Recent Advances in Interface Engineering for Electrocatalytic CO2 Reduction Reaction
Corresponding Author: Zhicheng Zhang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 216
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) can store and transform the intermittent renewable energy in the form of chemical energy for industrial production of chemicals and fuels, which can dramatically reduce CO2 emission and contribute to carbon-neutral cycle. Efficient electrocatalytic reduction of chemically inert CO2 is challenging from thermodynamic and kinetic points of view. Therefore, low-cost, highly efficient, and readily available electrocatalysts have been the focus for promoting the conversion of CO2. Very recently, interface engineering has been considered as a highly effective strategy to modulate the electrocatalytic performance through electronic and/or structural modulation, regulations of electron/proton/mass/intermediates, and the control of local reactant concentration, thereby achieving desirable reaction pathway, inhibiting competing hydrogen generation, breaking binding-energy scaling relations of intermediates, and promoting CO2 mass transfer. In this review, we aim to provide a comprehensive overview of current developments in interface engineering for CO2RR from both a theoretical and experimental standpoint, involving interfaces between metal and metal, metal and metal oxide, metal and nonmetal, metal oxide and metal oxide, organic molecules and inorganic materials, electrode and electrolyte, molecular catalysts and electrode, etc. Finally, the opportunities and challenges of interface engineering for CO2RR are proposed.
Highlights:
1 This review summarizes current developments in interface engineering for electrocatalytic CO2 reduction reaction (CO2RR).
2 The interface engineering for electrocatalytic CO2RR involves the metal–metal interface, metal–metal oxide interface, metal–nonmetal interface, metal oxide–metal oxide interface, organic molecules–inorganic materials interface, electrode–electrolyte interface, and molecular catalysts–electrode interface.
3 The opportunities and challenges of interface engineering for CO2RR are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Intasian, K. Prakinee, A. Phintha, D. Trisrivirat, N. Weeranoppanant et al., Enzymes, in vivo biocatalysis, and metabolic engineering for enabling a circular economy and sustainability. Chem. Rev. (2021). https://doi.org/10.1021/acs.chemrev.1c00121
- S.Z. Xu, E.A. Carter, Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chem. Rev. 119(11), 6631–6669 (2019). https://doi.org/10.1021/acs.chemrev.8b00481
- L. Weiss, W. Ludwig, S. Heussner, M. Canals, J.F. Ghiglione et al., The missing ocean plastic sink: gone with the rivers. Science 373(6550), 107–111 (2021). https://doi.org/10.1126/science.abe0290
- D.J. Beerling, E.P. Kantzas, M.R. Lomas, P. Wade, R.M. Eufrasio et al., Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 583, 242–248 (2020). https://doi.org/10.1038/s41586-020-2448-9
- A. Chen, B.L. Lin, A simple framework for quantifying electrochemical CO2 fixation. Joule 2(4), 594–606 (2018). https://doi.org/10.1016/j.joule.2018.02.003
- E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazábal, J. Pérez-Ramírez, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013). https://doi.org/10.1039/C3EE41272E
- A. Vasileff, Y. Zheng, S. Qiao, Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv. Energy Mater. 7(21), 1700759 (2017). https://doi.org/10.1002/aenm.201700759
- W. Bi, X. Li, R. You, M. Chen, R. Yuan et al., Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction. Adv. Mater. 30(18), 1706617 (2018). https://doi.org/10.1002/adma.201706617
- W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang et al., Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 5(1), 1700275 (2018). https://doi.org/10.1002/advs.201700275
- Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel et al., A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 5, 3242 (2014). https://doi.org/10.1038/ncomms4242
- D. Zhu, J. Liu, S. Qiao, Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28(18), 3423–3452 (2016). https://doi.org/10.1002/adma.201504766
- E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38(1), 89–99 (2009). https://doi.org/10.1039/B804323J
- K. Khan, A.K. Tareen, M. Aslam, R.U.R. Sagar, B. Zhang et al., Recent progress, challenges, and prospects in two-dimensional photo-catalyst materials and environmental remediation. Nano-Micro Lett. 12, 167 (2020). https://doi.org/10.1007/s40820-020-00504-3
- E. Dlugokencky, P. Tans, NOAA/ESRL, http://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed July 2021
- J.G. Canadell, C. Le Quere, M.R. Raupach, C.B. Field, E.T. Buitenhuis et al., Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 104(47), 18866–18870 (2007). https://doi.org/10.1073/pnas.0702737104
- M. Mikkelsen, M. Jørgensen, F.C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3, 43–81 (2010). https://doi.org/10.1039/B912904A
- M.R. Raupach, G. Marland, P. Ciais, C. Le Quéré, J.G. Canadell et al., Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA 104(24), 10288–10293 (2007). https://doi.org/10.1073/pnas.0700609104
- S. Gao, Z. Sun, W. Liu, X. Jiao, X. Zu et al., Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat. Commun. 8, 14503 (2017). https://doi.org/10.1038/ncomms14503
- I. Ganesh, Conversion of carbon dioxide into methanol—a potential liquid fuel: fundamental challenges and opportunities (a review). Renew. Sustain. Energy Rev. 31, 221–257 (2014). https://doi.org/10.1016/j.rser.2013.11.045
- J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang et al., State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 49, 1385–1413 (2020). https://doi.org/10.1039/C9CS00614A
- N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103(43), 15729–15735 (2006). https://doi.org/10.1073/pnas.0603395103
- G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 148(3–4), 191–205 (2009). https://doi.org/10.1016/j.cattod.2009.07.075
- G.A. Olah, A. Goeppert, G.S. Prakash, Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J. Org. Chem. 74(2), 487–498 (2009). https://doi.org/10.1021/jo801260f
- Z. Chen, K. Mou, X. Wang, L. Liu, Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region. Angew. Chem. Int. Ed. 57(39), 12790–12794 (2018). https://doi.org/10.1002/anie.201807643
- N. Wang, R.K. Miao, G. Lee, A. Vomiero, D. Sinton et al., Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat 2(1), 12–16 (2021). https://doi.org/10.1002/smm2.1018
- T. Gao, A. Kumar, Z. Shang, X. Duan, H. Wang et al., Promoting electrochemical conversion of CO2 to formate with rich oxygen vacancies in nanoporous tin oxides. Chin. Chem. Lett. 30(12), 2274–2778 (2019). https://doi.org/10.1016/j.cclet.2019.07.028
- M. Zhou, Y. Lin, H. Xia, X. Wei, Y. Yao et al., A molecular foaming and activation strategy to porous N-doped carbon foams for supercapacitors and CO2 capture. Nano-Micro Lett. 12, 58 (2020). https://doi.org/10.1007/s40820-020-0389-3
- K. Mou, Z. Chen, X. Zhang, M. Jiao, X. Zhang et al., Highly efficient electroreduction of CO2 on nickel single-atom catalysts: atom trapping and nitrogen anchorin. Small 15(49), 1903668 (2019). https://doi.org/10.1002/smll.201903668
- Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nat. Commun. 10, 1 (2019). https://doi.org/10.1038/s41467-018-07882-8
- T. Zheng, K. Jiang, H. Wang, Recent advances in electrochemical CO2-to-Co conversion on heterogeneous catalysts. Adv. Mater. 30(48), 1802066 (2018). https://doi.org/10.1002/adma.201802066
- L. Zhang, Z.J. Zhao, J. Gong, Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem. Int. Ed. 56(38), 11326–11353 (2017). https://doi.org/10.1002/anie.201612214
- C. Costentin, M. Robert, J.M. Savéant, Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42(6), 2423–2436 (2013). https://doi.org/10.1039/C2CS35360A
- J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43(2), 631–675 (2014). https://doi.org/10.1039/C3CS60323G
- L. Zhang, Z. Zhao, T. Wang, J. Gong, Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide. Chem. Soc. Rev. 47(14), 5423–5443 (2018). https://doi.org/10.1039/C8CS00016F
- J. Albo, M. Alvarez-Guerra, P. Castaño, A. Irabien, Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem. 17(4), 2304–2324 (2015). https://doi.org/10.1039/C4GC02453B
- P. De Luna, C. Hahn, D. Higgins, S.A. Jaffer, T.F. Jaramillo et al., What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364(6438), eaav3506 (2019). https://doi.org/10.1126/science.aav3506
- Z. Chen, K. Mou, S. Yao, L. Liu, Zinc-coordinated nitrogen-codoped graphene as an efficient catalyst for selective electrochemical reduction of CO2 to CO. ChemSusChem 11(17), 2944–2952 (2018). https://doi.org/10.1002/cssc.201800925
- X. Chang, T. Wang, J. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9(7), 2177–2196 (2016). https://doi.org/10.1039/C6EE00383D
- X. Chang, T. Wang, P. Zhang, Y. Wei, J. Zhao et al., Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angew. Chem. Int. Ed. 55(31), 8840–8845 (2016). https://doi.org/10.1002/anie.201602973
- L. Liu, Y. Jiang, H. Zhao, J. Chen, J. Cheng et al., Engineering coexposed 001 and 101 facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. ACS Catal. 6(2), 1097–1108 (2016). https://doi.org/10.1021/acscatal.5b02098
- A.J. Morris, G.J. Meyer, E. Fujita, Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc. Chem. Res. 42(12), 1983–1994 (2009). https://doi.org/10.1021/ar9001679
- S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4(3), 1259–1278 (2010). https://doi.org/10.1021/nn9015423
- M. Schreier, J. Luo, P. Gao, T. Moehl, M.T. Mayer et al., Covalent immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction. J. Am. Chem. Soc. 138(6), 1938–1946 (2016). https://doi.org/10.1021/jacs.5b12157
- S. Wang, X. Wang, Imidazolium ionic liquids, imidazolylidene heterocyclic carbenes, and zeolitic imidazolate frameworks for CO2 capture and photochemical reduction. Angew. Chem. Int. Ed. 55(7), 2308–2320 (2016). https://doi.org/10.1002/anie.201507145
- J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J. Am. Chem. Soc. 136(25), 8839–8842 (2014). https://doi.org/10.1021/ja5044787
- X. Chen, X. Su, H. Su, X. Liu, S. Miao et al., Theoretical insights and the corresponding construction of supported metal catalysts for highly selective CO2 to CO conversion. ACS Catal. 7(7), 4613–4620 (2017). https://doi.org/10.1021/acscatal.7b00903
- M. Mondal, S. Khanra, O. Tiwari, K. Gayen, G. Halder, Role of carbonic anhydrase on the way to biological carbon capture through microalgae—a mini review. Environ. Prog. Sustain. 35(6), 1605–1615 (2016). https://doi.org/10.1002/ep.12394
- J. Shi, Y. Jiang, Z. Jiang, X. Wang, X. Wang et al., Enzymatic conversion of carbon dioxide. Chem. Soc. Rev. 44(17), 5981–6000 (2015). https://doi.org/10.1039/C5CS00182J
- W. Bao, H. Li, Y. Zhang, Selective leaching of steelmaking slag for indirect CO2 mineral sequestration. Ind. Eng. Chem. Res. 49(5), 2055–2063 (2010). https://doi.org/10.1021/ie801850s
- J. Highfield, H. Lim, J. Fagerlund, R. Zevenhoven, Activation of serpentine for CO2 mineralization by flux extraction of soluble magnesium salts using ammonium sulfate. RSC Adv. 2(16), 6535–6541 (2012). https://doi.org/10.1039/C2RA01347A
- J.W. Ko, S.W. Kim, J. Hong, J. Ryu, K. Kang et al., Synthesis of graphene-wrapped CuO hybrid materials by CO2 mineralization. Green Chem. 14(9), 2391–2394 (2012). https://doi.org/10.1039/C2GC35560D
- C. Liu, J.J. Gallagher, K.K. Sakimoto, E.M. Nichols, C.J. Chang et al., Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15(5), 3634–3639 (2015). https://doi.org/10.1021/acs.nanolett.5b01254
- O. Martin, A.J. Martín, C. Mondelli, S. Mitchell, T.F. Segawa et al., Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew. Chem. Int. Ed. 55(21), 6261–6265 (2016). https://doi.org/10.1002/anie.201600943
- F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C.F. Elkjær, J.S. Hummelshøj et al., Discovery of a Ni–Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320–324 (2014). https://doi.org/10.1038/nchem.1873
- Z. Gao, C. Wang, J. Li, Y. Zhu, Z. Zhang et al., Conductive metal–organic frameworks for electrocatalysis: achievements, challenges, and opportunities. Acta Phys-Chim. Sin. 37(7), 2010025 (2020). https://doi.org/10.3866/PKU.WHXB202010025
- K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang et al., Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11(4), 893–903 (2018). https://doi.org/10.1039/C7EE03245E
- N. Han, Y. Wang, H. Yang, J. Deng, J. Wu et al., Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 9, 1320 (2018). https://doi.org/10.1038/s41467-018-03712-z
- L. Fu, R. Wang, C. Zhao, J. Huo, C. He et al., Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: a DFT study. Chem. Eng. J. 414, 128857 (2021). https://doi.org/10.1016/j.cej.2021.128857
- J. Li, Y. Chen, Z. Fan, Z. Zhang, Editorial: Emerging technologies for materials design and characterization in energy conversion and storage. Front. Energy Res. 9, 676876 (2021). https://doi.org/10.3389/fenrg.2021.676876
- Z. Chen, K. Mou, S. Yao, L. Liu, Highly selective electrochemical reduction of CO2 to formate on metal-free nitrogen-doped PC61BM. J. Mater. Chem. A 6(24), 11236–11243 (2018). https://doi.org/10.1039/C8TA03328E
- M. Gattrell, N. Gupta, A. Co, A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594(1), 1–19 (2006). https://doi.org/10.1016/j.jelechem.2006.05.013
- K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5(5), 7050–7059 (2012). https://doi.org/10.1039/C2EE21234J
- C.W. Li, M.W. Kanan, CO2 reduction at low overpotential on cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134(17), 7231–7234 (2012). https://doi.org/10.1021/ja3010978
- A.A. Peterson, F. Abild-Pedersen, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3(9), 1311–1315 (2010). https://doi.org/10.1039/C0EE00071J
- C. Yang, F. Nosheen, Z. Zhang, Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Met. 40, 1412–1430 (2020). https://doi.org/10.1007/s12598-020-01600-4
- G. Centi, Smart catalytic materials for energy transition. SmartMat 1(1), e1005 (2020). https://doi.org/10.1002/smm2.1005
- J.H. Montoya, L.C. Seitz, P. Chakthranont, A. Vojvodic, T.F. Jaramillo et al., Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2016). https://doi.org/10.1038/nmat4778
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
- X. Zheng, P.D. Luna, F.P. García de Arquer, B. Zhang, N. Becknell et al., Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1(4), 794–805 (2017). https://doi.org/10.1016/j.joule.2017.09.014
- Y. Matsubara, Standard electrode potentials for the reduction of CO2 to CO in acetonitrile-water mixtures determined using a generalized method for proton-coupled electron-transfer reactions. ACS Energy Lett. 2(8), 1886–1891 (2017). https://doi.org/10.1021/acsenergylett.7b00548
- F. Li, S.F. Zhao, L. Chen, A. Khan, D.R. MacFarlane et al., Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide. Energy Environ. Sci. 9(1), 216–223 (2016). https://doi.org/10.1039/C5EE02879E
- Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3(4), 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
- C. Yang, S. Li, Z. Zhang, H. Wang, H. Liu et al., Organic–inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small 16(29), 2001847 (2020). https://doi.org/10.1002/smll.202001847
- Y. Liu, S. Chen, X. Quan, H. Yu, Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137(36), 11631–11636 (2015). https://doi.org/10.1021/jacs.5b02975
- S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119(12), 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
- X. Li, Z. Kou, J. Wang, Manipulating interfaces of electrocatalysts down to atomic scales: fundamentals, strategies, and electrocatalytic applications. Small Methods 5(2), 2001010 (2020). https://doi.org/10.1002/smtd.202001010
- Q. Shao, P. Wang, X. Huang, Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv. Funct. Mater. 29(8), 1806419 (2019). https://doi.org/10.1002/adfm.201806419
- L. Wang, W. Chen, D. Zhang, Y. Du, R. Amal et al., Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 48(21), 5310–5349 (2019). https://doi.org/10.1039/C9CS00163H
- Y. Wang, P. Han, X. Lv, L. Zhang, G. Zheng, Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2(12), 2551–2582 (2018). https://doi.org/10.1016/j.joule.2018.09.021
- J. Zhong, X. Jin, L. Meng, X. Wang, H. Su et al., Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat. Nanotechnol. 12, 132–136 (2017). https://doi.org/10.1038/nnano.2016.241
- L. Hou, J. Han, C. Wang, Y. Zhang, Y. Wang et al., Ag nanoparticle embedded Cu nanoporous hybrid arrays for the selective electrocatalytic reduction of CO2 towards ethylene. Inorg. Chem. Front. 7(10), 2097–2106 (2020). https://doi.org/10.1039/D0QI00025F
- J. Wang, Z. Li, C. Dong, Y. Feng, J. Yang et al., Silver/copper interface for relay electroreduction of carbon dioxide to ethylene. ACS Appl. Mater. Interfaces 11(3), 2763–2767 (2019). https://doi.org/10.1021/acsami.8b20545
- J. Huang, M. Mensi, E. Oveisi, V. Mantella, R. Buonsanti, Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag–Cu nanodimers. J. Am. Chem. Soc. 141(6), 2490–2499 (2019). https://doi.org/10.1021/jacs.8b12381
- D. Zang, Q. Li, G. Dai, M. Zeng, Y. Huang et al., Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Appl. Catal. B-Environ. 281, 119426 (2021). https://doi.org/10.1016/j.apcatb.2020.119426
- Q. Li, M. Li, S. Zhang, X. Liu, X. Zhu et al., Tuning Sn–Cu catalysis for electrochemical reduction of CO2 on partially reduced oxides SnOx–CuOx-modified Cu electrodes. Catalysts 9(5), 476 (2019). https://doi.org/10.3390/catal9050476
- T. Zhuang, Z. Liang, A. Seifitokaldani, Y. Li, P.D. Luna et al., Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018). https://doi.org/10.1038/s41929-018-0084-7
- P.D. Luna, R. Quintero-Bermudez, C.T. Dinh, M.B. Ross, O.S. Bushuyev et al., Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018). https://doi.org/10.1038/s41929-017-0018-9
- K. Jiang, R.B. Sandberg, A.J. Akey, X. Liu, D.C. Bell et al., Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018). https://doi.org/10.1038/s41929-017-0009-x
- Z. Weng, X. Zhang, Y. Wu, S. Huo, J. Jiang et al., Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons. Angew. Chem. Int. Ed. 56(42), 13135–13139 (2017). https://doi.org/10.1002/anie.201707478
- X. Chang, T. Wang, Z. Zhao, P. Yang, J. Greeley et al., Tuning Cu/Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions. Angew. Chem. Int. Ed. 57(47), 15415–15419 (2018). https://doi.org/10.1002/anie.201805256
- L. Ye, M. Zhang, P. Huang, G. Guo, M. Hong et al., Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat. Commun. 8, 14785 (2017). https://doi.org/10.1038/ncomms14785
- M. Karamad, V. Tripkovic, J. Rossmeisl, Intermetallic alloys as CO electroreduction catalysts-role of isolated active sites. ACS Catal. 4(7), 2268–2273 (2014). https://doi.org/10.1021/cs500328c
- Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang et al., Author Correction: Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 11, 1167 (2019). https://doi.org/10.1038/s41557-019-0381-z
- J. Jiao, R. Lin, S. Liu, W.C. Cheong, C. Zhang et al., Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 11, 222–228 (2019). https://doi.org/10.1038/s41557-018-0201-x
- J. Xie, J. Chen, Y. Huang, X. Zhang, W. Wang et al., Selective electrochemical CO2 reduction on Cu–Pd heterostructure. Appl. Catal. B-Environ. 270, 118864 (2020). https://doi.org/10.1016/j.apcatb.2020.118864
- H. Yang, Y. Hu, J. Chen, M.S. Balogun, P. Fang et al., Intermediates adsorption engineering of CO2 electroreduction reaction in highly selective heterostructure Cu-based electrocatalysts for CO production. Adv. Energy Mater. 9(27), 1901396 (2019). https://doi.org/10.1002/aenm.201901396
- Z. Pan, E. Han, J. Zheng, J. Lu, X. Wang et al., Highly efficient photoelectrocatalytic reduction of CO2 to methanol by a p–n heterojunction CeO2/CuO/Cu catalyst. Nano-Micro Lett. 12, 18 (2020). https://doi.org/10.1007/s40820-019-0354-1
- S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida et al., Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013). https://doi.org/10.1038/nmat3795
- D. Kim, J. Resasco, Y. Yu, A.M. Asiri, P. Yang, Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014). https://doi.org/10.1038/ncomms5948
- C. Xia, Y. Zhou, C. He, A.I. Douka, W. Guo et al., Recent advances on electrospun nanomaterials for zinc-air batteries. Small Sci. 1, 2100010 (2021). https://doi.org/10.1002/smsc.202100010
- S. Back, J.H. Kim, Y.T. Kim, Y. Jung, Bifunctional interface of Au and Cu for improved CO2 electroreduction. ACS Appl. Mater. Interfaces 8(35), 23022–23027 (2016). https://doi.org/10.1021/acsami.6b05903
- W. Luo, W. Xie, R. Mutschler, E. Oveisi, G.L. De Gregorio et al., Selective and stable electroreduction of CO2 to CO at the copper/indium interface. ACS Catal. 8(7), 6571–6581 (2018). https://doi.org/10.1021/acscatal.7b04457
- C. Choi, J. Cai, C. Lee, H.M. Lee, M. Xu et al., Intimate atomic Cu–Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3639-x
- C.G. Morales-Guio, E.R. Cave, S.A. Nitopi, J.T. Feaster, L. Wang et al., Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018). https://doi.org/10.1038/s41929-018-0139-9
- E.L. Clark, C. Hahn, T.F. Jaramillo, A.T. Bell, Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 139(44), 15848–15857 (2017). https://doi.org/10.1021/jacs.7b08607
- T.T.H. Hoang, S. Verma, S. Ma, T.T. Fister, J. Timoshenko et al., Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140(17), 5791–5797 (2018). https://doi.org/10.1021/jacs.8b01868
- Q. Xiao, S.E. Sherman, S.E. Wilner, X. Zhou, C. Dazen et al., Janus dendrimersomes coassembled from fluorinated, hydrogenated, and hybrid Janus dendrimers as models for cell fusion and fission. Proc. Natl. Acad. Sci. USA 114(34), E7045–E7053 (2017). https://doi.org/10.1073/pnas.1708380114
- X. Bai, Q. Li, L. Shi, X. Niu, C. Ling et al., Hybrid Cu0 and Cux+ as atomic interfaces promote high-selectivity conversion of CO2 to C2H5OH at low potential. Small 16(12), 1901981 (2020). https://doi.org/10.1002/smll.201901981
- R. Daiyan, W.H. Saputera, Q. Zhang, E. Lovell, S. Lim et al., 3D heterostructured copper electrode for conversion of carbon dioxide to alcohols at low overpotentials. Adv. Sustain. Syst. 3(1), 1800064 (2019). https://doi.org/10.1002/adsu.201800064
- M. Li, X. Tian, S. Garg, T.E. Rufford, P. Zhao et al., Modulated Sn oxidation states over a Cu2O-derived substrate for selective electrochemical CO2 reduction. ACS Appl. Mater. Interfaces 12(20), 22760–22770 (2020). https://doi.org/10.1021/acsami.0c00412
- L. Fan, Z. Xia, M. Xu, Y. Lu, Z. Li, 1D SnO2 with wire-in-tube architectures for highly selective electrochemical reduction of CO2 to C1 products. Adv. Funct. Mater. 28(17), 1706289 (2018). https://doi.org/10.1002/adfm.201706289
- S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang et al., Advances in Sn-based catalysts for electrochemical CO2 reduction. Nano-Micro Lett. 11, 62 (2019). https://doi.org/10.1007/s40820-019-0293-x
- W. Lee, Y.E. Kim, M.H. Youn, S.K. Jeong, K.T. Park, Catholyte-free electrocatalytic CO2 reduction to formate. Angew. Chem. Int. Ed. 57(23), 6883–6887 (2018). https://doi.org/10.1002/anie.201803501
- J. Gu, F. Heroguel, J. Luterbacher, X. Hu, Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 57(11), 2943–2947 (2018). https://doi.org/10.1002/anie.201713003
- J. Zeng, K. Bejtka, W. Ju, M. Castellino, A. Chiodoni et al., Advanced Cu–Sn foam for selectively converting CO2 to CO in aqueous solution. Appl. Catal. B-Environ. 236(15), 475–482 (2018). https://doi.org/10.1016/j.apcatb.2018.05.056
- S. Sarfraz, A.T. Garcia-Esparza, A. Jedidi, L. Cavallo et al., Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal. 6(5), 2842–2851 (2016). https://doi.org/10.1021/acscatal.6b00269
- Y. Zhao, C. Wang, G.G. Wallace, Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO. J. Mater. Chem. A 4(27), 10710–10718 (2016). https://doi.org/10.1039/C6TA04155H
- J.T. Feaster, C. Shi, E.R. Cave, T. Hatsukade, D.N. Abram et al., Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7(7), 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687
- Q. Li, J. Fu, W. Zhu, Z. Chen, B. Shen et al., Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J. Am. Chem. Soc. 139(12), 4290–4293 (2017). https://doi.org/10.1021/jacs.7b00261
- X. An, S. Li, A. Yoshida, Z. Wang, X. Hao et al., Electrodeposition of Tin-based electrocatalysts with different surface tin species distributions for electrochemical reduction of CO2 to HCOOH. ACS Sustain. Chem. Eng. 7(10), 9360–9368 (2019). https://doi.org/10.1021/acssuschemeng.9b00515
- J.H. Kim, H. Woo, J. Choi, H.W. Jung, Y.T. Kim, CO2 electroreduction on Au/TiC: enhanced activity due to metal–support interaction. ACS Catal. 7(3), 2101–2106 (2017). https://doi.org/10.1021/acscatal.6b03706
- X. Shen, X. Liu, S. Wang, T. Chen, W. Zhang et al., Synergistic modulation at atomically dispersed Fe/Au interface for selective CO2 electroreduction. Nano Lett. 21(1), 686–692 (2021). https://doi.org/10.1021/acs.nanolett.0c04291
- M. Liu, Y. Pang, B. Zhang, P.D. Luna, O. Voznyy et al., Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016). https://doi.org/10.1038/nature19060
- Y. Zhao, C. Wang, Y. Liu, D.R. MacFarlane, G.G. Wallace, Engineering surface amine modifiers of ultrasmall gold nanoparticles supported on reduced graphene oxide for improved electrochemical CO2 reduction. Adv. Energy Mater. 8(25), 1801400 (2018). https://doi.org/10.1002/aenm.201801400
- W. Zheng, F. Chen, Q. Zeng, Z. Li, B. Yang et al., A universal principle to accurately synthesize atomically dispersed metal-N4 sites for CO2 electroreduction. Nano-Micro Lett. 12, 108 (2020). https://doi.org/10.1007/s40820-020-00443-z
- A.M. Ismail, G.F. Samu, H.C. Nguyen, E. Csapo, N. Lopez et al., Au/Pb interface allows the methane formation pathway in carbon dioxide electroreduction. ACS Catal. 10(10), 5681–5690 (2020). https://doi.org/10.1021/acscatal.0c00749
- Y. Chen, Z. Fan, J. Wang, C. Ling, W. Niu et al., Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: a crystal phase-dependent study. J. Am. Chem. Soc. 142(59), 12760–12766 (2020). https://doi.org/10.1021/jacs.0c04981
- Y. Zhao, X. Liu, D. Chen, Z. Liu, Q. Yang et al., Atomic-level-designed copper atoms on hierarchically porous gold architectures for high-efficiency electrochemical CO2 reduction. Sci. China Mater. 64, 1900–1909 (2021). https://doi.org/10.1007/s40843-020-1583-4
- X. Zhang, S. Feng, C. Zhan, D. Wu, Y. Zhao et al., Electroreduction reaction mechanism of carbon dioxide to C2 products via Cu/Au bimetallic catalysis: a theoretical prediction. J. Phys. Chem. Lett. 11(16), 6593–6599 (2020). https://doi.org/10.1021/acs.jpclett.0c01970
- T. Zhang, Y. Qiu, P. Yao, X. Li, H. Zhang, Bi-modified Zn catalyst for efficient CO2 electrochemical reduction to formate. ACS Sustain. Chem. Eng. 7(18), 15190–15196 (2019). https://doi.org/10.1021/acssuschemeng.9b01985
- W. Luc, C. Collins, S. Wang, H. Xin, K. He et al., Ag–Sn bimetallic catalyst with a core–shell structure for CO2 reduction. J. Am. Chem. Soc. 139(5), 1885–1893 (2017). https://doi.org/10.1021/jacs.6b10435
- W. Zhang, Q. Qin, L. Dai, R. Qin, X. Zhao et al., Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd–O–Sn interfaces. Angew. Chem. Int. Ed. 57(30), 9475–9479 (2018). https://doi.org/10.1002/anie.201804142
- W. Tan, B. Cao, W. Xiao, M. Zhang, S. Wang et al., Electrochemical reduction of CO2 on hollow cubic Cu2O@Au nanocomposites. Nanoscale Res. Lett. 14, 63 (2019). https://doi.org/10.1186/s11671-019-2892-3
- D. Gao, Y. Zhang, Z. Zhou, F. Cai, X. Zhao et al., Enhancing CO2 electroreduction with the metal–oxide interface. J. Am. Chem. Soc. 139(16), 5652–5655 (2017). https://doi.org/10.1021/jacs.7b00102
- X. Huang, J. Song, H. Wu, C. Xie, M. Hua et al., Ordered-mesoporous-carbon-confined Pb/PbO composites: superior electrocatalysts for CO2 reduction. ChemSusChem 13(23), 6346–6352 (2020). https://doi.org/10.1002/cssc.202000329
- F. Lyu, M. Cao, A. Mahsud, Q. Zhang, Interfacial engineering of noble metals for electrocatalytic methanol and ethanol oxidation. J. Mater. Chem. A 8, 15445–15457 (2020). https://doi.org/10.1039/D0TA03199B
- K. Ye, Z. Zhou, J. Shao, L. Lin, D. Gao et al., In situ reconstruction of a hierarchical Sn–Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem. Int. Ed. 59(12), 4814–4821 (2020). https://doi.org/10.1002/anie.201916538
- Z. Han, C. Choi, H. Tao, Q. Fan, Y. Gao et al., Tuning the Pd-catalyzed electroreduction of CO2 to CO with reduced overpotential. Catal. Sci. Technol. 8(15), 3894–3900 (2018). https://doi.org/10.1039/C8CY01037D
- S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo et al., Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016). https://doi.org/10.1038/nature16455
- X. Zong, J. Zhang, J. Zhang, W. Luo, A. Züttel et al., Synergistic Cu/CeO2 carbon nanofiber catalysts for efficient CO2 electroreduction. Electrochem. Commun. 114, 106716 (2020). https://doi.org/10.1016/j.elecom.2020.106716
- S.B. Varandili, J. Huang, E. Oveisi, G.L. De Gregorio, M. Mensi et al., Synthesis of Cu/CeO2−x nanocrystalline heterodimers with interfacial active sites to promote CO2 electroreduction. ACS Catal. 9(6), 5035–5046 (2019). https://doi.org/10.1021/acscatal.9b00010
- J. Albo, A. Sáez, J. Solla-Gullón, V. Montiel, A. Irabien, Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution. Appl. Catal. B-Environ. 176–177, 709–717 (2015). https://doi.org/10.1016/j.apcatb.2015.04.055
- Q. Zhao, C. Zhang, R. Hu, Z. Du, J. Gu et al., Selective etching quaternary max phase toward single atom copper immobilized mxene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano 15(3), 4927–4936 (2021). https://doi.org/10.1021/acsnano.0c09755
- M. Casavola, R. Buonsanti, G. Caputo, P.D. Cozzoli, Colloidal strategies for preparing oxide-based hybrid nanocrystals. Eur. J. Inorg. Chem. 2008(4), 837–854 (2008). https://doi.org/10.1002/ejic.200701047
- A. Bhowmik, H.A. Hansen, T. Vegge, Electrochemical reduction of CO2 on IrxRu(1–x)O2(110) surfaces. ACS Catal. 7(12), 8502–8513 (2017). https://doi.org/10.1021/acscatal.7b02914
- A. Bhowmik, T. Vegge, H.A. Hansen, Descriptors and thermodynamic limitations of electrocatalytic carbon dioxide reduction on rutile oxide surfaces. ChemSusChem 9(22), 3230–3243 (2016). https://doi.org/10.1002/cssc.201600845
- X. Hong, K. Chan, C. Tsai, J.K. Nørskov, How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction. ACS Catal. 6(7), 4428–4437 (2016). https://doi.org/10.1021/acscatal.6b00619
- A. Bhowmik, H.A. Hansen, T. Vegge, Role of CO* as a spectator in CO2 electroreduction on RuO2. J. Phys. Chem. C 121(34), 18333–18343 (2017). https://doi.org/10.1021/acs.jpcc.7b04242
- Z.W. Ulissi, A.J. Medford, T. Bligaard, J.K. Norskov, To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat. Commun. 8, 14621 (2017). https://doi.org/10.1038/ncomms14621
- Y. Li, Q. Sun, Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv. Energy Mater. 6(17), 1600463 (2016). https://doi.org/10.1002/aenm.201600463
- C.W. Lee, S.J. Shin, H. Jung, D.L.T. Nguyen, S.Y. Lee et al., Metal–oxide interfaces for selective electrochemical C–C coupling reactions. ACS Energy Lett. 4(9), 2241–2248 (2019). https://doi.org/10.1021/acsenergylett.9b01721
- J. Fu, D. Ren, M. Xiao, K. Wang, Y. Deng et al., Manipulating Au–CeO2 interfacial structure toward ultrahigh mass activity and selectivity for CO2 reduction. ChemSusChem 13(24), 6621–6628 (2020). https://doi.org/10.1002/cssc.202002133
- S.D. Senanayake, D. Stacchiola, J. Evans, M. Estrella, L. Barrio et al., Probing the reaction intermediates for the water–gas shift over inverse CeOx/Au(111) catalysts. J. Catal. 271(2), 392–400 (2010). https://doi.org/10.1016/j.jcat.2010.02.024
- M.A. Henderson, C.L. Perkins, M.H. Engelhard, S. Thevuthasan, C.H.F. Peden, Redox properties of water on the oxidized and reduced surfaces of CeO2(111). Surf. Sci. 526(1–2), 1–18 (2003). https://doi.org/10.1016/S0039-6028(02)02657-2
- Z. Cai, Y. Wu, Z. Wu, L. Yin, Z. Weng et al., Unlocking bifunctional electrocatalytic activity for CO2 reduction reaction by win–win metal–oxide cooperation. ACS Energy Lett. 3(11), 2816–2822 (2018). https://doi.org/10.1021/acsenergylett.8b01767
- D. Gao, H. Zhou, F. Cai, D. Wang, Y. Hu et al., Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 10, 2181–2191 (2017). https://doi.org/10.1007/s12274-017-1514-6
- X. Min, M.W. Kanan, Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. J. Am. Chem. Soc. 137(14), 4701–4708 (2015). https://doi.org/10.1021/ja511890h
- Y. Wu, X. Yuan, Z. Tao, H. Wang, Bifunctional electrocatalysis for CO2 reduction via surface capping-dependent metal–oxide interactions. Chem. Commun. 55(60), 8864–8867 (2019). https://doi.org/10.1039/C9CC02934F
- Z. Tao, Z. Wu, X. Yuan, Y. Wu, H. Wang, Copper–gold interactions enhancing formate production from electrochemical CO2 reduction. ACS Catal. 9(12), 10894–10898 (2019). https://doi.org/10.1021/acscatal.9b03158
- X. Yuan, Y. Wu, B. Jiang, Z. Wu, Z. Tao et al., Interface engineering of silver-based heterostructures for CO2 reduction reaction. ACS Appl. Mater. Interfaces 12(50), 56642–56649 (2020). https://doi.org/10.1021/acsami.0c19031
- N. Liu, Y. Zhao, S. Zhou, J. Zhao, CO2 reduction on p-block metal oxide overlayers on metal substrates-2D MgO as a prototype. J. Mater. Chem. A 8(11), 5688–5698 (2020). https://doi.org/10.1039/C9TA13864A
- L. Zhai, C. Cui, Y. Zhao, X. Zhu, J. Han et al., Titania-modified silver electrocatalyst for selective CO2 reduction to CH3OH and CH4 from DFT study. J. Phys. Chem. C 121(30), 16275–16282 (2017). https://doi.org/10.1021/acs.jpcc.7b03314
- W. Zheng, S. Nayak, W. Yuan, Z. Zeng, X. Hong et al., A tunable metal–polyaniline interface for efficient carbon dioxide electro-reduction to formic acid and methanol in aqueous solution. Chem. Commun. 52(96), 13901–13904 (2016). https://doi.org/10.1039/C6CC07212G
- H. Wang, Y.K. Tzeng, Y. Ji, Y. Li, J. Li et al., Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 15, 131–137 (2020). https://doi.org/10.1038/s41565-019-0603-y
- G. Hu, Z. Wu, S. Dai, D. Jiang, Interface engineering of earth-abundant transition metals using boron nitride for selective electroreduction of CO2. ACS Appl. Mater. Interfaces. 10(7), 6694–6700 (2018). https://doi.org/10.1021/acsami.7b17600
- H. Shang, T. Wang, J. Pei, Z. Jiang, D. Zhou et al., Design of a single-atom Indiumδ+–N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem. Int. Ed. 59(50), 22465–22469 (2020). https://doi.org/10.1002/anie.202010903
- C. Genovese, M.E. Schuster, E.K. Gibson, D. Gianolio, V. Posligua et al., Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon. Nat. Commun. 9, 935 (2018). https://doi.org/10.1038/s41467-018-03138-7
- S. Lee, D. Kim, J. Lee, Electrocatalytic production of C3–C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O–Cu catalyst. Angew. Chem. Int. Ed. 54(49), 14701–14705 (2015). https://doi.org/10.1002/anie.201505730
- C. Chen, J. Wan, B. Yeo, Electrochemical reduction of carbon dioxide to ethane using nanostructured Cu2O-derived copper catalyst and palladium(II) chloride. J. Phys. Chem. C 119(48), 26875–268582 (2015). https://doi.org/10.1021/acs.jpcc.5b09144
- H. Mistry, A.S. Varela, C.S. Bonifacio, I. Zegkinoglou, I. Sinev et al., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016). https://doi.org/10.1038/ncomms12123
- A.D. Handoko, C.W. Ong, Y. Huang, Z.G. Lee, L. Lin et al., Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts. J. Phys. Chem. C 120(36), 20058–20067 (2016). https://doi.org/10.1021/acs.jpcc.6b07128
- A. Dutta, M. Rahaman, N.C. Luedi, M. Mohos, P. Broekmann, Morphology matters: tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal. 6(6), 3804–3814 (2016). https://doi.org/10.1021/acscatal.6b00770
- D. Gao, I. Zegkinoglou, N.J. Divins, F. Scholten, I. Sinev et al., Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 11(5), 4825–4831 (2017). https://doi.org/10.1021/acsnano.7b01257
- D. Ren, Y. Deng, A.D. Handoko, C. Chen, S. Malkhandi et al., Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5(5), 2814–2821 (2015). https://doi.org/10.1021/cs502128q
- A. Loiudice, P. Lobaccaro, E.A. Kamali, T. Thao, B.H. Huang et al., Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55(19), 5789–5792 (2016). https://doi.org/10.1002/anie.201601582
- Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A-Chem. 199(1–2), 39–47 (2003)
- D. Kim, C.S. Kley, Y. Li, P. Yang, Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl. Acad. Sci. USA 114(40), 10560–10565 (2017). https://doi.org/10.1073/pnas.1711493114
- C.W. Li, J. Ciston, M.W. Kanan, Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014). https://doi.org/10.1038/nature13249
- C.S. Diercks, S. Lin, N. Kornienko, E.A. Kapustin, E.M. Nichols et al., Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 140(3), 1116–1122 (2018). https://doi.org/10.1021/jacs.7b11940
- A.J. Garza, A.T. Bell, M. Head-Gordon, Is subsurface oxygen necessary for the electrochemical reduction of CO2 on copper? J. Phys. Chem. Lett. 9(3), 601–606 (2018). https://doi.org/10.1021/acs.jpclett.7b03180
- F. Cavalca, R. Ferragut, S. Aghion, A. Eilert, O. Diaz-Morales et al., Nature and distribution of stable subsurface oxygen in copper electrodes during electrochemical CO2 reduction. J. Phys. Chem. C 121(45), 25003–25009 (2017). https://doi.org/10.1021/acs.jpcc.7b08278
- L. Ma, W. Hu, Q. Pan, L. Zou, Z. Zou et al., Polyvinyl alcohol-modified gold nanoparticles with record-high activity for electrochemical reduction of CO2 to CO. J. CO2 Util. 34, 108–114 (2019). https://doi.org/10.1016/j.jcou.2019.06.002
- H. Yang, S. Hung, S. Liu, K. Yuan, S. Miao et al., Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
- J. Yang, W. Li, D. Wang, Y. Li, Electronic metal–support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 32(49), 2003300 (2020). https://doi.org/10.1002/adma.202003300
- H. Shang, W. Sun, R. Sui, J. Pei, L. Zheng et al., Engineering isolated Mn–N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 20(7), 5443–5450 (2020). https://doi.org/10.1021/acs.nanolett.0c01925
- F. Yang, P. Song, X. Liu, B. Mei, W. Xing et al., Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem. Int. Ed. 57(38), 12303–12307 (2018). https://doi.org/10.1002/anie.201805871
- S. Ji, Y. Qu, T. Wang, Y. Chen, G. Wang et al., Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 59(26), 10651–10657 (2020). https://doi.org/10.1002/anie.202003623
- W. Ju, A. Bagger, G. Hao, A.S. Varela, I. Sinev et al., Understanding activity and selectivity of metal–nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017). https://doi.org/10.1038/s41467-017-01035-z
- X. Cui, F. Shi, Selective conversion of CO2 by single-site catalysts. Acta Phys-Chim. Sin. 37(5), 2006080 (2020). https://doi.org/10.3866/PKU.WHXB202006080
- D. Wu, X. Wang, L. Shi, K. Jiang, M. Wang et al., Iron clusters boosted performance in electrocatalytic carbon dioxide conversion. J. Mater. Chem. A 8(41), 21661–21667 (2020). https://doi.org/10.1039/D0TA07867K
- G. Chen, C. Xu, X. Huang, J. Ye, L. Gu et al., Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 15, 564–569 (2016). https://doi.org/10.1038/nmat4555
- L. Zhang, F. Mao, L. Zheng, H. Wang, X. Yang et al., Tuning metal catalyst with metal–C3N4 interaction for efficient CO2 electroreduction. ACS Catal. 8(12), 11035–11041 (2018). https://doi.org/10.1021/acscatal.8b03789
- J. Tian, R. Wang, M. Shen, X. Ma, H. Yao et al., Bi–Sn oxides for highly selective CO2 electroreduction to formate in a wide potential window. ChemSusChem (2021). https://doi.org/10.1002/cssc.202100543
- J. Wu, Y. Xie, S. Du, Z. Ren, P. Yu et al., Heterophase engineering of SnO2/Sn3O4 drives enhanced carbon dioxide electrocatalytic reduction to formic acid. Sci. China Mater. 63, 2314–2324 (2020). https://doi.org/10.1007/s40843-020-1361-3
- Y.W. Choi, F. Scholten, I. Sinev, B. Roldan Cuenya, Enhanced stability and CO/formate selectivity of plasma-treated SnOx/AgOx catalysts during CO2 electroreduction. J. Am. Chem. Soc. 141(13), 5261–5266 (2019). https://doi.org/10.1021/jacs.8b12766
- A. Dutta, A. Kuzume, M. Rahaman, S. Vesztergom, P. Broekmann, Monitoring the chemical state of catalysts for CO2 electroreduction: an in operando study. ACS Catal. 5(12), 7498–7502 (2015). https://doi.org/10.1021/acscatal.5b02322
- S. Chu, X. Yan, C. Choi, S. Hong, A.W. Robertson et al., Stabilization of Cu+ by tuning a CuO–CeO2 interface for selective electrochemical CO2 reduction to ethylene. Green Chem. 22(19), 6540–6546 (2020). https://doi.org/10.1039/D0GC02279A
- H. Xiao, W.A. Goddard, T. Cheng, Y. Liu, Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl. Acad. Sci. USA 114(26), 6685–6688 (2017). https://doi.org/10.1073/pnas.1702405114
- M. Favaro, H. Xiao, T. Cheng, W.A. Goddard, J. Yano et al., Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl. Acad. Sci. USA 114(26), 6706–6711 (2017). https://doi.org/10.1073/pnas.1701405114
- X. Yan, C. Chen, Y. Wu, S. Liu, Y. Chen et al., Efficient electroreduction of CO2 to C2+ products on CeO2 modified CuO. Chem. Sci. 12(19), 6638–6645 (2021). https://doi.org/10.1039/D1SC01117K
- Y.J. Sa, C.W. Lee, S.Y. Lee, J. Na, U. Lee et al., Catalyst–electrolyte interface chemistry for electrochemical CO2 reduction. Chem. Soc. Rev. 49(18), 6632–6665 (2020). https://doi.org/10.1039/D0CS00030B
- F. Li, A. Thevenon, A. Rosas-Hernandez, Z. Wang, Y. Li et al., Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020). https://doi.org/10.1038/s41586-019-1782-2
- F. Li, Y.C. Li, Z. Wang, J. Li, D.H. Nam et al., Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2019). https://doi.org/10.1038/s41929-019-0383-7
- J.R. Pankhurst, P. Iyengar, A. Loiudice, M. Mensi, R. Buonsanti, Metal–ligand bond strength determines the fate of organic ligands on the catalyst surface during the electrochemical CO2 reduction reaction. Chem. Sci. 11(34), 9296–9302 (2020). https://doi.org/10.1039/D0SC03061A
- Z. Cao, D. Kim, D. Hong, Y. Yu, J. Xu et al., A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J. Am. Chem. Soc. 138(26), 8120–8125 (2016). https://doi.org/10.1021/jacs.6b02878
- S. Li, A.V. Nagarajan, Y. Li, D.R. Kauffman, G. Mpourmpakis et al., The role of ligands in atomically precise nanocluster-catalyzed CO2 electrochemical reduction. Nanoscale 13(4), 2333–2337 (2021). https://doi.org/10.1039/D0NR07832H
- Y. Fang, J.C. Flake, Electrochemical reduction of CO2 at functionalized Au electrodes. J. Am. Chem. Soc. 139(9), 3399–3405 (2017). https://doi.org/10.1021/jacs.6b11023
- X. Cai, H. Liu, X. Wei, Z. Yin, J. Chu et al., Molecularly defined interface created by porous polymeric networks on gold surface for concerted and selective CO2 reduction. ACS Sustain. Chem. Eng. 6(12), 17277–17283 (2018). https://doi.org/10.1021/acssuschemeng.8b04691
- Y. Zhou, L. Zheng, D. Yang, H. Yang, Q. Lu et al., Enhancing CO2 electrocatalysis on 2D porphyrin-based metal–organic framework nanosheets coupled with visible-light. Small Methods 5(2), 2000991 (2021). https://doi.org/10.1002/smtd.202000991
- A. Wagner, K.H. Ly, N. Heidary, I. Szabo, T. Foldes et al., Host-guest chemistry meets electrocatalysis: Cucurbit[6]uril on a Au surface as a hybrid system in CO2 reduction. ACS Catal. 10(1), 751–761 (2020). https://doi.org/10.1021/acscatal.9b04221
- Y.T. Guntern, J.R. Pankhurst, J. Vavra, M. Mensi, V. Mantella et al., Nanocrystal/metal–organic framework hybrids as electrocatalytic platforms for CO2 conversion. Angew. Chem. Int. Ed. 58(36), 12632–12639 (2019). https://doi.org/10.1002/anie.201905172
- D.H. Nam, P.D. Luna, A. Rosas-Hernandez, A. Thevenon, F. Li et al., Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 19, 266–276 (2020). https://doi.org/10.1038/s41563-020-0610-2
- M. Ma, B.J. Trzesniewski, J. Xie, W.A. Smith, Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew. Chem. Int. Ed. 55(33), 9748–9752 (2016). https://doi.org/10.1002/anie.201604654
- M.R. Singh, E.L. Clark, A.T. Bell, Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Phys. Chem. Chem. Phys. 17(29), 18924–18936 (2015). https://doi.org/10.1039/C5CP03283K
- R.M. Aran-Ais, D. Gao, B. Roldan Cuenya, Structure- and electrolyte-sensitivity in CO2 electroreduction. Acc. Chem. Res. 51(11), 2906–2917 (2018). https://doi.org/10.1021/acs.accounts.8b00360
- D. Gao, R.M. Arán-Ais, H.S. Jeon, B. Roldan Cuenya, Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019). https://doi.org/10.1038/s41929-019-0235-5
- Y. Hori, A. Murata, R. Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 1 85(8), 2309–2326 (1989). https://doi.org/10.1039/F19898502309
- S. Zhu, B. Jiang, W. Cai, M. Shao, Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139(44), 15664–15667 (2017). https://doi.org/10.1021/jacs.7b10462
- A. Wuttig, Y. Yoon, J. Ryu, Y. Surendranath, Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction. J. Am. Chem. Soc. 139(47), 17109–17113 (2017). https://doi.org/10.1021/jacs.7b08345
- A. Murata, Y. Hori, Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn. 64, 123–127 (1991). https://doi.org/10.1246/bcsj.64.123
- M.R. Thorson, K.I. Siil, P.J.A. Kenis, Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 160, F69 (2012). https://doi.org/10.1149/2.052301jes
- D. Gao, I.T. McCrum, S. Deo, Y.W. Choi, F. Scholten et al., Activity and selectivity control in CO2 electroreduction to multicarbon products over CuOx catalysts via electrolyte design. ACS Catal. 8(11), 10012–10020 (2018). https://doi.org/10.1021/acscatal.8b02587
- A. Schizodimou, G. Kyriacou, Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochim. Acta 78, 171–176 (2012). https://doi.org/10.1016/j.electacta.2012.05.118
- M. Dunwell, Q. Lu, J.M. Heyes, J. Rosen, J.G. Chen et al., The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 139(10), 3774–3783 (2017). https://doi.org/10.1021/jacs.6b13287
- M.R. Singh, Y. Kwon, Y. Lum, J.W. Ager, A.T. Bell, Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138(39), 13006–13012 (2016). https://doi.org/10.1021/jacs.6b07612
- O. Ayemoba, A. Cuesta, Spectroscopic evidence of size-dependent buffering of interfacial pH by cation hydrolysis during CO2 electroreduction. ACS Appl. Mater. Interfaces 9(33), 27377–27382 (2017). https://doi.org/10.1021/acsami.7b07351
- S. Ringe, E.L. Clark, J. Resasco, A. Walton, B. Seger et al., Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12(10), 3001–3014 (2019). https://doi.org/10.1039/C9EE01341E
- Y. Hori, H. Konishi, T. Futamura, A. Murata, O. Koga et al., “Deactivation of copper electrode” in electrochemical reduction of CO2. Electrochim. Acta 50(27), 5354–5369 (2005). https://doi.org/10.1016/j.electacta.2005.03.015
- A. Wuttig, Y. Surendranath, Impurity ion complexation enhances carbon dioxide reduction catalysis. ACS Catal. 5(7), 4479–4484 (2015). https://doi.org/10.1021/acscatal.5b00808
- D.H. Won, H. Shin, M.W. Chung, H. Jung, K.H. Chae et al., Achieving tolerant CO2 electro-reduction catalyst in real water matrix. Appl. Catal. B-Environ. 258, 117961 (2019). https://doi.org/10.1016/j.apcatb.2019.117961
- J. Resasco, Y. Lum, E. Clark, J.Z. Zeledon, A.T. Bell, Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem 5(7), 1064–1072 (2018). https://doi.org/10.1002/celc.201701316
- A.S. Varela, W. Ju, T. Reier, P. Strasser, Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal. 6(4), 2136–2144 (2016). https://doi.org/10.1021/acscatal.5b02550
- D. Gao, F. Scholten, B. Roldan Cuenya, Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: Halide effect. ACS Catal. 7(8), 5112–5120 (2017). https://doi.org/10.1021/acscatal.7b01416
- Y. Huang, C.W. Ong, B.S. Yeo, Effects of electrolyte anions on the reduction of carbon dioxide to ethylene and ethanol on copper (100) and (111) surfaces. ChemSusChem 11(18), 3299–3306 (2018). https://doi.org/10.1002/cssc.201801078
- D. Gao, I. Sinev, F. Scholten, R.M. Aran-Ais, N.J. Divins et al., Selective CO2 electroreduction to ethylene and multicarbon alcohols via electrolyte-driven nanostructuring. Angew. Chem. Int. Ed. 58(47), 17047–17053 (2019). https://doi.org/10.1002/anie.201910155
- F.S. Roberts, K.P. Kuhl, A. Nilsson, High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 54(17), 5179–5182 (2015). https://doi.org/10.1002/anie.201412214
- Y.C. Hsieh, S.D. Senanayake, Y. Zhang, W. Xu, D.E. Polyansky, Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction. ACS Catal. 5(9), 5349–5356 (2015). https://doi.org/10.1021/acscatal.5b01235
- D.L.T. Nguyen, M.S. Jee, D.H. Won, H.S. Oh, B.K. Min et al., Effect of halides on nanoporous Zn-based catalysts for highly efficient electroreduction of CO2 to CO. Catal. Commun. 114, 109–113 (2018). https://doi.org/10.1016/j.catcom.2018.06.020
- Y.C. Hsieh, L.E. Betancourt, S.D. Senanayake, E. Hu, Y. Zhang et al., Modification of CO2 reduction activity of nanostructured silver electrocatalysts by surface halide anions. ACS Appl. Energy Mater. 2(1), 102–109 (2019). https://doi.org/10.1021/acsaem.8b01692
- Y. Zhang, L. Liu, L. Shi, T. Yang, D. Niu et al., Enhancing CO2 electroreduction on nanoporous silver electrode in the presence of halides. Electrochim. Acta 313, 561–569 (2019). https://doi.org/10.1016/j.electacta.2019.04.175
- H. Fu, L. Zhang, L. Zheng, P. Liu, H. Zhao et al., Enhanced CO2 electroreduction performance over Cl-modified metal catalysts. J. Mater. Chem. A 7(20), 12420–12435 (2019). https://doi.org/10.1039/C9TA02223F
- M. Zhao, H. Tang, Q. Yang, Y. Gu, H. Zhu et al., Inhibiting hydrogen evolution using a chloride adlayer for efficient electrochemical CO2 reduction on Zn electrodes. ACS Appl. Mater. Interfaces 12(4), 4565–4571 (2020). https://doi.org/10.1021/acsami.9b22811
- M. Cho, J.T. Song, S. Back, Y. Jung, J. Oh, The role of adsorbed CN and Cl on an Au electrode for electrochemical CO2 reduction. ACS Catal. 8(2), 1178–1185 (2018). https://doi.org/10.1021/acscatal.7b03449
- N. Ikemiya, K. Natsui, K. Nakata, Y. Einaga, Effect of alkali-metal cations on the electrochemical reduction of carbon dioxide to formic acid using boron-doped diamond electrodes. RSC Adv. 7(36), 22510–22514 (2017). https://doi.org/10.1039/C7RA03370B
- M. Tomisaki, S. Kasahara, K. Natsui, N. Ikemiya, Y. Einaga, Switchable product selectivity in the electrochemical reduction of carbon dioxide using boron-doped diamond electrodes. J. Am. Chem. Soc. 141(18), 7414–7420 (2019). https://doi.org/10.1021/jacs.9b01773
- M. Tomisaki, K. Natsui, N. Ikemiya, K. Nakata, Y. Einaga, Influence of electrolyte on the electrochemical reduction of carbon dioxide using boron-doped diamond electrodes. ChemistrySelect 3(36), 10209–10213 (2018). https://doi.org/10.1002/slct.201801546
- P. Lobaccaro, M.R. Singh, E.L. Clark, Y. Kwon, A.T. Bell et al., Effects of temperature and gas–liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO2 reduction electrocatalysts. Phys. Chem. Chem. Phys. 18(38), 26777–26785 (2016). https://doi.org/10.1039/C6CP05287H
- J. Li, G. Chen, Y. Zhu, Z. Liang, A. Pei et al., Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 1, 592–600 (2018). https://doi.org/10.1038/s41929-018-0108-3
- D. Wakerley, S. Lamaison, F. Ozanam, N. Menguy, D. Mercie et al., Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 18, 1222–1227 (2019). https://doi.org/10.1038/s41563-019-0445-x
- F. Lei, W. Liu, Y. Sun, J. Xu, K. Liu et al., Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 7, 12697 (2016). https://doi.org/10.1038/ncomms12697
- N. Gupta, M. Gattrell, B. MacDougall, Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 36, 161–172 (2006). https://doi.org/10.1007/s10800-005-9058-y
- J. Ryu, A. Wuttig, Y. Surendranath, Quantification of interfacial pH variation at molecular length scales using a concurrent non-faradaic reaction. Angew. Chem. Int. Ed. 57(30), 9300–9304 (2018). https://doi.org/10.1002/anie.201802756
- D. Raciti, M. Mao, C. Wang, Mass transport modelling for the electroreduction of CO2 on Cu nanowires. Nanotechnology 29, 044001 (2018). https://doi.org/10.1088/1361-6528/aa9bd7
- K. Yang, R. Kas, W.A. Smith, In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction. J. Am. Chem. Soc. 141(40), 15891–15900 (2019). https://doi.org/10.1021/jacs.9b07000
- A.S. Hall, Y. Yoon, A. Wuttig, Y. Surendranath, Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 137(47), 14834–14837 (2015). https://doi.org/10.1021/jacs.5b08259
- M.R. Singh, J.D. Goodpaster, A.Z. Weber, M. Head-Gordon, A.T. Bell, Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models. Proc. Natl. Acad. Sci. USA 114(42), E8812–E8821 (2017). https://doi.org/10.1073/pnas.1713164114
- W. Luo, J. Zhang, M. Li, A. Züttel, Boosting CO production in electrocatalytic CO2 reduction on highly porous Zn catalysts. ACS Catal. 9(5), 3783–3791 (2019). https://doi.org/10.1021/acscatal.8b05109
- D. Yang, G. Wang, X. Wang, Photo- and thermo-coupled electrocatalysis in carbon dioxide and methane conversion. Sci. China Mater. 62, 1369–1373 (2019). https://doi.org/10.1007/s40843-019-9455-3
- J. Resasco, L.D. Chen, E. Clark, C. Tsai, C. Hahn et al., Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139(32), 11277–11287 (2017). https://doi.org/10.1021/jacs.7b06765
- C. Yang, Y. Zhu, J. Liu, Y. Qin, H. Wang et al., Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy 77, 105126 (2020). https://doi.org/10.1016/j.nanoen.2020.105126
- Y. Zhu, X. Cui, H. Liu, Z. Guo, Y. Dang et al., Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3448-2
- D. Yang, S. Zuo, H. Yang, X. Wang, Single-unit-cell catalysis of CO2 electroreduction over sub-1 nm Cu9S5 nanowires. Adv. Energy Mater. 11(16), 2100272 (2021). https://doi.org/10.1002/aenm.202100272
- D. Yang, H. Yu, T. He, S. Zuo, X. Liu et al., Visible-light-switched electron transfer over single porphyrin–metal atom center for highly selective electroreduction of carbon dioxide. Nat. Commun. 10, 3844 (2019). https://doi.org/10.1038/s41467-019-11817-2
- D. Yang, S. Zuo, H. Yang, Y. Zhou, X. Wang, Freestanding millimeter-scale porphyrin-based monoatomic layers with 0.28 nm thickness for CO2 electrocatalysis. Angew. Chem. Int. Ed. 59(43), 18954–18957 (2020). https://doi.org/10.1002/anie.202006899
- M. Xie, B. Xia, Y. Li, Y. Yan, Y. Yang et al., Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9(5), 1687–1695 (2016). https://doi.org/10.1039/C5EE03694A
References
P. Intasian, K. Prakinee, A. Phintha, D. Trisrivirat, N. Weeranoppanant et al., Enzymes, in vivo biocatalysis, and metabolic engineering for enabling a circular economy and sustainability. Chem. Rev. (2021). https://doi.org/10.1021/acs.chemrev.1c00121
S.Z. Xu, E.A. Carter, Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chem. Rev. 119(11), 6631–6669 (2019). https://doi.org/10.1021/acs.chemrev.8b00481
L. Weiss, W. Ludwig, S. Heussner, M. Canals, J.F. Ghiglione et al., The missing ocean plastic sink: gone with the rivers. Science 373(6550), 107–111 (2021). https://doi.org/10.1126/science.abe0290
D.J. Beerling, E.P. Kantzas, M.R. Lomas, P. Wade, R.M. Eufrasio et al., Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 583, 242–248 (2020). https://doi.org/10.1038/s41586-020-2448-9
A. Chen, B.L. Lin, A simple framework for quantifying electrochemical CO2 fixation. Joule 2(4), 594–606 (2018). https://doi.org/10.1016/j.joule.2018.02.003
E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazábal, J. Pérez-Ramírez, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013). https://doi.org/10.1039/C3EE41272E
A. Vasileff, Y. Zheng, S. Qiao, Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv. Energy Mater. 7(21), 1700759 (2017). https://doi.org/10.1002/aenm.201700759
W. Bi, X. Li, R. You, M. Chen, R. Yuan et al., Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction. Adv. Mater. 30(18), 1706617 (2018). https://doi.org/10.1002/adma.201706617
W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang et al., Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 5(1), 1700275 (2018). https://doi.org/10.1002/advs.201700275
Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel et al., A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 5, 3242 (2014). https://doi.org/10.1038/ncomms4242
D. Zhu, J. Liu, S. Qiao, Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28(18), 3423–3452 (2016). https://doi.org/10.1002/adma.201504766
E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38(1), 89–99 (2009). https://doi.org/10.1039/B804323J
K. Khan, A.K. Tareen, M. Aslam, R.U.R. Sagar, B. Zhang et al., Recent progress, challenges, and prospects in two-dimensional photo-catalyst materials and environmental remediation. Nano-Micro Lett. 12, 167 (2020). https://doi.org/10.1007/s40820-020-00504-3
E. Dlugokencky, P. Tans, NOAA/ESRL, http://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed July 2021
J.G. Canadell, C. Le Quere, M.R. Raupach, C.B. Field, E.T. Buitenhuis et al., Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 104(47), 18866–18870 (2007). https://doi.org/10.1073/pnas.0702737104
M. Mikkelsen, M. Jørgensen, F.C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3, 43–81 (2010). https://doi.org/10.1039/B912904A
M.R. Raupach, G. Marland, P. Ciais, C. Le Quéré, J.G. Canadell et al., Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA 104(24), 10288–10293 (2007). https://doi.org/10.1073/pnas.0700609104
S. Gao, Z. Sun, W. Liu, X. Jiao, X. Zu et al., Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat. Commun. 8, 14503 (2017). https://doi.org/10.1038/ncomms14503
I. Ganesh, Conversion of carbon dioxide into methanol—a potential liquid fuel: fundamental challenges and opportunities (a review). Renew. Sustain. Energy Rev. 31, 221–257 (2014). https://doi.org/10.1016/j.rser.2013.11.045
J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang et al., State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 49, 1385–1413 (2020). https://doi.org/10.1039/C9CS00614A
N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103(43), 15729–15735 (2006). https://doi.org/10.1073/pnas.0603395103
G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 148(3–4), 191–205 (2009). https://doi.org/10.1016/j.cattod.2009.07.075
G.A. Olah, A. Goeppert, G.S. Prakash, Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J. Org. Chem. 74(2), 487–498 (2009). https://doi.org/10.1021/jo801260f
Z. Chen, K. Mou, X. Wang, L. Liu, Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region. Angew. Chem. Int. Ed. 57(39), 12790–12794 (2018). https://doi.org/10.1002/anie.201807643
N. Wang, R.K. Miao, G. Lee, A. Vomiero, D. Sinton et al., Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat 2(1), 12–16 (2021). https://doi.org/10.1002/smm2.1018
T. Gao, A. Kumar, Z. Shang, X. Duan, H. Wang et al., Promoting electrochemical conversion of CO2 to formate with rich oxygen vacancies in nanoporous tin oxides. Chin. Chem. Lett. 30(12), 2274–2778 (2019). https://doi.org/10.1016/j.cclet.2019.07.028
M. Zhou, Y. Lin, H. Xia, X. Wei, Y. Yao et al., A molecular foaming and activation strategy to porous N-doped carbon foams for supercapacitors and CO2 capture. Nano-Micro Lett. 12, 58 (2020). https://doi.org/10.1007/s40820-020-0389-3
K. Mou, Z. Chen, X. Zhang, M. Jiao, X. Zhang et al., Highly efficient electroreduction of CO2 on nickel single-atom catalysts: atom trapping and nitrogen anchorin. Small 15(49), 1903668 (2019). https://doi.org/10.1002/smll.201903668
Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nat. Commun. 10, 1 (2019). https://doi.org/10.1038/s41467-018-07882-8
T. Zheng, K. Jiang, H. Wang, Recent advances in electrochemical CO2-to-Co conversion on heterogeneous catalysts. Adv. Mater. 30(48), 1802066 (2018). https://doi.org/10.1002/adma.201802066
L. Zhang, Z.J. Zhao, J. Gong, Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem. Int. Ed. 56(38), 11326–11353 (2017). https://doi.org/10.1002/anie.201612214
C. Costentin, M. Robert, J.M. Savéant, Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42(6), 2423–2436 (2013). https://doi.org/10.1039/C2CS35360A
J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43(2), 631–675 (2014). https://doi.org/10.1039/C3CS60323G
L. Zhang, Z. Zhao, T. Wang, J. Gong, Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide. Chem. Soc. Rev. 47(14), 5423–5443 (2018). https://doi.org/10.1039/C8CS00016F
J. Albo, M. Alvarez-Guerra, P. Castaño, A. Irabien, Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem. 17(4), 2304–2324 (2015). https://doi.org/10.1039/C4GC02453B
P. De Luna, C. Hahn, D. Higgins, S.A. Jaffer, T.F. Jaramillo et al., What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364(6438), eaav3506 (2019). https://doi.org/10.1126/science.aav3506
Z. Chen, K. Mou, S. Yao, L. Liu, Zinc-coordinated nitrogen-codoped graphene as an efficient catalyst for selective electrochemical reduction of CO2 to CO. ChemSusChem 11(17), 2944–2952 (2018). https://doi.org/10.1002/cssc.201800925
X. Chang, T. Wang, J. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9(7), 2177–2196 (2016). https://doi.org/10.1039/C6EE00383D
X. Chang, T. Wang, P. Zhang, Y. Wei, J. Zhao et al., Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angew. Chem. Int. Ed. 55(31), 8840–8845 (2016). https://doi.org/10.1002/anie.201602973
L. Liu, Y. Jiang, H. Zhao, J. Chen, J. Cheng et al., Engineering coexposed 001 and 101 facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. ACS Catal. 6(2), 1097–1108 (2016). https://doi.org/10.1021/acscatal.5b02098
A.J. Morris, G.J. Meyer, E. Fujita, Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc. Chem. Res. 42(12), 1983–1994 (2009). https://doi.org/10.1021/ar9001679
S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4(3), 1259–1278 (2010). https://doi.org/10.1021/nn9015423
M. Schreier, J. Luo, P. Gao, T. Moehl, M.T. Mayer et al., Covalent immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction. J. Am. Chem. Soc. 138(6), 1938–1946 (2016). https://doi.org/10.1021/jacs.5b12157
S. Wang, X. Wang, Imidazolium ionic liquids, imidazolylidene heterocyclic carbenes, and zeolitic imidazolate frameworks for CO2 capture and photochemical reduction. Angew. Chem. Int. Ed. 55(7), 2308–2320 (2016). https://doi.org/10.1002/anie.201507145
J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J. Am. Chem. Soc. 136(25), 8839–8842 (2014). https://doi.org/10.1021/ja5044787
X. Chen, X. Su, H. Su, X. Liu, S. Miao et al., Theoretical insights and the corresponding construction of supported metal catalysts for highly selective CO2 to CO conversion. ACS Catal. 7(7), 4613–4620 (2017). https://doi.org/10.1021/acscatal.7b00903
M. Mondal, S. Khanra, O. Tiwari, K. Gayen, G. Halder, Role of carbonic anhydrase on the way to biological carbon capture through microalgae—a mini review. Environ. Prog. Sustain. 35(6), 1605–1615 (2016). https://doi.org/10.1002/ep.12394
J. Shi, Y. Jiang, Z. Jiang, X. Wang, X. Wang et al., Enzymatic conversion of carbon dioxide. Chem. Soc. Rev. 44(17), 5981–6000 (2015). https://doi.org/10.1039/C5CS00182J
W. Bao, H. Li, Y. Zhang, Selective leaching of steelmaking slag for indirect CO2 mineral sequestration. Ind. Eng. Chem. Res. 49(5), 2055–2063 (2010). https://doi.org/10.1021/ie801850s
J. Highfield, H. Lim, J. Fagerlund, R. Zevenhoven, Activation of serpentine for CO2 mineralization by flux extraction of soluble magnesium salts using ammonium sulfate. RSC Adv. 2(16), 6535–6541 (2012). https://doi.org/10.1039/C2RA01347A
J.W. Ko, S.W. Kim, J. Hong, J. Ryu, K. Kang et al., Synthesis of graphene-wrapped CuO hybrid materials by CO2 mineralization. Green Chem. 14(9), 2391–2394 (2012). https://doi.org/10.1039/C2GC35560D
C. Liu, J.J. Gallagher, K.K. Sakimoto, E.M. Nichols, C.J. Chang et al., Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15(5), 3634–3639 (2015). https://doi.org/10.1021/acs.nanolett.5b01254
O. Martin, A.J. Martín, C. Mondelli, S. Mitchell, T.F. Segawa et al., Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew. Chem. Int. Ed. 55(21), 6261–6265 (2016). https://doi.org/10.1002/anie.201600943
F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C.F. Elkjær, J.S. Hummelshøj et al., Discovery of a Ni–Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320–324 (2014). https://doi.org/10.1038/nchem.1873
Z. Gao, C. Wang, J. Li, Y. Zhu, Z. Zhang et al., Conductive metal–organic frameworks for electrocatalysis: achievements, challenges, and opportunities. Acta Phys-Chim. Sin. 37(7), 2010025 (2020). https://doi.org/10.3866/PKU.WHXB202010025
K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang et al., Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11(4), 893–903 (2018). https://doi.org/10.1039/C7EE03245E
N. Han, Y. Wang, H. Yang, J. Deng, J. Wu et al., Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 9, 1320 (2018). https://doi.org/10.1038/s41467-018-03712-z
L. Fu, R. Wang, C. Zhao, J. Huo, C. He et al., Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: a DFT study. Chem. Eng. J. 414, 128857 (2021). https://doi.org/10.1016/j.cej.2021.128857
J. Li, Y. Chen, Z. Fan, Z. Zhang, Editorial: Emerging technologies for materials design and characterization in energy conversion and storage. Front. Energy Res. 9, 676876 (2021). https://doi.org/10.3389/fenrg.2021.676876
Z. Chen, K. Mou, S. Yao, L. Liu, Highly selective electrochemical reduction of CO2 to formate on metal-free nitrogen-doped PC61BM. J. Mater. Chem. A 6(24), 11236–11243 (2018). https://doi.org/10.1039/C8TA03328E
M. Gattrell, N. Gupta, A. Co, A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594(1), 1–19 (2006). https://doi.org/10.1016/j.jelechem.2006.05.013
K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5(5), 7050–7059 (2012). https://doi.org/10.1039/C2EE21234J
C.W. Li, M.W. Kanan, CO2 reduction at low overpotential on cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134(17), 7231–7234 (2012). https://doi.org/10.1021/ja3010978
A.A. Peterson, F. Abild-Pedersen, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3(9), 1311–1315 (2010). https://doi.org/10.1039/C0EE00071J
C. Yang, F. Nosheen, Z. Zhang, Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Met. 40, 1412–1430 (2020). https://doi.org/10.1007/s12598-020-01600-4
G. Centi, Smart catalytic materials for energy transition. SmartMat 1(1), e1005 (2020). https://doi.org/10.1002/smm2.1005
J.H. Montoya, L.C. Seitz, P. Chakthranont, A. Vojvodic, T.F. Jaramillo et al., Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2016). https://doi.org/10.1038/nmat4778
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
X. Zheng, P.D. Luna, F.P. García de Arquer, B. Zhang, N. Becknell et al., Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1(4), 794–805 (2017). https://doi.org/10.1016/j.joule.2017.09.014
Y. Matsubara, Standard electrode potentials for the reduction of CO2 to CO in acetonitrile-water mixtures determined using a generalized method for proton-coupled electron-transfer reactions. ACS Energy Lett. 2(8), 1886–1891 (2017). https://doi.org/10.1021/acsenergylett.7b00548
F. Li, S.F. Zhao, L. Chen, A. Khan, D.R. MacFarlane et al., Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide. Energy Environ. Sci. 9(1), 216–223 (2016). https://doi.org/10.1039/C5EE02879E
Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3(4), 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
C. Yang, S. Li, Z. Zhang, H. Wang, H. Liu et al., Organic–inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small 16(29), 2001847 (2020). https://doi.org/10.1002/smll.202001847
Y. Liu, S. Chen, X. Quan, H. Yu, Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137(36), 11631–11636 (2015). https://doi.org/10.1021/jacs.5b02975
S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119(12), 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
X. Li, Z. Kou, J. Wang, Manipulating interfaces of electrocatalysts down to atomic scales: fundamentals, strategies, and electrocatalytic applications. Small Methods 5(2), 2001010 (2020). https://doi.org/10.1002/smtd.202001010
Q. Shao, P. Wang, X. Huang, Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv. Funct. Mater. 29(8), 1806419 (2019). https://doi.org/10.1002/adfm.201806419
L. Wang, W. Chen, D. Zhang, Y. Du, R. Amal et al., Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 48(21), 5310–5349 (2019). https://doi.org/10.1039/C9CS00163H
Y. Wang, P. Han, X. Lv, L. Zhang, G. Zheng, Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2(12), 2551–2582 (2018). https://doi.org/10.1016/j.joule.2018.09.021
J. Zhong, X. Jin, L. Meng, X. Wang, H. Su et al., Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat. Nanotechnol. 12, 132–136 (2017). https://doi.org/10.1038/nnano.2016.241
L. Hou, J. Han, C. Wang, Y. Zhang, Y. Wang et al., Ag nanoparticle embedded Cu nanoporous hybrid arrays for the selective electrocatalytic reduction of CO2 towards ethylene. Inorg. Chem. Front. 7(10), 2097–2106 (2020). https://doi.org/10.1039/D0QI00025F
J. Wang, Z. Li, C. Dong, Y. Feng, J. Yang et al., Silver/copper interface for relay electroreduction of carbon dioxide to ethylene. ACS Appl. Mater. Interfaces 11(3), 2763–2767 (2019). https://doi.org/10.1021/acsami.8b20545
J. Huang, M. Mensi, E. Oveisi, V. Mantella, R. Buonsanti, Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag–Cu nanodimers. J. Am. Chem. Soc. 141(6), 2490–2499 (2019). https://doi.org/10.1021/jacs.8b12381
D. Zang, Q. Li, G. Dai, M. Zeng, Y. Huang et al., Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Appl. Catal. B-Environ. 281, 119426 (2021). https://doi.org/10.1016/j.apcatb.2020.119426
Q. Li, M. Li, S. Zhang, X. Liu, X. Zhu et al., Tuning Sn–Cu catalysis for electrochemical reduction of CO2 on partially reduced oxides SnOx–CuOx-modified Cu electrodes. Catalysts 9(5), 476 (2019). https://doi.org/10.3390/catal9050476
T. Zhuang, Z. Liang, A. Seifitokaldani, Y. Li, P.D. Luna et al., Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018). https://doi.org/10.1038/s41929-018-0084-7
P.D. Luna, R. Quintero-Bermudez, C.T. Dinh, M.B. Ross, O.S. Bushuyev et al., Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018). https://doi.org/10.1038/s41929-017-0018-9
K. Jiang, R.B. Sandberg, A.J. Akey, X. Liu, D.C. Bell et al., Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018). https://doi.org/10.1038/s41929-017-0009-x
Z. Weng, X. Zhang, Y. Wu, S. Huo, J. Jiang et al., Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons. Angew. Chem. Int. Ed. 56(42), 13135–13139 (2017). https://doi.org/10.1002/anie.201707478
X. Chang, T. Wang, Z. Zhao, P. Yang, J. Greeley et al., Tuning Cu/Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions. Angew. Chem. Int. Ed. 57(47), 15415–15419 (2018). https://doi.org/10.1002/anie.201805256
L. Ye, M. Zhang, P. Huang, G. Guo, M. Hong et al., Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat. Commun. 8, 14785 (2017). https://doi.org/10.1038/ncomms14785
M. Karamad, V. Tripkovic, J. Rossmeisl, Intermetallic alloys as CO electroreduction catalysts-role of isolated active sites. ACS Catal. 4(7), 2268–2273 (2014). https://doi.org/10.1021/cs500328c
Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang et al., Author Correction: Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 11, 1167 (2019). https://doi.org/10.1038/s41557-019-0381-z
J. Jiao, R. Lin, S. Liu, W.C. Cheong, C. Zhang et al., Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 11, 222–228 (2019). https://doi.org/10.1038/s41557-018-0201-x
J. Xie, J. Chen, Y. Huang, X. Zhang, W. Wang et al., Selective electrochemical CO2 reduction on Cu–Pd heterostructure. Appl. Catal. B-Environ. 270, 118864 (2020). https://doi.org/10.1016/j.apcatb.2020.118864
H. Yang, Y. Hu, J. Chen, M.S. Balogun, P. Fang et al., Intermediates adsorption engineering of CO2 electroreduction reaction in highly selective heterostructure Cu-based electrocatalysts for CO production. Adv. Energy Mater. 9(27), 1901396 (2019). https://doi.org/10.1002/aenm.201901396
Z. Pan, E. Han, J. Zheng, J. Lu, X. Wang et al., Highly efficient photoelectrocatalytic reduction of CO2 to methanol by a p–n heterojunction CeO2/CuO/Cu catalyst. Nano-Micro Lett. 12, 18 (2020). https://doi.org/10.1007/s40820-019-0354-1
S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida et al., Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013). https://doi.org/10.1038/nmat3795
D. Kim, J. Resasco, Y. Yu, A.M. Asiri, P. Yang, Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014). https://doi.org/10.1038/ncomms5948
C. Xia, Y. Zhou, C. He, A.I. Douka, W. Guo et al., Recent advances on electrospun nanomaterials for zinc-air batteries. Small Sci. 1, 2100010 (2021). https://doi.org/10.1002/smsc.202100010
S. Back, J.H. Kim, Y.T. Kim, Y. Jung, Bifunctional interface of Au and Cu for improved CO2 electroreduction. ACS Appl. Mater. Interfaces 8(35), 23022–23027 (2016). https://doi.org/10.1021/acsami.6b05903
W. Luo, W. Xie, R. Mutschler, E. Oveisi, G.L. De Gregorio et al., Selective and stable electroreduction of CO2 to CO at the copper/indium interface. ACS Catal. 8(7), 6571–6581 (2018). https://doi.org/10.1021/acscatal.7b04457
C. Choi, J. Cai, C. Lee, H.M. Lee, M. Xu et al., Intimate atomic Cu–Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3639-x
C.G. Morales-Guio, E.R. Cave, S.A. Nitopi, J.T. Feaster, L. Wang et al., Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018). https://doi.org/10.1038/s41929-018-0139-9
E.L. Clark, C. Hahn, T.F. Jaramillo, A.T. Bell, Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 139(44), 15848–15857 (2017). https://doi.org/10.1021/jacs.7b08607
T.T.H. Hoang, S. Verma, S. Ma, T.T. Fister, J. Timoshenko et al., Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140(17), 5791–5797 (2018). https://doi.org/10.1021/jacs.8b01868
Q. Xiao, S.E. Sherman, S.E. Wilner, X. Zhou, C. Dazen et al., Janus dendrimersomes coassembled from fluorinated, hydrogenated, and hybrid Janus dendrimers as models for cell fusion and fission. Proc. Natl. Acad. Sci. USA 114(34), E7045–E7053 (2017). https://doi.org/10.1073/pnas.1708380114
X. Bai, Q. Li, L. Shi, X. Niu, C. Ling et al., Hybrid Cu0 and Cux+ as atomic interfaces promote high-selectivity conversion of CO2 to C2H5OH at low potential. Small 16(12), 1901981 (2020). https://doi.org/10.1002/smll.201901981
R. Daiyan, W.H. Saputera, Q. Zhang, E. Lovell, S. Lim et al., 3D heterostructured copper electrode for conversion of carbon dioxide to alcohols at low overpotentials. Adv. Sustain. Syst. 3(1), 1800064 (2019). https://doi.org/10.1002/adsu.201800064
M. Li, X. Tian, S. Garg, T.E. Rufford, P. Zhao et al., Modulated Sn oxidation states over a Cu2O-derived substrate for selective electrochemical CO2 reduction. ACS Appl. Mater. Interfaces 12(20), 22760–22770 (2020). https://doi.org/10.1021/acsami.0c00412
L. Fan, Z. Xia, M. Xu, Y. Lu, Z. Li, 1D SnO2 with wire-in-tube architectures for highly selective electrochemical reduction of CO2 to C1 products. Adv. Funct. Mater. 28(17), 1706289 (2018). https://doi.org/10.1002/adfm.201706289
S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang et al., Advances in Sn-based catalysts for electrochemical CO2 reduction. Nano-Micro Lett. 11, 62 (2019). https://doi.org/10.1007/s40820-019-0293-x
W. Lee, Y.E. Kim, M.H. Youn, S.K. Jeong, K.T. Park, Catholyte-free electrocatalytic CO2 reduction to formate. Angew. Chem. Int. Ed. 57(23), 6883–6887 (2018). https://doi.org/10.1002/anie.201803501
J. Gu, F. Heroguel, J. Luterbacher, X. Hu, Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 57(11), 2943–2947 (2018). https://doi.org/10.1002/anie.201713003
J. Zeng, K. Bejtka, W. Ju, M. Castellino, A. Chiodoni et al., Advanced Cu–Sn foam for selectively converting CO2 to CO in aqueous solution. Appl. Catal. B-Environ. 236(15), 475–482 (2018). https://doi.org/10.1016/j.apcatb.2018.05.056
S. Sarfraz, A.T. Garcia-Esparza, A. Jedidi, L. Cavallo et al., Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal. 6(5), 2842–2851 (2016). https://doi.org/10.1021/acscatal.6b00269
Y. Zhao, C. Wang, G.G. Wallace, Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO. J. Mater. Chem. A 4(27), 10710–10718 (2016). https://doi.org/10.1039/C6TA04155H
J.T. Feaster, C. Shi, E.R. Cave, T. Hatsukade, D.N. Abram et al., Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7(7), 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687
Q. Li, J. Fu, W. Zhu, Z. Chen, B. Shen et al., Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J. Am. Chem. Soc. 139(12), 4290–4293 (2017). https://doi.org/10.1021/jacs.7b00261
X. An, S. Li, A. Yoshida, Z. Wang, X. Hao et al., Electrodeposition of Tin-based electrocatalysts with different surface tin species distributions for electrochemical reduction of CO2 to HCOOH. ACS Sustain. Chem. Eng. 7(10), 9360–9368 (2019). https://doi.org/10.1021/acssuschemeng.9b00515
J.H. Kim, H. Woo, J. Choi, H.W. Jung, Y.T. Kim, CO2 electroreduction on Au/TiC: enhanced activity due to metal–support interaction. ACS Catal. 7(3), 2101–2106 (2017). https://doi.org/10.1021/acscatal.6b03706
X. Shen, X. Liu, S. Wang, T. Chen, W. Zhang et al., Synergistic modulation at atomically dispersed Fe/Au interface for selective CO2 electroreduction. Nano Lett. 21(1), 686–692 (2021). https://doi.org/10.1021/acs.nanolett.0c04291
M. Liu, Y. Pang, B. Zhang, P.D. Luna, O. Voznyy et al., Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016). https://doi.org/10.1038/nature19060
Y. Zhao, C. Wang, Y. Liu, D.R. MacFarlane, G.G. Wallace, Engineering surface amine modifiers of ultrasmall gold nanoparticles supported on reduced graphene oxide for improved electrochemical CO2 reduction. Adv. Energy Mater. 8(25), 1801400 (2018). https://doi.org/10.1002/aenm.201801400
W. Zheng, F. Chen, Q. Zeng, Z. Li, B. Yang et al., A universal principle to accurately synthesize atomically dispersed metal-N4 sites for CO2 electroreduction. Nano-Micro Lett. 12, 108 (2020). https://doi.org/10.1007/s40820-020-00443-z
A.M. Ismail, G.F. Samu, H.C. Nguyen, E. Csapo, N. Lopez et al., Au/Pb interface allows the methane formation pathway in carbon dioxide electroreduction. ACS Catal. 10(10), 5681–5690 (2020). https://doi.org/10.1021/acscatal.0c00749
Y. Chen, Z. Fan, J. Wang, C. Ling, W. Niu et al., Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: a crystal phase-dependent study. J. Am. Chem. Soc. 142(59), 12760–12766 (2020). https://doi.org/10.1021/jacs.0c04981
Y. Zhao, X. Liu, D. Chen, Z. Liu, Q. Yang et al., Atomic-level-designed copper atoms on hierarchically porous gold architectures for high-efficiency electrochemical CO2 reduction. Sci. China Mater. 64, 1900–1909 (2021). https://doi.org/10.1007/s40843-020-1583-4
X. Zhang, S. Feng, C. Zhan, D. Wu, Y. Zhao et al., Electroreduction reaction mechanism of carbon dioxide to C2 products via Cu/Au bimetallic catalysis: a theoretical prediction. J. Phys. Chem. Lett. 11(16), 6593–6599 (2020). https://doi.org/10.1021/acs.jpclett.0c01970
T. Zhang, Y. Qiu, P. Yao, X. Li, H. Zhang, Bi-modified Zn catalyst for efficient CO2 electrochemical reduction to formate. ACS Sustain. Chem. Eng. 7(18), 15190–15196 (2019). https://doi.org/10.1021/acssuschemeng.9b01985
W. Luc, C. Collins, S. Wang, H. Xin, K. He et al., Ag–Sn bimetallic catalyst with a core–shell structure for CO2 reduction. J. Am. Chem. Soc. 139(5), 1885–1893 (2017). https://doi.org/10.1021/jacs.6b10435
W. Zhang, Q. Qin, L. Dai, R. Qin, X. Zhao et al., Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd–O–Sn interfaces. Angew. Chem. Int. Ed. 57(30), 9475–9479 (2018). https://doi.org/10.1002/anie.201804142
W. Tan, B. Cao, W. Xiao, M. Zhang, S. Wang et al., Electrochemical reduction of CO2 on hollow cubic Cu2O@Au nanocomposites. Nanoscale Res. Lett. 14, 63 (2019). https://doi.org/10.1186/s11671-019-2892-3
D. Gao, Y. Zhang, Z. Zhou, F. Cai, X. Zhao et al., Enhancing CO2 electroreduction with the metal–oxide interface. J. Am. Chem. Soc. 139(16), 5652–5655 (2017). https://doi.org/10.1021/jacs.7b00102
X. Huang, J. Song, H. Wu, C. Xie, M. Hua et al., Ordered-mesoporous-carbon-confined Pb/PbO composites: superior electrocatalysts for CO2 reduction. ChemSusChem 13(23), 6346–6352 (2020). https://doi.org/10.1002/cssc.202000329
F. Lyu, M. Cao, A. Mahsud, Q. Zhang, Interfacial engineering of noble metals for electrocatalytic methanol and ethanol oxidation. J. Mater. Chem. A 8, 15445–15457 (2020). https://doi.org/10.1039/D0TA03199B
K. Ye, Z. Zhou, J. Shao, L. Lin, D. Gao et al., In situ reconstruction of a hierarchical Sn–Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem. Int. Ed. 59(12), 4814–4821 (2020). https://doi.org/10.1002/anie.201916538
Z. Han, C. Choi, H. Tao, Q. Fan, Y. Gao et al., Tuning the Pd-catalyzed electroreduction of CO2 to CO with reduced overpotential. Catal. Sci. Technol. 8(15), 3894–3900 (2018). https://doi.org/10.1039/C8CY01037D
S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo et al., Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016). https://doi.org/10.1038/nature16455
X. Zong, J. Zhang, J. Zhang, W. Luo, A. Züttel et al., Synergistic Cu/CeO2 carbon nanofiber catalysts for efficient CO2 electroreduction. Electrochem. Commun. 114, 106716 (2020). https://doi.org/10.1016/j.elecom.2020.106716
S.B. Varandili, J. Huang, E. Oveisi, G.L. De Gregorio, M. Mensi et al., Synthesis of Cu/CeO2−x nanocrystalline heterodimers with interfacial active sites to promote CO2 electroreduction. ACS Catal. 9(6), 5035–5046 (2019). https://doi.org/10.1021/acscatal.9b00010
J. Albo, A. Sáez, J. Solla-Gullón, V. Montiel, A. Irabien, Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution. Appl. Catal. B-Environ. 176–177, 709–717 (2015). https://doi.org/10.1016/j.apcatb.2015.04.055
Q. Zhao, C. Zhang, R. Hu, Z. Du, J. Gu et al., Selective etching quaternary max phase toward single atom copper immobilized mxene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano 15(3), 4927–4936 (2021). https://doi.org/10.1021/acsnano.0c09755
M. Casavola, R. Buonsanti, G. Caputo, P.D. Cozzoli, Colloidal strategies for preparing oxide-based hybrid nanocrystals. Eur. J. Inorg. Chem. 2008(4), 837–854 (2008). https://doi.org/10.1002/ejic.200701047
A. Bhowmik, H.A. Hansen, T. Vegge, Electrochemical reduction of CO2 on IrxRu(1–x)O2(110) surfaces. ACS Catal. 7(12), 8502–8513 (2017). https://doi.org/10.1021/acscatal.7b02914
A. Bhowmik, T. Vegge, H.A. Hansen, Descriptors and thermodynamic limitations of electrocatalytic carbon dioxide reduction on rutile oxide surfaces. ChemSusChem 9(22), 3230–3243 (2016). https://doi.org/10.1002/cssc.201600845
X. Hong, K. Chan, C. Tsai, J.K. Nørskov, How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction. ACS Catal. 6(7), 4428–4437 (2016). https://doi.org/10.1021/acscatal.6b00619
A. Bhowmik, H.A. Hansen, T. Vegge, Role of CO* as a spectator in CO2 electroreduction on RuO2. J. Phys. Chem. C 121(34), 18333–18343 (2017). https://doi.org/10.1021/acs.jpcc.7b04242
Z.W. Ulissi, A.J. Medford, T. Bligaard, J.K. Norskov, To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat. Commun. 8, 14621 (2017). https://doi.org/10.1038/ncomms14621
Y. Li, Q. Sun, Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv. Energy Mater. 6(17), 1600463 (2016). https://doi.org/10.1002/aenm.201600463
C.W. Lee, S.J. Shin, H. Jung, D.L.T. Nguyen, S.Y. Lee et al., Metal–oxide interfaces for selective electrochemical C–C coupling reactions. ACS Energy Lett. 4(9), 2241–2248 (2019). https://doi.org/10.1021/acsenergylett.9b01721
J. Fu, D. Ren, M. Xiao, K. Wang, Y. Deng et al., Manipulating Au–CeO2 interfacial structure toward ultrahigh mass activity and selectivity for CO2 reduction. ChemSusChem 13(24), 6621–6628 (2020). https://doi.org/10.1002/cssc.202002133
S.D. Senanayake, D. Stacchiola, J. Evans, M. Estrella, L. Barrio et al., Probing the reaction intermediates for the water–gas shift over inverse CeOx/Au(111) catalysts. J. Catal. 271(2), 392–400 (2010). https://doi.org/10.1016/j.jcat.2010.02.024
M.A. Henderson, C.L. Perkins, M.H. Engelhard, S. Thevuthasan, C.H.F. Peden, Redox properties of water on the oxidized and reduced surfaces of CeO2(111). Surf. Sci. 526(1–2), 1–18 (2003). https://doi.org/10.1016/S0039-6028(02)02657-2
Z. Cai, Y. Wu, Z. Wu, L. Yin, Z. Weng et al., Unlocking bifunctional electrocatalytic activity for CO2 reduction reaction by win–win metal–oxide cooperation. ACS Energy Lett. 3(11), 2816–2822 (2018). https://doi.org/10.1021/acsenergylett.8b01767
D. Gao, H. Zhou, F. Cai, D. Wang, Y. Hu et al., Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 10, 2181–2191 (2017). https://doi.org/10.1007/s12274-017-1514-6
X. Min, M.W. Kanan, Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. J. Am. Chem. Soc. 137(14), 4701–4708 (2015). https://doi.org/10.1021/ja511890h
Y. Wu, X. Yuan, Z. Tao, H. Wang, Bifunctional electrocatalysis for CO2 reduction via surface capping-dependent metal–oxide interactions. Chem. Commun. 55(60), 8864–8867 (2019). https://doi.org/10.1039/C9CC02934F
Z. Tao, Z. Wu, X. Yuan, Y. Wu, H. Wang, Copper–gold interactions enhancing formate production from electrochemical CO2 reduction. ACS Catal. 9(12), 10894–10898 (2019). https://doi.org/10.1021/acscatal.9b03158
X. Yuan, Y. Wu, B. Jiang, Z. Wu, Z. Tao et al., Interface engineering of silver-based heterostructures for CO2 reduction reaction. ACS Appl. Mater. Interfaces 12(50), 56642–56649 (2020). https://doi.org/10.1021/acsami.0c19031
N. Liu, Y. Zhao, S. Zhou, J. Zhao, CO2 reduction on p-block metal oxide overlayers on metal substrates-2D MgO as a prototype. J. Mater. Chem. A 8(11), 5688–5698 (2020). https://doi.org/10.1039/C9TA13864A
L. Zhai, C. Cui, Y. Zhao, X. Zhu, J. Han et al., Titania-modified silver electrocatalyst for selective CO2 reduction to CH3OH and CH4 from DFT study. J. Phys. Chem. C 121(30), 16275–16282 (2017). https://doi.org/10.1021/acs.jpcc.7b03314
W. Zheng, S. Nayak, W. Yuan, Z. Zeng, X. Hong et al., A tunable metal–polyaniline interface for efficient carbon dioxide electro-reduction to formic acid and methanol in aqueous solution. Chem. Commun. 52(96), 13901–13904 (2016). https://doi.org/10.1039/C6CC07212G
H. Wang, Y.K. Tzeng, Y. Ji, Y. Li, J. Li et al., Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 15, 131–137 (2020). https://doi.org/10.1038/s41565-019-0603-y
G. Hu, Z. Wu, S. Dai, D. Jiang, Interface engineering of earth-abundant transition metals using boron nitride for selective electroreduction of CO2. ACS Appl. Mater. Interfaces. 10(7), 6694–6700 (2018). https://doi.org/10.1021/acsami.7b17600
H. Shang, T. Wang, J. Pei, Z. Jiang, D. Zhou et al., Design of a single-atom Indiumδ+–N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem. Int. Ed. 59(50), 22465–22469 (2020). https://doi.org/10.1002/anie.202010903
C. Genovese, M.E. Schuster, E.K. Gibson, D. Gianolio, V. Posligua et al., Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon. Nat. Commun. 9, 935 (2018). https://doi.org/10.1038/s41467-018-03138-7
S. Lee, D. Kim, J. Lee, Electrocatalytic production of C3–C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O–Cu catalyst. Angew. Chem. Int. Ed. 54(49), 14701–14705 (2015). https://doi.org/10.1002/anie.201505730
C. Chen, J. Wan, B. Yeo, Electrochemical reduction of carbon dioxide to ethane using nanostructured Cu2O-derived copper catalyst and palladium(II) chloride. J. Phys. Chem. C 119(48), 26875–268582 (2015). https://doi.org/10.1021/acs.jpcc.5b09144
H. Mistry, A.S. Varela, C.S. Bonifacio, I. Zegkinoglou, I. Sinev et al., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016). https://doi.org/10.1038/ncomms12123
A.D. Handoko, C.W. Ong, Y. Huang, Z.G. Lee, L. Lin et al., Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts. J. Phys. Chem. C 120(36), 20058–20067 (2016). https://doi.org/10.1021/acs.jpcc.6b07128
A. Dutta, M. Rahaman, N.C. Luedi, M. Mohos, P. Broekmann, Morphology matters: tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal. 6(6), 3804–3814 (2016). https://doi.org/10.1021/acscatal.6b00770
D. Gao, I. Zegkinoglou, N.J. Divins, F. Scholten, I. Sinev et al., Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 11(5), 4825–4831 (2017). https://doi.org/10.1021/acsnano.7b01257
D. Ren, Y. Deng, A.D. Handoko, C. Chen, S. Malkhandi et al., Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5(5), 2814–2821 (2015). https://doi.org/10.1021/cs502128q
A. Loiudice, P. Lobaccaro, E.A. Kamali, T. Thao, B.H. Huang et al., Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55(19), 5789–5792 (2016). https://doi.org/10.1002/anie.201601582
Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A-Chem. 199(1–2), 39–47 (2003)
D. Kim, C.S. Kley, Y. Li, P. Yang, Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl. Acad. Sci. USA 114(40), 10560–10565 (2017). https://doi.org/10.1073/pnas.1711493114
C.W. Li, J. Ciston, M.W. Kanan, Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014). https://doi.org/10.1038/nature13249
C.S. Diercks, S. Lin, N. Kornienko, E.A. Kapustin, E.M. Nichols et al., Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 140(3), 1116–1122 (2018). https://doi.org/10.1021/jacs.7b11940
A.J. Garza, A.T. Bell, M. Head-Gordon, Is subsurface oxygen necessary for the electrochemical reduction of CO2 on copper? J. Phys. Chem. Lett. 9(3), 601–606 (2018). https://doi.org/10.1021/acs.jpclett.7b03180
F. Cavalca, R. Ferragut, S. Aghion, A. Eilert, O. Diaz-Morales et al., Nature and distribution of stable subsurface oxygen in copper electrodes during electrochemical CO2 reduction. J. Phys. Chem. C 121(45), 25003–25009 (2017). https://doi.org/10.1021/acs.jpcc.7b08278
L. Ma, W. Hu, Q. Pan, L. Zou, Z. Zou et al., Polyvinyl alcohol-modified gold nanoparticles with record-high activity for electrochemical reduction of CO2 to CO. J. CO2 Util. 34, 108–114 (2019). https://doi.org/10.1016/j.jcou.2019.06.002
H. Yang, S. Hung, S. Liu, K. Yuan, S. Miao et al., Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
J. Yang, W. Li, D. Wang, Y. Li, Electronic metal–support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 32(49), 2003300 (2020). https://doi.org/10.1002/adma.202003300
H. Shang, W. Sun, R. Sui, J. Pei, L. Zheng et al., Engineering isolated Mn–N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 20(7), 5443–5450 (2020). https://doi.org/10.1021/acs.nanolett.0c01925
F. Yang, P. Song, X. Liu, B. Mei, W. Xing et al., Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem. Int. Ed. 57(38), 12303–12307 (2018). https://doi.org/10.1002/anie.201805871
S. Ji, Y. Qu, T. Wang, Y. Chen, G. Wang et al., Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 59(26), 10651–10657 (2020). https://doi.org/10.1002/anie.202003623
W. Ju, A. Bagger, G. Hao, A.S. Varela, I. Sinev et al., Understanding activity and selectivity of metal–nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017). https://doi.org/10.1038/s41467-017-01035-z
X. Cui, F. Shi, Selective conversion of CO2 by single-site catalysts. Acta Phys-Chim. Sin. 37(5), 2006080 (2020). https://doi.org/10.3866/PKU.WHXB202006080
D. Wu, X. Wang, L. Shi, K. Jiang, M. Wang et al., Iron clusters boosted performance in electrocatalytic carbon dioxide conversion. J. Mater. Chem. A 8(41), 21661–21667 (2020). https://doi.org/10.1039/D0TA07867K
G. Chen, C. Xu, X. Huang, J. Ye, L. Gu et al., Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 15, 564–569 (2016). https://doi.org/10.1038/nmat4555
L. Zhang, F. Mao, L. Zheng, H. Wang, X. Yang et al., Tuning metal catalyst with metal–C3N4 interaction for efficient CO2 electroreduction. ACS Catal. 8(12), 11035–11041 (2018). https://doi.org/10.1021/acscatal.8b03789
J. Tian, R. Wang, M. Shen, X. Ma, H. Yao et al., Bi–Sn oxides for highly selective CO2 electroreduction to formate in a wide potential window. ChemSusChem (2021). https://doi.org/10.1002/cssc.202100543
J. Wu, Y. Xie, S. Du, Z. Ren, P. Yu et al., Heterophase engineering of SnO2/Sn3O4 drives enhanced carbon dioxide electrocatalytic reduction to formic acid. Sci. China Mater. 63, 2314–2324 (2020). https://doi.org/10.1007/s40843-020-1361-3
Y.W. Choi, F. Scholten, I. Sinev, B. Roldan Cuenya, Enhanced stability and CO/formate selectivity of plasma-treated SnOx/AgOx catalysts during CO2 electroreduction. J. Am. Chem. Soc. 141(13), 5261–5266 (2019). https://doi.org/10.1021/jacs.8b12766
A. Dutta, A. Kuzume, M. Rahaman, S. Vesztergom, P. Broekmann, Monitoring the chemical state of catalysts for CO2 electroreduction: an in operando study. ACS Catal. 5(12), 7498–7502 (2015). https://doi.org/10.1021/acscatal.5b02322
S. Chu, X. Yan, C. Choi, S. Hong, A.W. Robertson et al., Stabilization of Cu+ by tuning a CuO–CeO2 interface for selective electrochemical CO2 reduction to ethylene. Green Chem. 22(19), 6540–6546 (2020). https://doi.org/10.1039/D0GC02279A
H. Xiao, W.A. Goddard, T. Cheng, Y. Liu, Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl. Acad. Sci. USA 114(26), 6685–6688 (2017). https://doi.org/10.1073/pnas.1702405114
M. Favaro, H. Xiao, T. Cheng, W.A. Goddard, J. Yano et al., Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl. Acad. Sci. USA 114(26), 6706–6711 (2017). https://doi.org/10.1073/pnas.1701405114
X. Yan, C. Chen, Y. Wu, S. Liu, Y. Chen et al., Efficient electroreduction of CO2 to C2+ products on CeO2 modified CuO. Chem. Sci. 12(19), 6638–6645 (2021). https://doi.org/10.1039/D1SC01117K
Y.J. Sa, C.W. Lee, S.Y. Lee, J. Na, U. Lee et al., Catalyst–electrolyte interface chemistry for electrochemical CO2 reduction. Chem. Soc. Rev. 49(18), 6632–6665 (2020). https://doi.org/10.1039/D0CS00030B
F. Li, A. Thevenon, A. Rosas-Hernandez, Z. Wang, Y. Li et al., Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020). https://doi.org/10.1038/s41586-019-1782-2
F. Li, Y.C. Li, Z. Wang, J. Li, D.H. Nam et al., Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2019). https://doi.org/10.1038/s41929-019-0383-7
J.R. Pankhurst, P. Iyengar, A. Loiudice, M. Mensi, R. Buonsanti, Metal–ligand bond strength determines the fate of organic ligands on the catalyst surface during the electrochemical CO2 reduction reaction. Chem. Sci. 11(34), 9296–9302 (2020). https://doi.org/10.1039/D0SC03061A
Z. Cao, D. Kim, D. Hong, Y. Yu, J. Xu et al., A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J. Am. Chem. Soc. 138(26), 8120–8125 (2016). https://doi.org/10.1021/jacs.6b02878
S. Li, A.V. Nagarajan, Y. Li, D.R. Kauffman, G. Mpourmpakis et al., The role of ligands in atomically precise nanocluster-catalyzed CO2 electrochemical reduction. Nanoscale 13(4), 2333–2337 (2021). https://doi.org/10.1039/D0NR07832H
Y. Fang, J.C. Flake, Electrochemical reduction of CO2 at functionalized Au electrodes. J. Am. Chem. Soc. 139(9), 3399–3405 (2017). https://doi.org/10.1021/jacs.6b11023
X. Cai, H. Liu, X. Wei, Z. Yin, J. Chu et al., Molecularly defined interface created by porous polymeric networks on gold surface for concerted and selective CO2 reduction. ACS Sustain. Chem. Eng. 6(12), 17277–17283 (2018). https://doi.org/10.1021/acssuschemeng.8b04691
Y. Zhou, L. Zheng, D. Yang, H. Yang, Q. Lu et al., Enhancing CO2 electrocatalysis on 2D porphyrin-based metal–organic framework nanosheets coupled with visible-light. Small Methods 5(2), 2000991 (2021). https://doi.org/10.1002/smtd.202000991
A. Wagner, K.H. Ly, N. Heidary, I. Szabo, T. Foldes et al., Host-guest chemistry meets electrocatalysis: Cucurbit[6]uril on a Au surface as a hybrid system in CO2 reduction. ACS Catal. 10(1), 751–761 (2020). https://doi.org/10.1021/acscatal.9b04221
Y.T. Guntern, J.R. Pankhurst, J. Vavra, M. Mensi, V. Mantella et al., Nanocrystal/metal–organic framework hybrids as electrocatalytic platforms for CO2 conversion. Angew. Chem. Int. Ed. 58(36), 12632–12639 (2019). https://doi.org/10.1002/anie.201905172
D.H. Nam, P.D. Luna, A. Rosas-Hernandez, A. Thevenon, F. Li et al., Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 19, 266–276 (2020). https://doi.org/10.1038/s41563-020-0610-2
M. Ma, B.J. Trzesniewski, J. Xie, W.A. Smith, Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew. Chem. Int. Ed. 55(33), 9748–9752 (2016). https://doi.org/10.1002/anie.201604654
M.R. Singh, E.L. Clark, A.T. Bell, Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Phys. Chem. Chem. Phys. 17(29), 18924–18936 (2015). https://doi.org/10.1039/C5CP03283K
R.M. Aran-Ais, D. Gao, B. Roldan Cuenya, Structure- and electrolyte-sensitivity in CO2 electroreduction. Acc. Chem. Res. 51(11), 2906–2917 (2018). https://doi.org/10.1021/acs.accounts.8b00360
D. Gao, R.M. Arán-Ais, H.S. Jeon, B. Roldan Cuenya, Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019). https://doi.org/10.1038/s41929-019-0235-5
Y. Hori, A. Murata, R. Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 1 85(8), 2309–2326 (1989). https://doi.org/10.1039/F19898502309
S. Zhu, B. Jiang, W. Cai, M. Shao, Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139(44), 15664–15667 (2017). https://doi.org/10.1021/jacs.7b10462
A. Wuttig, Y. Yoon, J. Ryu, Y. Surendranath, Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction. J. Am. Chem. Soc. 139(47), 17109–17113 (2017). https://doi.org/10.1021/jacs.7b08345
A. Murata, Y. Hori, Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn. 64, 123–127 (1991). https://doi.org/10.1246/bcsj.64.123
M.R. Thorson, K.I. Siil, P.J.A. Kenis, Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 160, F69 (2012). https://doi.org/10.1149/2.052301jes
D. Gao, I.T. McCrum, S. Deo, Y.W. Choi, F. Scholten et al., Activity and selectivity control in CO2 electroreduction to multicarbon products over CuOx catalysts via electrolyte design. ACS Catal. 8(11), 10012–10020 (2018). https://doi.org/10.1021/acscatal.8b02587
A. Schizodimou, G. Kyriacou, Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochim. Acta 78, 171–176 (2012). https://doi.org/10.1016/j.electacta.2012.05.118
M. Dunwell, Q. Lu, J.M. Heyes, J. Rosen, J.G. Chen et al., The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 139(10), 3774–3783 (2017). https://doi.org/10.1021/jacs.6b13287
M.R. Singh, Y. Kwon, Y. Lum, J.W. Ager, A.T. Bell, Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138(39), 13006–13012 (2016). https://doi.org/10.1021/jacs.6b07612
O. Ayemoba, A. Cuesta, Spectroscopic evidence of size-dependent buffering of interfacial pH by cation hydrolysis during CO2 electroreduction. ACS Appl. Mater. Interfaces 9(33), 27377–27382 (2017). https://doi.org/10.1021/acsami.7b07351
S. Ringe, E.L. Clark, J. Resasco, A. Walton, B. Seger et al., Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12(10), 3001–3014 (2019). https://doi.org/10.1039/C9EE01341E
Y. Hori, H. Konishi, T. Futamura, A. Murata, O. Koga et al., “Deactivation of copper electrode” in electrochemical reduction of CO2. Electrochim. Acta 50(27), 5354–5369 (2005). https://doi.org/10.1016/j.electacta.2005.03.015
A. Wuttig, Y. Surendranath, Impurity ion complexation enhances carbon dioxide reduction catalysis. ACS Catal. 5(7), 4479–4484 (2015). https://doi.org/10.1021/acscatal.5b00808
D.H. Won, H. Shin, M.W. Chung, H. Jung, K.H. Chae et al., Achieving tolerant CO2 electro-reduction catalyst in real water matrix. Appl. Catal. B-Environ. 258, 117961 (2019). https://doi.org/10.1016/j.apcatb.2019.117961
J. Resasco, Y. Lum, E. Clark, J.Z. Zeledon, A.T. Bell, Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem 5(7), 1064–1072 (2018). https://doi.org/10.1002/celc.201701316
A.S. Varela, W. Ju, T. Reier, P. Strasser, Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal. 6(4), 2136–2144 (2016). https://doi.org/10.1021/acscatal.5b02550
D. Gao, F. Scholten, B. Roldan Cuenya, Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: Halide effect. ACS Catal. 7(8), 5112–5120 (2017). https://doi.org/10.1021/acscatal.7b01416
Y. Huang, C.W. Ong, B.S. Yeo, Effects of electrolyte anions on the reduction of carbon dioxide to ethylene and ethanol on copper (100) and (111) surfaces. ChemSusChem 11(18), 3299–3306 (2018). https://doi.org/10.1002/cssc.201801078
D. Gao, I. Sinev, F. Scholten, R.M. Aran-Ais, N.J. Divins et al., Selective CO2 electroreduction to ethylene and multicarbon alcohols via electrolyte-driven nanostructuring. Angew. Chem. Int. Ed. 58(47), 17047–17053 (2019). https://doi.org/10.1002/anie.201910155
F.S. Roberts, K.P. Kuhl, A. Nilsson, High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 54(17), 5179–5182 (2015). https://doi.org/10.1002/anie.201412214
Y.C. Hsieh, S.D. Senanayake, Y. Zhang, W. Xu, D.E. Polyansky, Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction. ACS Catal. 5(9), 5349–5356 (2015). https://doi.org/10.1021/acscatal.5b01235
D.L.T. Nguyen, M.S. Jee, D.H. Won, H.S. Oh, B.K. Min et al., Effect of halides on nanoporous Zn-based catalysts for highly efficient electroreduction of CO2 to CO. Catal. Commun. 114, 109–113 (2018). https://doi.org/10.1016/j.catcom.2018.06.020
Y.C. Hsieh, L.E. Betancourt, S.D. Senanayake, E. Hu, Y. Zhang et al., Modification of CO2 reduction activity of nanostructured silver electrocatalysts by surface halide anions. ACS Appl. Energy Mater. 2(1), 102–109 (2019). https://doi.org/10.1021/acsaem.8b01692
Y. Zhang, L. Liu, L. Shi, T. Yang, D. Niu et al., Enhancing CO2 electroreduction on nanoporous silver electrode in the presence of halides. Electrochim. Acta 313, 561–569 (2019). https://doi.org/10.1016/j.electacta.2019.04.175
H. Fu, L. Zhang, L. Zheng, P. Liu, H. Zhao et al., Enhanced CO2 electroreduction performance over Cl-modified metal catalysts. J. Mater. Chem. A 7(20), 12420–12435 (2019). https://doi.org/10.1039/C9TA02223F
M. Zhao, H. Tang, Q. Yang, Y. Gu, H. Zhu et al., Inhibiting hydrogen evolution using a chloride adlayer for efficient electrochemical CO2 reduction on Zn electrodes. ACS Appl. Mater. Interfaces 12(4), 4565–4571 (2020). https://doi.org/10.1021/acsami.9b22811
M. Cho, J.T. Song, S. Back, Y. Jung, J. Oh, The role of adsorbed CN and Cl on an Au electrode for electrochemical CO2 reduction. ACS Catal. 8(2), 1178–1185 (2018). https://doi.org/10.1021/acscatal.7b03449
N. Ikemiya, K. Natsui, K. Nakata, Y. Einaga, Effect of alkali-metal cations on the electrochemical reduction of carbon dioxide to formic acid using boron-doped diamond electrodes. RSC Adv. 7(36), 22510–22514 (2017). https://doi.org/10.1039/C7RA03370B
M. Tomisaki, S. Kasahara, K. Natsui, N. Ikemiya, Y. Einaga, Switchable product selectivity in the electrochemical reduction of carbon dioxide using boron-doped diamond electrodes. J. Am. Chem. Soc. 141(18), 7414–7420 (2019). https://doi.org/10.1021/jacs.9b01773
M. Tomisaki, K. Natsui, N. Ikemiya, K. Nakata, Y. Einaga, Influence of electrolyte on the electrochemical reduction of carbon dioxide using boron-doped diamond electrodes. ChemistrySelect 3(36), 10209–10213 (2018). https://doi.org/10.1002/slct.201801546
P. Lobaccaro, M.R. Singh, E.L. Clark, Y. Kwon, A.T. Bell et al., Effects of temperature and gas–liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO2 reduction electrocatalysts. Phys. Chem. Chem. Phys. 18(38), 26777–26785 (2016). https://doi.org/10.1039/C6CP05287H
J. Li, G. Chen, Y. Zhu, Z. Liang, A. Pei et al., Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 1, 592–600 (2018). https://doi.org/10.1038/s41929-018-0108-3
D. Wakerley, S. Lamaison, F. Ozanam, N. Menguy, D. Mercie et al., Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 18, 1222–1227 (2019). https://doi.org/10.1038/s41563-019-0445-x
F. Lei, W. Liu, Y. Sun, J. Xu, K. Liu et al., Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 7, 12697 (2016). https://doi.org/10.1038/ncomms12697
N. Gupta, M. Gattrell, B. MacDougall, Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 36, 161–172 (2006). https://doi.org/10.1007/s10800-005-9058-y
J. Ryu, A. Wuttig, Y. Surendranath, Quantification of interfacial pH variation at molecular length scales using a concurrent non-faradaic reaction. Angew. Chem. Int. Ed. 57(30), 9300–9304 (2018). https://doi.org/10.1002/anie.201802756
D. Raciti, M. Mao, C. Wang, Mass transport modelling for the electroreduction of CO2 on Cu nanowires. Nanotechnology 29, 044001 (2018). https://doi.org/10.1088/1361-6528/aa9bd7
K. Yang, R. Kas, W.A. Smith, In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction. J. Am. Chem. Soc. 141(40), 15891–15900 (2019). https://doi.org/10.1021/jacs.9b07000
A.S. Hall, Y. Yoon, A. Wuttig, Y. Surendranath, Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 137(47), 14834–14837 (2015). https://doi.org/10.1021/jacs.5b08259
M.R. Singh, J.D. Goodpaster, A.Z. Weber, M. Head-Gordon, A.T. Bell, Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models. Proc. Natl. Acad. Sci. USA 114(42), E8812–E8821 (2017). https://doi.org/10.1073/pnas.1713164114
W. Luo, J. Zhang, M. Li, A. Züttel, Boosting CO production in electrocatalytic CO2 reduction on highly porous Zn catalysts. ACS Catal. 9(5), 3783–3791 (2019). https://doi.org/10.1021/acscatal.8b05109
D. Yang, G. Wang, X. Wang, Photo- and thermo-coupled electrocatalysis in carbon dioxide and methane conversion. Sci. China Mater. 62, 1369–1373 (2019). https://doi.org/10.1007/s40843-019-9455-3
J. Resasco, L.D. Chen, E. Clark, C. Tsai, C. Hahn et al., Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139(32), 11277–11287 (2017). https://doi.org/10.1021/jacs.7b06765
C. Yang, Y. Zhu, J. Liu, Y. Qin, H. Wang et al., Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy 77, 105126 (2020). https://doi.org/10.1016/j.nanoen.2020.105126
Y. Zhu, X. Cui, H. Liu, Z. Guo, Y. Dang et al., Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3448-2
D. Yang, S. Zuo, H. Yang, X. Wang, Single-unit-cell catalysis of CO2 electroreduction over sub-1 nm Cu9S5 nanowires. Adv. Energy Mater. 11(16), 2100272 (2021). https://doi.org/10.1002/aenm.202100272
D. Yang, H. Yu, T. He, S. Zuo, X. Liu et al., Visible-light-switched electron transfer over single porphyrin–metal atom center for highly selective electroreduction of carbon dioxide. Nat. Commun. 10, 3844 (2019). https://doi.org/10.1038/s41467-019-11817-2
D. Yang, S. Zuo, H. Yang, Y. Zhou, X. Wang, Freestanding millimeter-scale porphyrin-based monoatomic layers with 0.28 nm thickness for CO2 electrocatalysis. Angew. Chem. Int. Ed. 59(43), 18954–18957 (2020). https://doi.org/10.1002/anie.202006899
M. Xie, B. Xia, Y. Li, Y. Yan, Y. Yang et al., Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9(5), 1687–1695 (2016). https://doi.org/10.1039/C5EE03694A