. Taufik, A. Barfidokht, M.T. Alam, C. Jiang, S.G. Parker et al., An antifouling electrode based on electrode–organic layer–nanoparticle constructs: electrodeposited organic layers versus self-assembled monolayers. J. Electroanal. Chem. 779, 229–235 (2016). https://doi.org/10.1016/j.jelechem.2016.01.031
C. Jiang, G. Wang, R. Hein, N. Liu, X. Luo et al., Antifouling strategies for selective in vitro and in vivo sensing. Chem. Rev. 120(8), 3852–3889 (2020). https://doi.org/10.1021/acs.chemrev.9b00739
W. Wu, X. Yu, J. Wu, T. Wu, Y. Fan et al., Surface plasmon resonance imaging-based biosensor for multiplex and ultrasensitive detection of NSCLC-associated exosomal miRNAs using DNA programmed heterostructure of Au-on-Ag. Biosens. Bioelectron. 175, 112835 (2021). https://doi.org/10.1016/j.bios.2020.112835
J.A. Huang, M.Z. Mousavi, Y. Zhao, A. Hubarevich, F. Omeis et al., SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping. Nat. Commun. 10(1), 5321 (2019). https://doi.org/10.1038/s41467-019-13242-x
J.A. Huang, M.Z. Mousavi, G. Giovannini, Y. Zhao, A. Hubarevich et al., Multiplexed discrimination of single amino acid residues in polypeptides in a single SERS hot spot. Angew. Chem. Int. Ed. 59(28), 11423–11431 (2020). https://doi.org/10.1002/anie.202000489
S. Pan, Y. Zhang, A. Natalia, C.Z.J. Lim, N.R.Y. Ho et al., Extracellular vesicle drug occupancy enables real-time monitoring of targeted cancer therapy. Nat. Nanotechnol. 16(6), 734–742 (2021). https://doi.org/10.1038/s41565-021-00872-w
J. Min, T. Son, J.S. Hong, P.S. Cheah, A. Wegemann et al., Plasmon-enhanced biosensing for multiplexed profiling of extracellular vesicles. Adv. Biosyst. 4(12), 2000003 (2020). https://doi.org/10.1002/adbi.202000003
Q. Su, C. Jiang, D. Gou, Y. Long, Surface plasmon-assisted fluorescence enhancing and quenching: from theory to application. ACS Appl. Bio Mater. 4(6), 4684–4705 (2021). https://doi.org/10.1021/acsabm.1c00320
L.K. Chin, T. Son, J.S. Hong, A.Q. Liu, J. Skog et al., Plasmonic sensors for extracellular vesicle analysis: from scientific development to translational research. ACS Nano 14(11), 14528–14548 (2020). https://doi.org/10.1021/acsnano.0c07581
H. Aoki, R.M. Corn, B. Matthews, Microrna detection on microsensor arrays by SPR imaging measurements with enzymatic signal enhancement. Biosens. Bioelectron. 142, 111565 (2019). https://doi.org/10.1016/j.bios.2019.111565
C. Zhou, H. Zou, C. Sun, D. Ren, J. Chen et al., Signal amplification strategies for DNA-based surface plasmon resonance biosensors. Biosensors Bioelectron. 117, 678–689 (2018). https://doi.org/10.1016/j.bios.2018.06.062
M. Jørgensen, R. Bæk, S. Pedersen, E.K. Søndergaard, S.R. Kristensen et al., Extracellular vesicle (EV) array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping. J. Extracell. Vesicles 2(1), 20920 (2013). https://doi.org/10.3402/jev.v2i0.20920
M.P. Zaborowski, K. Lee, Y.J. Na, A. Sammarco, X. Zhang et al., Methods for systematic identification of membrane proteins for specific capture of cancer-derived extracellular vesicles. Cell Rep. 27(1), 255-268.e6 (2019). https://doi.org/10.1016/j.celrep.2019.03.003
M.M. Jørgensen, R. Bæk, K. Varming, Potentials and capabilities of the extracellular vesicle (EV) array. J. Extracell. Vesicles 4(1), 26048 (2015). https://doi.org/10.3402/jev.v4.26048
L. Xu, N. Shoaei, F. Jahanpeyma, J. Zhao, M. Azimzadeh et al., Optical, electrochemical and electrical (Nano) biosensors for detection of exosomes: a comprehensive overview. Biosens. Bioelectron. 161, 112222 (2020). https://doi.org/10.1016/j.bios.2020.112222
H. Xu, C. Liao, P. Zuo, Z. Liu, B.C. Ye, Magnetic-based microfluidic device for on-chip isolation and detection of tumor-derived exosomes. Anal. Chem. 90(22), 13451–13458 (2018). https://doi.org/10.1021/acs.analchem.8b03272
F. Tian, C. Liu, L. Lin, Q. Chen, J. Sun, Microfluidic analysis of circulating tumor cells and tumor-derived extracellular vesicles. TrAC Trends Anal. Chem. 117, 128–145 (2019). https://doi.org/10.1016/j.trac.2019.05.013
J. Park, H.Y. Lin, J.P. Assaker, S. Jeong, C.H. Huang et al., Integrated kidney exosome analysis for the detection of kidney transplant rejection. ACS Nano 11(11), 11041–11046 (2017). https://doi.org/10.1021/acsnano.7b05083
C.K. Tang, A. Vaze, M. Shen, J.F. Rusling, High-throughput electrochemical microfluidic immunoarray for multiplexed detection of cancer biomarker proteins. ACS Sens. 1(8), 1036–1043 (2016). https://doi.org/10.1021/acssensors.6b00256
T. Goda, K. Masuno, J. Nishida, N. Kosaka, T. Ochiya et al., A label-free electrical detection of exosomal micrornas using microelectrode array. Chem. Comm. 48(98), 11942–11944 (2012). https://doi.org/10.1039/C2CC36111F
C. Jiang, M.T. Alam, S.M. Silva, S. Taufik, S. Fan et al., Unique sensing interface that allows the development of an electrochemical immunosensor for the detection of tumor necrosis factor α in whole blood. ACS Sens. 1(12), 1432–1438 (2016). https://doi.org/10.1021/acssensors.6b00532
Y. Fu, C. Jiang, G.K. Tofaris, J.J. Davis, Facile impedimetric analysis of neuronal exosome markers in Parkinson’s disease diagnostics. Anal. Chem. 92(20), 13647–13651 (2020). https://doi.org/10.1021/acs.analchem.0c03092
C. Jiang, S.M. Silva, S. Fan, Y. Wu, M.T. Alam et al., Aryldiazonium salt derived mixed organic layers: from surface chemistry to their applications. J. Electroanal. Chem. 785, 265–278 (2017). https://doi.org/10.1016/j.jelechem.2016.11.043
C. Jiang, Protein-Resistant Electrode for Biosensing. PhD Thesis (2016).
C. Jiang, M.T. Alam, S.G. Parker, J.J. Gooding, Zwitterionic phenyl phosphorylcholine on indium tin oxide: a low-impedance protein-resistant platform for biosensing. Electroanalysis 27(4), 884–889 (2015). https://doi.org/10.1002/elan.201400557
S.B. Patil, R.M. Al-Jehani, H. Etayash, V. Turbe, K. Jiang et al., Modified cantilever arrays improve sensitivity and reproducibility of nanomechanical sensing in living cells. Commun. Biol. 1(1), 175 (2018). https://doi.org/10.1038/s42003-018-0179-3
J.L. Arlett, E.B. Myers, M.L. Roukes, Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6(4), 203–215 (2011). https://doi.org/10.1038/nnano.2011.44
S. Olcum, N. Cermak, S.C. Wasserman, K.S. Christine, H. Atsumi et al., Weighing nanoparticles in solution at the attogram scale. PNAS 111(4), 1310–1315 (2014). https://doi.org/10.1073/pnas.1318602111
H. Etayash, A. McGee, K. Kaur, T. Thundat, Nanomechanical sandwich assay for multiple cancer biomarkers in breast cancer cell-derived exosomes. Nanoscale 8(33), 15137–15141 (2016). https://doi.org/10.1039/C6NR03478K
G.G. Daaboul, P. Gagni, L. Benussi, P. Bettotti, M. Ciani et al., Digital detection of exosomes by interferometric imaging. Sci. Rep. 6, 37246 (2016). https://doi.org/10.1038/srep37246
M. Oliveira-Rodríguez, E. Serrano-Pertierra, A.C. García, S. López-Martín, M. Yañez-Mo et al., Point-of-care detection of extracellular vesicles: sensitivity optimization and multiple-target detection. Biosens. Bioelectron. 87, 38–45 (2017). https://doi.org/10.1016/j.bios.2016.08.001
G.G. Daaboul, C.A. Lopez, J. Chinnala, B.B. Goldberg, J.H. Connor et al., Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for Ebola and Marburg detection. ACS Nano 8(6), 6047–6055 (2014). https://doi.org/10.1021/nn501312q
P. Gebauer, Z. Malá, P. Boček, Recent progress in analytical capillary ITP. Electrophoresis 30(1), 29–35 (2009). https://doi.org/10.1002/elps.200800425
S. Guo, J. Xu, A.P. Estell, C.F. Ivory, D. Du et al., Paper-based ITP technology: an application to specific cancer-derived exosome detection and analysis. Biosens. Bioelectron. 164, 112292 (2020). https://doi.org/10.1016/j.bios.2020.112292
V. Shirshahi, G. Liu, Enhancing the analytical performance of paper lateral flow assays: from chemistry to engineering. TrAC Trends Anal. Chem. 136, 116200 (2021). https://doi.org/10.1016/j.trac.2021.116200
M. Baharfar, M. Rahbar, M. Tajik, G. Liu, Engineering strategies for enhancing the performance of electrochemical paper-based analytical devices. Biosens. Bioelectron. 167, 112506 (2020). https://doi.org/10.1016/j.bios.2020.112506
L. Liu, D. Yang, G. Liu, Signal amplification strategies for paper-based analytical devices. Biosens. Bioelectron. 136, 60–75 (2019). https://doi.org/10.1016/j.bios.2019.04.043
Z. Luo, T. Lv, K. Zhu, Y. Li, L. Wang et al., Paper-based ratiometric fluorescence analytical devices towards point-of-care testing of human serum albumin. Angew. Chem. Int. Ed. 59(8), 3131–3136 (2020). https://doi.org/10.1002/anie.201915046
C. Jiang, M.T. Alam, S.G. Parker, N. Darwish, J.J. Gooding, Strategies to achieve control over the surface ratio of two different components on modified electrodes using aryldiazonium salts. Langmuir 32(10), 2509–2517 (2016). https://doi.org/10.1021/acs.langmuir.5b04550
X. Zhang, Q. Li, X. Jin, C. Jiang, Y. Lu et al., Quantitative determination of target gene with electrical sensor. Sci. Rep. 5(1), 12539 (2015). https://doi.org/10.1038/srep12539
S. Zhang, C. Jiang, L. Jia, Tetrabutylammonium phosphate-assisted separation of multiplex polymerase chain reaction products in non-gel sieving capillary electrophoresis. Anal. Biochem. 408(2), 284–288 (2011). https://doi.org/10.1016/j.ab.2010.09.022
C. Jiang, S. Xu, S. Zhang, L. Jia, Chitosan functionalized magnetic particle-assisted detection of genetically modified soybeans based on polymerase chain reaction and capillary electrophoresis. Anal. Biochem. 420(1), 20–25 (2012). https://doi.org/10.1016/j.ab.2011.09.004
C. Song, W. Chen, J. Kuang, Y. Yao, S. Tang et al., Recent advances in the detection of multiple micrornas. TrAC Trends Anal. Chem. 139, 116269 (2021). https://doi.org/10.1016/j.trac.2021.116269
N. Singh, L. Huang, D.B. Wang, N. Shao, X.E. Zhang, Simultaneous detection of a cluster of differentiation markers on leukemia-derived exosomes by multiplex immuno-polymerase chain reaction via capillary electrophoresis analysis. Anal. Chem. 92(15), 10569–10577 (2020). https://doi.org/10.1021/acs.analchem.0c01464
S.K. Jha, R. Chand, D. Han, Y.C. Jang, G.S. Ra et al., An integrated PCR microfluidic chip incorporating aseptic electrochemical cell lysis and capillary electrophoresis amperometric DNA detection for rapid and quantitative genetic analysis. Lab Chip 12(21), 4455–4464 (2012). https://doi.org/10.1039/C2LC40727B
J. Ko, Y. Wang, J.C.T. Carlson, A. Marquard, J. Gungabeesoon et al., Single extracellular vesicle protein analysis using immuno-droplet digital polymerase chain reaction amplification. Adv. Biosyst. 4(12), 1900307 (2020). https://doi.org/10.1002/adbi.201900307
Q. Tian, C. He, G. Liu, Y. Zhao, L. Hui et al., Nanoparticle counting by microscopic digital detection: selective quantitative analysis of exosomes via surface-anchored nucleic acid amplification. Anal. Chem. 90(11), 6556–6562 (2018). https://doi.org/10.1021/acs.analchem.8b00189
J. Ko, Y. Wang, K. Sheng, D.A. Weitz, R. Weissleder, Sequencing-based protein analysis of single extracellular vesicles. ACS Nano 15(3), 5631–5638 (2021). https://doi.org/10.1021/acsnano.1c00782
M. Gaňová, H. Zhang, H. Zhu, M. Korabečná, P. Neužil, Multiplexed digital polymerase chain reaction as a powerful diagnostic tool. Biosens. Bioelectron. 181, 113155 (2021). https://doi.org/10.1016/j.bios.2021.113155
R. Jara-Acevedo, C. Campos-Silva, M. Valés-Gómez, M. Yáñez-Mó, H. Suárez et al., Exosome beads array for multiplexed phenotyping in cancer. J. Proteomics 198, 87–97 (2019). https://doi.org/10.1016/j.jprot.2018.12.023
N. Koliha, Y. Wiencek, U. Heider, C. Jüngst, N. Kladt et al., A novel multiplex bead-based platform highlights the diversity of extracellular vesicles. J. Extracell. Vesicles 5(1), 29975 (2016). https://doi.org/10.3402/jev.v5.29975
M. Shi, C. Liu, T.J. Cook, K.M. Bullock, Y. Zhao et al., Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol. 128(5), 639–650 (2014). https://doi.org/10.1007/s00401-014-1314-y
O.P.B. Wiklander, R.B. Bostancioglu, J.A. Welsh, A.M. Zickler, F. Murke et al., Systematic methodological evaluation of a multiplex bead-based flow cytometry assay for detection of extracellular vesicle surface signatures. Front. Immunol. 9(1326), 1326 (2018). https://doi.org/10.3389/fimmu.2018.01326
E. Vacchi, J. Burrello, D. Di Silvestre, A. Burrello, S. Bolis et al., Immune profiling of plasma-derived extracellular vesicles identifies parkinson disease. Neurol. Neuroimmunol. 7(6), e866 (2020). https://doi.org/10.1212/nxi.0000000000000866
G. Marcoux, A.C. Duchez, N. Cloutier, P. Provost, P.A. Nigrovic et al., Revealing the diversity of extracellular vesicles using high-dimensional flow cytometry analyses. Sci. Rep. 6(1), 35928 (2016). https://doi.org/10.1038/srep35928
L. Ma, S. Zhu, Y. Tian, W. Zhang, S. Wang et al., Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry. Angew. Chem. Int. Ed. 128(35), 10395–10399 (2016). https://doi.org/10.1002/anie.201603007
Y. Tian, L. Ma, M. Gong, G. Su, S. Zhu et al., Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry. ACS Nano 12(1), 671–680 (2018). https://doi.org/10.1021/acsnano.7b07782
W.C.W. Chan, D.J. Maxwell, X. Gao, R.E. Bailey, M. Han et al., Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13(1), 40–46 (2002). https://doi.org/10.1016/S0958-1669(02)00282-3
X. Cheng, S.B. Lowe, P.J. Reece, J.J. Gooding, Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev. 43(8), 2680–2700 (2014). https://doi.org/10.1039/C3CS60353A
X. Cheng, E. Hinde, D.M. Owen, S.B. Lowe, P.J. Reece et al., Enhancing quantum dots for bioimaging using advanced surface chemistry and advanced optical microscopy: application to silicon quantum dots (SiQDs). Adv. Mater. 27(40), 6144–6150 (2015). https://doi.org/10.1002/adma.201503223
T.A. Taton, G. Lu, C.A. Mirkin, Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J. Am. Chem. Soc. 123(21), 5164–5165 (2001). https://doi.org/10.1021/ja0102639
G.D. Noto, A. Bugatti, A. Zendrini, E.L. Mazzoldi, A. Montanelli et al., Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes. Biosens. Bioelectron. 77, 518–524 (2016). https://doi.org/10.1016/j.bios.2015.09.061
R. Rica, M.M. Stevens, Plasmonic elisa for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotechnol. 7(12), 821–824 (2012). https://doi.org/10.1038/nnano.2012.186
Y. Zheng, A.H. Soeriyadi, L. Rosa, S.H. Ng, U. Bach et al., Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection. Nat. Commun. 6(1), 8797 (2015). https://doi.org/10.1038/ncomms9797
Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo et al., DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor. Adv. Funct. Mater. 23(12), 1519–1526 (2013). https://doi.org/10.1002/adfm.201202073
K. Liang, F. Liu, J. Fan, D. Sun, C. Liu et al., Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat. Biomed. Eng. 1(4), 0021 (2017). https://doi.org/10.1038/s41551-016-0021
Y. Zhao, Z. Xie, H. Gu, C. Zhu, Z. Gu, Bio-inspired variable structural color materials. Chem. Soc. Rev. 41(8), 3297–3317 (2012). https://doi.org/10.1039/C2CS15267C
Y.G. Zhou, R.M. Mohamadi, M. Poudineh, L. Kermanshah, S. Ahmed et al., Interrogating circulating microsomes and exosomes using metal nanoparticles. Small 12(6), 727–732 (2016). https://doi.org/10.1002/smll.201502365
Y. Wan, Y.G. Zhou, M. Poudineh, T.S. Safaei, R.M. Mohamadi et al., Highly specific electrochemical analysis of cancer cells using multi-nanoparticle labeling. Angew. Chem. Int. Ed. 53(48), 13145–13149 (2014). https://doi.org/10.1002/anie.201407982
H. Wei, S. Ni, C. Cao, G. Yang, G. Liu, Graphene oxide signal reporter based multifunctional immunosensing platform for amperometric profiling of multiple cytokines in serum. ACS Sens. 3(8), 1553–1561 (2018). https://doi.org/10.1021/acssensors.8b00365
Z. Shen, J. Huang, H. Wei, H. Niu, B. Li et al., Validation of an in vivo electrochemical immunosensing platform for simultaneous detection of multiple cytokines in Parkinson’s disease mice model. Bioelectrochemistry 134, 107532 (2020). https://doi.org/10.1016/j.bioelechem.2020.107532
W. Guo, H. Ding, C. Gu, Y. Liu, X. Jiang et al., Potential-resolved multicolor electrochemiluminescence for multiplex immunoassay in a single sample. J. Am. Chem. Soc. 140(46), 15904–15915 (2018). https://doi.org/10.1021/jacs.8b09422
W. Lv, H. Ye, Z. Yuan, X. Liu, X. Chen et al., Recent advances in electrochemiluminescence-based simultaneous detection of multiple targets. TrAC Trends Anal. Chem. 123, 115767 (2020). https://doi.org/10.1016/j.trac.2019.115767
Y. Bai, Y. Lu, K. Wang, Z. Cheng, Y. Qu et al., Rapid isolation and multiplexed detection of exosome tumor markers via queued beads combined with quantum dots in a microarray. Nano-Micro Lett. 11, 59 (2019). https://doi.org/10.1007/s40820-019-0285-x
N. Soda, B.H.A. Rehm, P. Sonar, N.T. Nguyen, M.J.A. Shiddiky, Advanced liquid biopsy technologies for circulating biomarker detection. J. Mater. Chem. B 7(43), 6670–6704 (2019). https://doi.org/10.1039/C9TB01490J
Q. Guo, Y. Wang, C. Chen, D. Wei, J. Fu et al., Multiplexed luminescence oxygen channeling immunoassay based on dual-functional barcodes with a host-guest structure: a facile and robust suspension array platform. Small 16(17), 1907521 (2020). https://doi.org/10.1002/smll.201907521
F. Bian, L. Sun, L. Cai, Y. Wang, Y. Zhao, Bioinspired Mxene-integrated colloidal crystal arrays for multichannel bioinformation coding. PNAS 117(37), 22736–22742 (2020). https://doi.org/10.1073/pnas.2011660117
M. Yang, Y. Liu, X. Jiang, Barcoded point-of-care bioassays. Chem. Soc. Rev. 48(3), 850–884 (2019). https://doi.org/10.1039/C8CS00303C
Y. Geng, W.J. Peveler, V.M. Rotello, Array-based “chemical nose” sensing in diagnostics and drug discovery. Angew. Chem. Int. Ed. 58(16), 5190–5200 (2019). https://doi.org/10.1002/anie.201809607
C.C. You, O.R. Miranda, B. Gider, P.S. Ghosh, I.B. Kim et al., Detection and identification of proteins using nanoparticle–fluorescent polymer ‘chemical nose’ sensors. Nat. Nanotechnol. 2(5), 318–323 (2007). https://doi.org/10.1038/nnano.2007.99
T. Yu, Y. Xianyu, Array-based biosensors for bacteria detection: from the perspective of recognition. Small 17(21), 2006230 (2021). https://doi.org/10.1002/smll.202006230
H. Liu, L.H. Xiong, R.T.K. Kwok, X. He, J.W.Y. Lam et al., AIE bioconjugates for biomedical applications. Adv. Opt. Mater. 8(14), 2000162 (2020). https://doi.org/10.1002/adom.202000162
M.T. Yaraki, M. Wu, E. Middha, W. Wu, S.D. Rezaei et al., Gold nanostars-AIE theranostic nanodots with enhanced fluorescence and photosensitization towards effective image-guided photodynamic therapy. Nano-Micro Lett. 13, 58 (2021). https://doi.org/10.1007/s40820-020-00583-2
Y. Li, S. Li, J. Wang, G. Liu, Crispr/cas systems towards next-generation biosensing. Trends Biotechnol. 37(7), 730–743 (2019). https://doi.org/10.1016/j.tibtech.2018.12.005
Y. Li, L. Liu, G. Liu, CRISPR/Cas multiplexed biosensing: a challenge or an insurmountable obstacle? Trends Biotechnol. 37(8), 792–795 (2019). https://doi.org/10.1016/j.tibtech.2019.04.012
L. Hao, R.T. Zhao, C. Ngambenjawong, H.E. Fleming, S.N. Bhatia, CRISPR-Cas-amplified urine biomarkers for multiplexed and portable cancer diagnostics. bioRxiv (2020). https://doi.org/10.1101/2020.06.17.157180
Y. Dai, Y. Wu, G. Liu, J.J. Gooding, CRISPR mediated biosensing toward understanding cellular biology and point-of-care diagnosis. Angew. Chem. Int. Ed. 59(47), 20754–20766 (2020). https://doi.org/10.1002/anie.202005398
J.S. Gootenberg, O.O. Abudayyeh, M.J. Kellner, J. Joung, J.J. Collins et al., Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360(6387), 439–444 (2018). https://doi.org/10.1126/science.aaq0179
H. Yue, B. Shu, T. Tian, E. Xiong, M. Huang et al., Droplet Cas12a assay enables DNA quantification from unamplified samples at the single-molecule level. Nano Lett. 21(11), 4643–4653 (2021). https://doi.org/10.1021/acs.nanolett.1c00715
C.M. Ackerman, C. Myhrvold, S.G. Thakku, C.A. Freije, H.C. Metsky et al., Massively multiplexed nucleic acid detection with Cas13. Nature 582(7811), 277–282 (2020). https://doi.org/10.1038/s41586-020-2279-8
N.E. Weckman, N. Ermann, R. Gutierrez, K. Chen, J. Graham et al., Multiplexed DNA identification using site specific dCas9 barcodes and nanopore sensing. ACS Sens. 4(8), 2065–2072 (2019). https://doi.org/10.1021/acssensors.9b00686
R. Bruch, G.A. Urban, C. Dincer, Crispr/Cas powered multiplexed biosensing. Trends Biotechnol. 37(8), 791–792 (2019). https://doi.org/10.1016/j.tibtech.2019.04.005
R. Bruch, J. Baaske, C. Chatelle, W. Weber, C. Dincer et al. Electrochemical biosensor for Crispr/Cas13a powered miRNA diagnostics. 2019 IEEE SENSORS, Montreal, QC, Canada, 27–30 Oct. (2019). https://ieeexplore.ieee.org/document/8956561
F. Mei, S.P.J. Fancy, Y.A.A. Shen, J. Niu, C. Zhao et al., Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat. Med. 20(8), 954–960 (2014). https://doi.org/10.1038/nm.3618
P. Zhang, X. Wu, G. Gardashova, Y. Yang, Y. Zhang et al., Molecular and functional extracellular vesicle analysis using nanopatterned microchips monitors tumor progression and metastasis. Sci. Transl. Med. 12(547), 2878 (2020). https://doi.org/10.1126/scitranslmed.aaz2878
P. Zhang, X. Zhou, M. He, Y. Shang, A.L. Tetlow et al., Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat. Biomed. Eng. 3(6), 438–451 (2019). https://doi.org/10.1038/s41551-019-0356-9
L. Huang, S. Tian, W. Zhao, K. Liu, X. Ma et al., Multiplexed detection of biomarkers in lateral-flow immunoassays. Analyst 145(8), 2828–2840 (2020). https://doi.org/10.1039/C9AN02485A
W. Zhao, S. Tian, L. Huang, K. Liu, L. Dong et al., A smartphone-based biomedical sensory system. Analyst 145(8), 2873–2891 (2020). https://doi.org/10.1039/C9AN02294E
C. Dincer, R. Bruch, A. Kling, P.S. Dittrich, G.A. Urban, Multiplexed point-of-care testing–Xpoct. Trends Biotechnol. 35(8), 728–742 (2017). https://doi.org/10.1016/j.tibtech.2017.03.013
J. Kaur, C. Jiang, G. Liu, Different strategies for detection of HBA1C emphasizing on biosensors and point-of-care analyzers. Biosens. Bioelectron. 123(1), 85–100 (2019). https://doi.org/10.1016/j.bios.2018.06.018
Z. Dong, C. Tang, Z. Zhang, W. Zhou, R. Zhao et al., Simultaneous detection of exosomal membrane protein and RNA by highly sensitive aptamer assisted multiplex–PCR. ACS Appl. Bio Mater. 3(5), 2560–2567 (2020). https://doi.org/10.1021/acsabm.9b00825
C.Z.J. Lim, A. Natalia, N.R. Sundah, H. Shao, Biomarker organization in circulating extracellular vesicles: new applications in detecting neurodegenerative diseases. Adv. Biosyst. 4(12), 1900309 (2020). https://doi.org/10.1002/adbi.201900309
K.E. Richards, D.B. Go, R. Hill (2017) Surface acoustic wave lysis and ion-exchange membrane quantification of exosomal microRNA. MicroRNA Detection and Target Identification. Methods in Molecular Biology chapter 5, 59–70. https://doi.org/10.1007/978-1-4939-6866-4_5
D. Taller, K. Richards, Z. Slouka, S. Senapati, R. Hill et al., On-chip surface acoustic wave lysis and ion-exchange nanomembrane detection of exosomal RNA for pancreatic cancer study and diagnosis. Lab Chip 15(7), 1656–1666 (2015). https://doi.org/10.1039/C5LC00036J
F. Zhu, Y. Ji, J. Deng, L. Li, X. Bai et al., Microfluidics-based technologies for the analysis of extracellular vesicles at the single-cell level and single-vesicle level. Chin. Chem. Lett. (2021). https://doi.org/10.1016/j.cclet.2021.09.058
Y. Orooji, H. Sohrabi, N. Hemmat, F. Oroojalian, B. Baradaran et al., An overview on SARS-Cov-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Lett. 13, 18 (2020). https://doi.org/10.1007/s40820-020-00533-y
C. Cao, Y. Zhang, C. Jiang, M. Qi, G. Liu, Advances on aryldiazonium salt chemistry based interfacial fabrication for sensing applications. ACS Appl. Mater. Interfaces 9(6), 5031–5049 (2017). https://doi.org/10.1021/acsami.6b16108
A. Krug, D. Enderle, C. Karlovich, T. Priewasser, S. Bentink et al., Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma. Ann. Oncol. 29(3), 700–706 (2018). https://doi.org/10.1093/annonc/mdx765
H. Shin, S. Oh, S. Hong, M. Kang, D. Kang et al., Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes. ACS Nano 14(5), 5435–5444 (2020). https://doi.org/10.1021/acsnano.9b09119
J. Riordon, D. Sovilj, S. Sanner, D. Sinton, E.W. Young, Deep learning with microfluidics for biotechnology. Trends Biotechnol. 37(3), 310–324 (2019). https://doi.org/10.1016/j.tibtech.2018.08.005
L. Min, B. Wang, H. Bao, X. Li, L. Zhao et al., Advanced nanotechnologies for extracellular vesicle-based liquid biopsy. Adv. Sci. 8(20), 2102789 (2021). https://doi.org/10.1002/advs.202102789
K. Fraser, A. Jo, J. Giedt, C. Vinegoni, K.S. Yang et al., Characterization of single microvesicles in plasma from glioblastoma patients. Neuro Oncol. 21(5), 606–615 (2019). https://doi.org/10.1093/neuonc/noy187